1
|
Neuroinflammation in autism spectrum disorders: potential target for mesenchymal stem cell-based therapy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism spectrum disorders (ASD) include a group of neurodevelopmental disorders characterised by repetitive behaviours and impairments in communication, emotional and social skills. This review gives an overview of ASD, focusing on the aetiological and clinical aspects. It also discusses the role of neuroinflammation in ASD, critically examines the current evidence on the therapeutic effects of MSCs in ASD and consolidates key findings in this area of research.
Results
Many environmental and genetic factors have been linked to the aetiology of ASD. It has become increasingly evident that neuroinflammation plays a role in ASD. Conventional treatment of ASD revolves around psychosocial approaches whereas recent studies have turned to alternative approaches such as mesenchymal stem cell (MSC)-based therapy, owing to the well-recognised immunomodulatory characteristics of MSCs. Preclinical and clinical studies have shown that MSCs were able to exert anti-inflammatory effects and alleviate ASD symptoms.
Conclusions
There are many preclinical studies that support the use of MSCs in ASD. However, there are relatively fewer clinical studies concerning the safety and efficacy of MSCs in ASD, which warrants more large-scale clinical studies for future research.
Collapse
|
2
|
Rodriguez-Gomez DA, Garcia-Guaqueta DP, Charry-Sánchez JD, Sarquis-Buitrago E, Blanco M, Velez-van-Meerbeke A, Talero-Gutiérrez C. A systematic review of common genetic variation and biological pathways in autism spectrum disorder. BMC Neurosci 2021; 22:60. [PMID: 34627165 PMCID: PMC8501721 DOI: 10.1186/s12868-021-00662-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social communication and interaction. Common genetic variation appears to play a key role in the development of this condition. In this systematic review, we describe the relationship between genetic variations and autism. We created a gene dataset of the genes involved in the pathogenesis of autism and performed an over-representation analysis to evaluate the biological functions and molecular pathways that may explain the associations between these variants and the development of ASD. Results 177 studies and a gene set composed of 139 were included in this qualitative systematic review. Enriched pathways in the over-representation analysis using the KEGG pathway database were mostly associated with neurotransmitter receptors and their subunits. Major over-represented biological processes were social behavior, vocalization behavior, learning and memory. The enriched cellular component of the proteins encoded by the genes identified in this systematic review were the postsynaptic membrane and the cell junction. Conclusions Among the biological processes that were examined, genes involved in synaptic integrity, neurotransmitter metabolism, and cell adhesion molecules were significantly involved in the development of autism. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00662-z.
Collapse
Affiliation(s)
- Diego Alejandro Rodriguez-Gomez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Danna Paola Garcia-Guaqueta
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Jesús David Charry-Sánchez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Elias Sarquis-Buitrago
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Mariana Blanco
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Alberto Velez-van-Meerbeke
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia. .,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.
| |
Collapse
|
3
|
Lin Y, Yerukala Sathipati S, Ho SY. Predicting the Risk Genes of Autism Spectrum Disorders. Front Genet 2021; 12:665469. [PMID: 34194469 PMCID: PMC8236850 DOI: 10.3389/fgene.2021.665469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a wide spectrum of neurodevelopmental disorders that emerge during infancy and continue throughout a lifespan. Although substantial efforts have been made to develop therapeutic approaches, core symptoms persist lifelong in ASD patients. Identifying the brain temporospatial regions where the risk genes are expressed in ASD patients may help to improve the therapeutic strategies. Accordingly, this work aims to predict the risk genes of ASD and identify the temporospatial regions of the brain structures at different developmental time points for exploring the specificity of ASD gene expression in the brain that would help in possible ASD detection in the future. A dataset consisting of 13 developmental stages ranging from 8 weeks post-conception to 8 years from 26 brain structures was retrieved from the BrainSpan atlas. This work proposes a support vector machine–based risk gene prediction method ASD-Risk to distinguish the risk genes of ASD and non-ASD genes. ASD-Risk used an optimal feature selection algorithm called inheritable bi-objective combinatorial genetic algorithm to identify the brain temporospatial regions for prediction of the risk genes of ASD. ASD-Risk achieved a 10-fold cross-validation accuracy, sensitivity, specificity, area under a receiver operating characteristic curve, and a test accuracy of 81.83%, 0.84, 0.79, 0.84, and 72.27%, respectively. We prioritized the temporospatial features according to their contribution to the prediction accuracy. The top identified temporospatial regions of the brain for risk gene prediction included the posteroventral parietal cortex at 13 post-conception weeks feature. The identified temporospatial features would help to explore the risk genes that are specifically expressed in different brain regions of ASD patients.
Collapse
Affiliation(s)
- Yenching Lin
- Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan
| | - Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shinn-Ying Ho
- Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Khair AM, Salvucci AE. Phenotype Expression Variability in Children with GABRB3 Heterozygous Mutations. Oman Med J 2021; 36:e240. [PMID: 33854792 PMCID: PMC8019580 DOI: 10.5001/omj.2021.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
GABRB3 gene is a recently identified gene located in 15q12 chromosome and encodes for gamma-aminobutyric acid (GABA) receptor subunit beta-3 protein, which is linked to the GABAA receptor. The gene is believed to share a role in inhibitory GABAergic synapses, GABA iron-gated channel function, and possible cellular response to histamine. The β3 subunit is expressed in cerebral grey matter, thalami, hippocampi, and cerebellum, among other structures. Faulty GABRB3 function is linked to several neurological disorders and clinical syndromes. However, the spectrum of such disorders is not yet well known. We present three case reports highlighting the potentially expanding clinical phenotype and variable expression in children with mutated GABRB3 gene.
Collapse
Affiliation(s)
- Abdulhafeez M Khair
- Thomas Jefferson University, Sidney Kimmel Medical College, duPont Hospital for Children, Wilmington DE, USA
| | - Alana E Salvucci
- Thomas Jefferson University, Sidney Kimmel Medical College, duPont Hospital for Children, Wilmington DE, USA
| |
Collapse
|
5
|
Adak P, Sinha S, Banerjee N. An Association Study of Gamma-Aminobutyric Acid Type A Receptor Variants and Susceptibility to Autism Spectrum Disorders. J Autism Dev Disord 2021; 51:4043-4053. [PMID: 33442857 DOI: 10.1007/s10803-020-04865-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
In this pilot study, we aim to identify the role of few genetic variants of GABA-receptor type A subunits GABRB3 (rs4906902, rs7171660), GABRG3 (rs208129, rs140679), GABRA5 (rs 140681) in the aetiology of autism spectrum disorders in a population of West Bengal. 192 ASD probands, their parents and 184 ethnically-matched healthy controls were recruited for the study. The rs4906902G and the rs140679T conferred significant risk towards ASD. rs7171660 and rs140679 had transmission bias in the family. Neither alleles of rs 208129 and rs 140681 showed significant over-representation in either groups. All these variants were associated with at least one deficit in ASD-associated phenotypes like 'relating to people', 'Imitation', 'emotional response', 'body use', 'taste, smell, touch response' and 'activity levels'.
Collapse
Affiliation(s)
- Pallabi Adak
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Out Patient Department, Manovikas Kendra, Kolkata, West Bengal, 700107, India
| | - Nilanjana Banerjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, E.M. Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
6
|
Uddin MG, Siddiqui SA, Uddin MS, Aziz MA, Hussain MS, Furhatun-Noor, Millat MS, Sen N, Muhuri B, Islam MS. Genetic variants of ZNF385B and COMT are associated with autism spectrum disorder in the Bangladeshi children. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
7
|
Horvath AA, Csernus EA, Lality S, Kaminski RM, Kamondi A. Inhibiting Epileptiform Activity in Cognitive Disorders: Possibilities for a Novel Therapeutic Approach. Front Neurosci 2020; 14:557416. [PMID: 33177974 PMCID: PMC7593384 DOI: 10.3389/fnins.2020.557416] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairment is a common and seriously debilitating symptom of various mental and neurological disorders including autism, attention deficit hyperactivity disorder, multiple sclerosis, epilepsy, and neurodegenerative diseases, like Alzheimer's disease. In these conditions, high prevalence of epileptiform activity emerges as a common pathophysiological hallmark. Growing body of evidence suggests that this discrete but abnormal activity might have a long-term negative impact on cognitive performance due to neuronal circuitries' remodeling, altered sleep structure, pathological hippocampo-cortical coupling, and even progressive neuronal loss. In animal models, epileptiform activity was shown to enhance the formation of pathological amyloid and tau proteins that in turn trigger network hyperexcitability. Abolishing epileptiform discharges might slow down the cognitive deterioration. These findings might provide basis for therapeutic use of antiepileptic drugs in neurodegenerative cognitive disorders. The aim of our review is to describe the data on the prevalence of epileptiform activity in various cognitive disorders, to summarize the current knowledge of the mechanisms of epileptic activity in relation to cognitive impairment, and to explore the utility of antiepileptic drugs in the therapy of cognitive disorders. We also propose future directions for drug development and novel therapeutic interventions targeting epileptiform discharges in these disorders.
Collapse
Affiliation(s)
- Andras Attila Horvath
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | | | - Sara Lality
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Rafal M. Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anita Kamondi
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, Roccella M. The Neurochemistry of Autism. Brain Sci 2020; 10:E163. [PMID: 32182969 PMCID: PMC7139720 DOI: 10.3390/brainsci10030163] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to complex neurobehavioral and neurodevelopmental conditions characterized by impaired social interaction and communication, restricted and repetitive patterns of behavior or interests, and altered sensory processing. Environmental, immunological, genetic, and epigenetic factors are implicated in the pathophysiology of autism and provoke the occurrence of neuroanatomical and neurochemical events relatively early in the development of the central nervous system. Many neurochemical pathways are involved in determining ASD; however, how these complex networks interact and cause the onset of the core symptoms of autism remains unclear. Further studies on neurochemical alterations in autism are necessary to clarify the early neurodevelopmental variations behind the enormous heterogeneity of autism spectrum disorder, and therefore lead to new approaches for the treatment and prevention of autism. In this review, we aim to delineate the state-of-the-art main research findings about the neurochemical alterations in autism etiology, and focuses on gamma aminobutyric acid (GABA) and glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opioids, and acetylcholine. We also aim to suggest a possible related therapeutic approach that could improve the quality of ASD interventions. Over one hundred references were collected through electronic database searching in Medline and EMBASE (Ovid), Scopus (Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI).
Collapse
Affiliation(s)
- Rosa Marotta
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
| | - Maria C. Risoleo
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy;
| | - Lucia Parisi
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Luigi Vetri
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo 90127, Italy
| | - Michele Roccella
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| |
Collapse
|
9
|
Baclofen as an adjuvant therapy for autism: a randomized, double-blind, placebo-controlled trial. Eur Child Adolesc Psychiatry 2019; 28:1619-1628. [PMID: 30980177 DOI: 10.1007/s00787-019-01333-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Increasing evidence suggests that the function of the GABAergic system is abnormally low in autism spectrum disorder (ASD). Baclofen, which functions as a selective agonist for GABAB receptors, does appear promising for the treatment of ASD. We conducted a 10-week randomized-controlled study aimed at evaluating the potential of baclofen as an adjuvant therapy to enhance the effect of risperidone in children with ASD. Sixty-four children (3-12 years) with moderate-to-severe irritability symptoms of ASD were included. We used the Aberrant Behavior Checklist-Community Edition (ABC-C) for the outcome measures on each of the follow-up visits (weeks 0, 5, and 10). Analysis of the combined data revealed significant improvement for all the ABC subscales (irritability: F = 51.644, df = 1.66, p < 0.001, lethargy: F = 39.734, df = 1.38, p < 0.001, stereotypic behavior: F = 25.495, df = 1.56, p < 0.001, hyperactivity: F = 54.135, df = 1.35, p < 0.001, and inappropriate speech: F = 19.277, df = 1.47, p = 0.004). Combined treatment with baclofen and risperidone exerted a greater effect on improvement of hyperactivity symptoms at both midpoint [Cohen's d, 95% confidence interval (CI) = - 3.14, - 5.56 to - 0.72] and endpoint (d, 95% CI = - 4.45, - 8.74 to - 0.16) when compared with treatment with placebo plus risperidone. The two treatments achieved comparable results for other outcome measures. Our data support safety and efficacy of baclofen as an adjuvant to risperidone for improvement of hyperactivity symptoms in children with ASD.
Collapse
|
10
|
Frohlich J, Reiter LT, Saravanapandian V, DiStefano C, Huberty S, Hyde C, Chamberlain S, Bearden CE, Golshani P, Irimia A, Olsen RW, Hipp JF, Jeste SS. Mechanisms underlying the EEG biomarker in Dup15q syndrome. Mol Autism 2019; 10:29. [PMID: 31312421 PMCID: PMC6609401 DOI: 10.1186/s13229-019-0280-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz). Both paternal Dup15q syndrome cases displayed beta power comparable to the reference cohort. Conclusions Our results suggest a critical role for GABAergic transmission in the Dup15q syndrome beta EEG phenotype, which cannot be explained by UBE3A dysfunction alone. If this mechanism is confirmed, the phenotype may be used as a marker of GABAergic pathology in clinical trials for Dup15q syndrome.
Collapse
Affiliation(s)
- Joel Frohlich
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA 90095 USA
| | - Lawrence T. Reiter
- Departments of Neurology, Pediatrics and Anatomy & Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link, Memphis, TN 415 USA
| | - Vidya Saravanapandian
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Charlotte DiStefano
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Scott Huberty
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
- McGill University, MUHC Research Institute, 5252, boul. de Maisonneuve Ouest, 3E.19, Montreal, QC H4A 3S5 Canada
| | - Carly Hyde
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Stormy Chamberlain
- Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403 USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California Los Angeles, Suite A7-460, 760 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Peyman Golshani
- Department of Neurology and Psychiatry, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Suite 228C, California, Los Angeles 90089 USA
| | - Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, California, Los Angeles 90095 USA
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Shafali S. Jeste
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| |
Collapse
|
11
|
Abstract
UBE3A is a dual function protein consisting of ubiquitin ligase as well as transcriptional co-activator function. UBE3A gene is imprinted in the brain with preferential maternal-specific expression particularly in the neuron and loss of activity of the maternally inherited UBE3A causes Angelman syndrome (AS), characterized by severe mental retardation, lack of speech, seizures and autistic features. Interestingly, duplication, triplication, or gain-of-function mutations in the UBE3A gene are also linked with autism clinically distinguished by social impairments and stereotyped behaviors. These findings indicate that the expression and activity of UBE3A must be tightly regulated during brain development and UBE3A might be playing a crucial role in controlling synaptic function and plasticity through proteasome-mediated degradation as well as transcriptional regulation of its target proteins. In fact, several recent reports demonstrated the role of UBE3A in the modulation of synaptic function and plasticity. This review focuses on the critical role of UBE3A in regulating the synaptic function and how its altered activity is associated with autism.
Collapse
Affiliation(s)
- Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurugram, India
| | - Nihar Ranjan Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
12
|
Wang L, Li J, Shuang M, Lu T, Wang Z, Zhang T, Yue W, Jia M, Ruan Y, Liu J, Wu Z, Zhang D, Wang L. Association study and mutation sequencing of genes on chromosome 15q11-q13 identified GABRG3 as a susceptibility gene for autism in Chinese Han population. Transl Psychiatry 2018; 8:152. [PMID: 30108208 PMCID: PMC6092396 DOI: 10.1038/s41398-018-0197-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Cytogenetic studies suggested that chromosome 15q11-q13 might be a candidate region that increases the risk of autism. Previous association studies in Caucasian populations identified the risk variants of genes in this region. However, the association of these genes with autism in Chinese Han population remains unclear. Herein, 512 autism trios were utilized for a family-based association study of 41 tag single nucleotide polymorphisms (SNPs) in this region to explore the association between protein-coding genes on chromosome 15q11-q13 and autism in Chinese Han population. Furthermore, we sequenced these autism-related genes to detect rare variants in 512 autism trios and 575 healthy controls. Our results showed that the C allele of rs7180500 in GABRG3 was a risk variant for autism (p = 0.00057). The expression quantitative trait loci (eQTL) analysis revealed that the C allele of rs7180500 might be associated with the expression of GABRG3 in the cerebellum (Braineac: p = 0.0048; GTEx: p = 0.0010). Moreover, the sequencing identified two rare variants rs201602655 (p.Val233Met) and rs201427468 (p.Pro365Ser) in GABRG3 and six rare variants in GABRB3 in autistic patients. Among these variants, rs201602655 (p.Val233Met) in GABRG3 were observed in 9 of 512 autistic children and 2 of 575 healthy controls (Pearson χ2-test, χ2 = 5.375, p = 0.020). The functional prediction indicated that rs201602655 (p.Val233Met) might be deleterious. Thus, these findings demonstrated that GABRG3 might contribute to the pathogenesis of autism in Chinese Han population.
Collapse
Affiliation(s)
- Linyan Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jun Li
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Mei Shuang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tianlan Lu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Ziqi Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tian Zhang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Weihua Yue
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Meixiang Jia
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Yanyan Ruan
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jing Liu
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Zhiliu Wu
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191, China. .,The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.
| | - Dai Zhang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0004 1769 3691grid.453135.5Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China ,0000 0001 2256 9319grid.11135.37PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Lifang Wang
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
13
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
14
|
Mahdavi M, Kheirollahi M, Riahi R, Khorvash F, Khorrami M, Mirsafaie M. Meta-Analysis of the Association between GABA Receptor Polymorphisms and Autism Spectrum Disorder (ASD). J Mol Neurosci 2018; 65:1-9. [PMID: 29725984 DOI: 10.1007/s12031-018-1073-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 01/15/2023]
Abstract
Previous studies have reported the association of GABA receptor subunits B3, A5, and G3 single-nucleotide polymorphisms (SNPs) in chromosome 15q11-q13 with autism spectrum disorders (ASDs). However, the currently available results are inconsistent. This study aimed to investigate the association between ASD and the GABA receptor SNPs in chromosomal region 15q11-q13. The association was calculated by the overall odds ratio (OR) with a 95% confidence interval (CI). We used sensitivity analyses and the assessment of publication bias in our meta-analysis. Eight independent case-control studies involving 1408 cases and 2846 healthy controls were analyzed, namely, 8 studies for GABRB3 SNPs as well as 4 studies for GABRA5 and GABRG3 polymorphisms. The meta-analysis showed that GABRB3 polymorphisms in general are not significantly associated with autism [OR = 0.846 (95% CI): 0.595-1.201, I2 = 79.1%]. Further analysis indicated that no associations were found between GABRB3 SNPs and autism on rs2081648 [OR = 0.84 (95% CI) = 0.41-1.72, I2 = 89.2%] and rs1426217 [OR = 1.13 (95% CI) = 0.64-2.0, I2 = 83%]. An OR of 0.95 (95% CI) = 0.77-1.17 was reported (I2 = 0.0%) for GABRA5 SNPs and an OR of 0.96 (95% CI) = 0.24-3.81 was obtained from GABRG3 SNPs (I2 = 97.8%). This meta-analysis provides strong evidence that different SNPs of GABA receptor B3, A5, and G3 subunit genes located on chromosome 15q11-q13 are not associated with the development of autism spectrum diseases in different ethnic populations. However, in future research, large-scale and high-quality studies are necessary to confirm the results.
Collapse
Affiliation(s)
- Manijeh Mahdavi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box 81746-73461, Isfahan, Iran
| | - Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box 81746-73461, Isfahan, Iran. .,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Riahi
- Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khorrami
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box 81746-73461, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirsafaie
- Mohkam-kar Health Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
A Randomized Placebo-Controlled Cross-Over Pilot Study of Riluzole for Drug-Refractory Irritability in Autism Spectrum Disorder. J Autism Dev Disord 2018; 48:3051-3060. [DOI: 10.1007/s10803-018-3562-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Kwon HJ, Kim W, Lim MH. Association between GABA3 Gene Polymorphisms and Attention Deficit Hyperactivity Disorder in Korean Children. Psychiatry Investig 2017; 14:693-697. [PMID: 29042897 PMCID: PMC5639140 DOI: 10.4306/pi.2017.14.5.693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is common disorder of the school-age population. ADHD is familial and genetic studies estimate heritability at 80-90%. The aim of the present study was to investigate the association between the genetic type and alleles for gamma-aminobutyric acid receptor subunit beta-3 (GABA3) gene in Korean children with ADHD. METHODS The sample consisted of 180 ADHD children and 159 control children. We diagnosed ADHD according to DSM-IV. ADHD symptoms were evaluated with Conners' Parent Rating Scales and Dupaul Parent ADHD Rating Scales. Blood samples were taken from the 339 subjects, DNA was extracted from blood lymphocytes, and PCR was performed for GABA3 rs2081648, rs1426217 and rs981778 Polymorphism. Alleles and genotype frequencies were compared using the chi-square test. We compared the allele and genotype frequencies of GABA3 gene polymorphism in the ADHD and control groups. RESULTS This study showed that there was a significant correlation among the frequencies of the rs2081648 (OR=0.71, 95% CI=0.51-0.98, p=0.040) of alleles of MAO, but the final conclusions are not definite. Follow up studies with larger patient or pure subgroups are expected. CONCLUSION These results suggested that GABA3 might be related to ADHD symptoms.
Collapse
Affiliation(s)
- Ho Jang Kwon
- Environmental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Wook Kim
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, Republic of Korea
| | - Myung Ho Lim
- Environmental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
- Department of Psychology, College of Public Welfare, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
17
|
GABA A receptor subunit gene polymorphisms predict symptom-based and developmental deficits in Chinese Han children and adolescents with autistic spectrum disorders. Sci Rep 2017; 7:3290. [PMID: 28607477 PMCID: PMC5468250 DOI: 10.1038/s41598-017-03666-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
GABAA receptor subunit genes GABRB3, GABRA5, and GABRG3 located on chromosome 15q11-q13 have been implicated in the etiology of autistic spectrum disorders (ASD). This study intended to investigate the possible role of single-nucleotide polymorphisms (SNPs) present in GABRB3 (rs2081648 and rs1426217), GABRA5 (rs35586628), and GABRG3 (rs208129) genes in ASD susceptibility and symptom-based and developmental phenotypes of ASD in Chinese Han children and adolescents. 99 ASD patients and 231 age- and gender- frequency-matched typical developing (TD) controls were tested by TaqMan® genotyping assay. Symptom-based phenotypes were evaluated by Childhood Autism Rating Scale (CARS) and Autism Behavior Checklist (ABC), and developmental phenotypes were assessed by Early Childhood Development Questionnaire (ECDQ) in ASD patients. Three haplotypes and global χ 2 test of all SNPs demonstrated significant associations between ASD and TD groups. Besides, GABRB3 rs2081648, GABRA5 rs35586628, and GABRG3 rs208129 polymorphisms were associated with symptom-based deficits in social interaction, sensorimotor and somatosensory coordination, visual response, imitation, activity level, language expression and adaptability. Developmental abnormalities in late emergences of social interaction and fine motor were detected in GABRB3 rs2081648 polymorphism. Overall results indicated that gene synergy may participate in ASD pathogenesis, and GABAA receptor gene polymorphisms can predict symptom-based and developmental deficits in ASD individuals.
Collapse
|
18
|
Choi H, Song J, Park G, Kim J. Modeling of Autism Using Organoid Technology. Mol Neurobiol 2016; 54:7789-7795. [DOI: 10.1007/s12035-016-0274-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/30/2016] [Indexed: 01/01/2023]
|
19
|
Yin J, Schaaf CP. Autism genetics - an overview. Prenat Diagn 2016; 37:14-30. [DOI: 10.1002/pd.4942] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jiani Yin
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| |
Collapse
|
20
|
Brondino N, Fusar-Poli L, Panisi C, Damiani S, Barale F, Politi P. Pharmacological Modulation of GABA Function in Autism Spectrum Disorders: A Systematic Review of Human Studies. J Autism Dev Disord 2016; 46:825-39. [PMID: 26443675 DOI: 10.1007/s10803-015-2619-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autism spectrum disorders are an emerging health problem worldwide, but little is known about their pathogenesis. It has been hypothesized that autism may result from an imbalance between excitatory glutamatergic and inhibitory GABAergic pathways. Commonly used medications such as valproate, acamprosate, and arbaclofen may act on the GABAergic system and be a potential treatment for people with ASD. The present systematic review aimed at evaluating the state-of-the-art of clinical trials of GABA modulators in autism. To date there is insufficient evidence to suggest the use of these drugs in autistic subjects, even if data are promising. Of note, short-term use of all the reviewed medications appears to be safe. Future well designed trials are needed to elucidate these preliminary findings.
Collapse
Affiliation(s)
- Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy.
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Cristina Panisi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Francesco Barale
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| |
Collapse
|
21
|
Yoo H. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Exp Neurobiol 2015; 24:257-72. [PMID: 26713075 PMCID: PMC4688327 DOI: 10.5607/en.2015.24.4.257] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most complex behavioral disorders with a strong genetic influence. The objectives of this article are to review the current status of genetic research in ASD, and to provide information regarding the potential candidate genes, mutations, and genetic loci possibly related to pathogenesis in ASD. Investigations on monogenic causes of ASD, candidate genes among common variants, rare de novo mutations, and copy number variations are reviewed. The current possible clinical applications of the genetic knowledge and their future possibilities are highlighted.
Collapse
Affiliation(s)
- Heejeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| |
Collapse
|
22
|
Schrider DR, Kern AD. Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain. Genome Biol Evol 2015; 7:3511-28. [PMID: 26590212 PMCID: PMC4700959 DOI: 10.1093/gbe/evv228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods.
Collapse
Affiliation(s)
| | - Andrew D Kern
- Department of Genetics, Rutgers University, Piscataway Human Genetics Institute of New Jersey, Piscataway, New Jersey
| |
Collapse
|
23
|
Hua R, Wei M, Zhang C. The complex genetics in autism spectrum disorders. SCIENCE CHINA-LIFE SCIENCES 2015; 58:933-45. [PMID: 26335739 DOI: 10.1007/s11427-015-4893-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autism spectrum disorders (ASD) are a pervasive neurodevelopmental disease characterized by deficits in social interaction and nonverbal communication, as well as restricted interests and stereotypical behavior. Genetic changes/heritability is one of the major contributing factors, and hundreds to thousands of causative and susceptible genes, copy number variants (CNVs), linkage regions, and microRNAs have been associated with ASD which clearly indicates that ASD is a complex genetic disorder. Here, we will briefly summarize some of the high-confidence genetic changes in ASD and their possible roles in their pathogenesis.
Collapse
Affiliation(s)
- Rui Hua
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - MengPing Wei
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int J Dev Neurosci 2015; 43:70-7. [PMID: 25862937 DOI: 10.1016/j.ijdevneu.2015.04.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders that is among the most severe in terms of prevalence, morbidity and impact to the society. It is characterized by complex behavioral phenotype and deficits in both social and cognitive functions. Although the exact cause of ASD is still not known, the main findings emphasize the role of genetic and environmental factors in the development of autistic behavior. Environmental factors are also likely to interact with the genetic profile and cause aberrant changes in brain growth, neuronal development, and functional connectivity. The past few years have seen an increase in the prevalence of ASD, as a result of enhanced clinical tests and diagnostic tools. Despite growing evidence for the involvement of endogenous biomarkers in the pathophysiology of ASD, early detection of this disorder remains a big challenge. This paper describes the main behavioral and cognitive features of ASD, as well as the symptoms that differentiate autism from other developmental disorders. An attempt will be made to integrate all the available evidence which point to reduced brain connectivity, mirror neurons deficits, and inhibition-excitation imbalance in individuals with ASD. Finally, this review discusses the main factors involved in the pathophysiology of ASD, and illustrates some of the most important markers used for the diagnosis of this debilitating disorder.
Collapse
|
25
|
Chen CH, Huang CC, Cheng MC, Chiu YN, Tsai WC, Wu YY, Liu SK, Gau SSF. Genetic analysis of GABRB3 as a candidate gene of autism spectrum disorders. Mol Autism 2014; 5:36. [PMID: 24999380 PMCID: PMC4082499 DOI: 10.1186/2040-2392-5-36] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/11/2014] [Indexed: 02/02/2023] Open
Abstract
Background GABRB3 is a position candidate gene at chromosome 15q12 that has been implicated in the neurobiology of autism spectrum disorders (ASD). The aim of this study was to examine the genetic association of GABRB3 with ASD. Methods The sample consisted of 356 patients with clinical diagnosis of ASD according to the DSM-IV diagnostic criteria and confirmed by the Autism Diagnostic Interview-Revised and 386 unrelated controls. We searched for mutations at all the exonic regions and 1.6 Kb of the 5′ region of GABRB3 in the genomic DNA of all the participants using the Sanger sequencing. We implemented a case-control association analysis of variants detected in this sample, and conducted a reporter gene assay to assess the functional impact of variants at the 5′ regulatory region. Results We detected six known common SNPs; however, they were not associated with ASD. Besides, a total of 22 rare variants (12 at 5′ regulatory, 4 at intronic, and 6 at exonic regions) were detected in 18 patients and 6 controls. The frequency of rare variants was significantly higher in the patient group than in the control group (18/356 versus 6/386, odds ratio = 3.37, P = 0.007). All the 12 rare variants at the 5′ regulatory region were only detected in 7 patients, but not in any of the controls (7/356 versus 0/386, Fisher’s exact test, P = 0.006). Two patients carried multiple rare variants. Family studies showed that most of these rare variants were transmitted from their parents. Reporter gene assays revealed that four rare variants at the 5′ regulatory region and 1 at exon 1a untranslated region had elevated reporter gene activities compared to two wild type alleles. Conclusions Our data suggest rare variants of GABRB3 might be associated with ASD, and increased GABRB3 expression may contribute to the pathogenesis of ASD in some patients. Trial registration Clinical trial registration Identifier: NCT00494754
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan ; Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan ; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chia-Chun Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Veterans Hospital, Hualien, Taiwan
| | - Yen-Nan Chiu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan
| | - Wen-Che Tsai
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yu-Yu Wu
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Shih-Kai Liu
- Department of Child and Adolescent Psychiatry, Taoyaun Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan ; Graduate Institute of Brain and Mind Sciences, and Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Vorstman JAS, Spooren W, Persico AM, Collier DA, Aigner S, Jagasia R, Glennon JC, Buitelaar JK. Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology (Berl) 2014; 231:1063-78. [PMID: 24292384 DOI: 10.1007/s00213-013-3334-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE The main reason for the current lack of effective treatments for the core symptoms of autism is our limited understanding of the biological mechanisms underlying this heterogeneous group of disorders. A primary value of genetic research is enhancing our insight into the biology of autism through the study of identified autism risk genes. OBJECTIVES In the current review we discuss (1) the genes and loci that are associated with autism, (2) how these provide us with essential cues as to what neurobiological mechanisms may be involved, and (3) how these mechanisms may be used as targets for novel treatments. Next, we provide an overview of currently ongoing clinical trials registered at clinicaltrials.gov with a variety of compounds. Finally, we review current approaches used to translate knowledge derived from gene discovery into novel pharmaceutical compounds and discuss their pitfalls and problems. CONCLUSIONS An increasing number of genetic variants associated with autism have been identified. This will generate new ideas about the biological mechanisms involved in autism, which in turn may provide new leads for the development of novel pharmaceutical compounds. To optimize this pipeline of drug discovery, large-scale international collaborations are needed for gene discovery, functional validation of risk genes, and improvement of clinical outcome measures and clinical trial methodology in autism.
Collapse
Affiliation(s)
- Jacob A S Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, A001.468, University Medical Center Utrecht, Heidelberglaan 100, 3485 CX, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol Autism 2013; 4:48. [PMID: 24321478 PMCID: PMC3903107 DOI: 10.1186/2040-2392-4-48] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/31/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Autism spectrum conditions (ASC) are associated with deficits in social interaction and communication, alongside repetitive, restricted, and stereotyped behavior. ASC is highly heritable. The gamma-aminobutyric acid (GABA)-ergic system has been associated consistently with atypicalities in autism, in both genetic association and expression studies. A key component of the GABA-ergic system is encoded by the GABRB3 gene, which has been previously implicated both in ASC and in individual differences in empathy. METHODS In this study, 45 genotyped single nucleotide polymorphisms (SNPs) within GABRB3 were tested for association with Asperger syndrome (AS), and related quantitative traits measured through the following tests: the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ), the Systemizing Quotient-Revised (SQ-R), the Embedded Figures Test (EFT), the Reading the Mind in the Eyes Test (RMET), and the Mental Rotation Test (MRT). Two-loci, three-loci, four-loci haplotype analyses, and one seven-loci haplotype analysis were also performed in the AS case-control sample. RESULTS Three SNPs (rs7180158, rs7165604, rs12593579) were significantly associated with AS, and two SNPs (rs9806546, rs11636966) were significantly associated with EQ. Two SNP-SNP pairs, rs12438141-rs1035751 and rs12438141-rs7179514, showed significant association with variation in the EFT scores. One SNP-SNP pair, rs7174437-rs1863455, was significantly associated with variation in the MRT scores. Additionally, a few haplotypes, including a 19 kb genomic region that formed a linkage disequilibrium (LD) block in our sample and contained several nominally significant SNPs, were found to be significantly associated with AS. CONCLUSION The current study confirms the role of GABRB3 as an important candidate gene in both ASC and normative variation in related endophenotypes.
Collapse
Affiliation(s)
- Varun Warrier
- Department of Psychiatry, Autism Research Centre, University of Cambridge, Cambridgeshire, UK.
| | | | | |
Collapse
|
28
|
Liao HM, Gau SSF, Tsai WC, Fang JS, Su YC, Chou MC, Liu SK, Chou WJ, Wu YY, Chen CH. Chromosomal abnormalities in patients with autism spectrum disorders from Taiwan. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:734-41. [PMID: 24132905 DOI: 10.1002/ajmg.b.32153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/05/2013] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) are childhood-onset neurodevelopmental disorders characterized by verbal communication impairments, social reciprocity deficits, and the presence of restricted interests and stereotyped behaviors. Genetic factors contribute to the incidence of ASD evidently. However, the genetic spectrum of ASD is highly heterogeneous. Chromosomal abnormalities contribute significantly to the genetic deficits of syndromic and non-syndromic ASD. In this study, we conducted karyotyping analysis in a sample of 500 patients (447 males, 53 females) with ASD from Taiwan, the largest cohort in Asia, to the best of our knowledge. We found three patients having sex chromosome aneuploidy, including two cases of 47, XXY and one case of 47, XYY. In addition, we detected a novel reciprocal chromosomal translocation between long arms of chromosomes 4 and 14, designated t(4;14)(q31.3;q24.1), in a patient with Asperger's disorder. This translocation was inherited from his unaffected father, suggesting it might not be pathogenic or it needs further hits to become pathogenic. In line with other studies, our study revealed that subjects with sex chromosomal aneuploidy are liable to neurodevelopmental disorders, including ASD, and conventional karyotyping analysis is still a useful tool in detecting chromosomal translocation in patients with ASD, given that array-based comparative genomic hybridization technology can provide better resolution in detecting copy number variations of genomic DNA.
Collapse
Affiliation(s)
- Hsiao-Mei Liao
- Department of Psychiatry, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang J, Yang Y, Huang Y, Hu Y, Chen X, Sun H, Lv Z, Cheng Q, Bao L. A study of two Chinese patients with tetrasomy and pentasomy 15q11q13 including Prader-Willi/Angelman syndrome critical region present with developmental delays and mental impairment. BMC MEDICAL GENETICS 2013; 14:9. [PMID: 23320815 PMCID: PMC3598341 DOI: 10.1186/1471-2350-14-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
Abstract
Background The proximal chromosome 15q is prone to unequal crossover, leading to rearrangements. Although 15q11q13 duplications are common in patients with developmental delays and mental impairment, 15q aneusomies resulting in greater or equal to 4 copies of 15q11q13 are rare and no pentasomy 15q11q13 has been reported in the literature. Thus far, all reported high copy number 15q11q13 cases are from the West populations and no such study in Chinese patients have been documented. Dosage-response pattern of high copy number 15q11q13 on clinical presentations is still a subject for further study. Case Presentation In this study, we characterized two Han Chinese patients with high copy number 15q11q13. Using chromosome banding, high resolution SNP-based cytogenomic array, Fluorescence in situ hybridization, and PCR-based microsatellite analysis, we identified two patients with tetrasomy 15q11q13 and pentasomy 15q11q13. Both 15q11q13 aneusomies resulted from a maternally inherited supernumerary marker chromosome 15, and each was composed of two different sized 15q11q13 segments covering the Prader-Willi/Angelman critical region: one being about 10 Mb with breakpoints at BP1 and BP5 regions on 15q11 and 15q13, respectively, and another about 8 Mb in size with breakpoints at BP1 and BP4 regions on 15q. Both patients presented with similar clinical features that included neurodevelopmental delays, mental impairment, speech and autistic behavior, and mild dysmorphism. The patient with pentasomy 15q11q13 was more severely affected than the patient with tetrasomy 15q11q13. Low birth weight was noted in patient with pentasomy 15q1q13. Conclusions To the best of our knowledge, this is the first case of pentasomy 15q11q13 and the first study of high copy number 15q11q13 in Han Chinese patients. Our findings demonstrate that patients with tetrasomy and pentasomy of chromosome 15q11q13 share similar spectrum of phenotypes reported in other high copy number 15q11q13 patients in the West, and positive correlation between 15q11q13 copy number and degree of severity of clinical phenotypes. Low birth weight observed in the pentasomy 15q11q13 patient was not reported in other patients with high copy number 15q11q13. Additional studies would be necessary to further characterize high copy number 15q11q13 aneusomies.
Collapse
Affiliation(s)
- Jing Yang
- 1Center for Clinical Molecular Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiao Y, Chen R, Ke X, Cheng L, Chu K, Lu Z, Herskovits EH. Single nucleotide polymorphisms predict symptom severity of autism spectrum disorder. J Autism Dev Disord 2012; 42:971-83. [PMID: 21786105 DOI: 10.1007/s10803-011-1327-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs) can predict symptom severity of autism spectrum disorder (ASD). We divided 118 ASD children into a mild/moderate autism group (n = 65) and a severe autism group (n = 53), based on the Childhood Autism Rating Scale (CARS). For each child, we obtained 29 SNPs of 9 ASD-related genes. To generate predictive models, we employed three machine-learning techniques: decision stumps (DSs), alternating decision trees (ADTrees), and FlexTrees. DS and FlexTree generated modestly better classifiers, with accuracy = 67%, sensitivity = 0.88 and specificity = 0.42. The SNP rs878960 in GABRB3 was selected by all models, and was related associated with CARS assessment. Our results suggest that SNPs have the potential to offer accurate classification of ASD symptom severity.
Collapse
Affiliation(s)
- Yun Jiao
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Predictive models for subtypes of autism spectrum disorder based on single-nucleotide polymorphisms and magnetic resonance imaging. Adv Med Sci 2012; 56:334-42. [PMID: 22037176 DOI: 10.2478/v10039-011-0042-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. MATERIAL AND METHODS Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. RESULTS For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. CONCLUSION Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.
Collapse
|
32
|
Li X, Zou H, Brown WT. Genes associated with autism spectrum disorder. Brain Res Bull 2012; 88:543-52. [PMID: 22688012 DOI: 10.1016/j.brainresbull.2012.05.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/31/2012] [Indexed: 01/06/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous grouping of neurodevelopmental disorders characterized by impairment in social interaction, verbal communication and repetitive/stereotypic behaviors. Much evidence suggests that ASD is multifactorial with a strong genetic basis, but the underlying mechanisms are far from clear. Recent advances in genetic technologies are beginning to shed light on possible etiologies of ASD. This review discusses current evidence for several widely studied candidate ASD genes, as well as various rare genes that supports their relationship to the etiology of ASD. The majority of the data are based on molecular, cytogenetic, linkage and association studies of autistic subjects, but newer methods, including whole-exome sequencing, are also beginning to make significant contributions to our understanding of autism.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, United States.
| | | | | |
Collapse
|
33
|
Adams M, McCrone S. SRD5A1 genotype frequency differences in women with mild versus severe premenstrual symptoms. Issues Ment Health Nurs 2012; 33:101-8. [PMID: 22273344 DOI: 10.3109/01612840.2011.625514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aims of this small pilot study were to explore the association between premenstrual symptom severity and two genes from the gamma-aminobutyric acid (GABA) pathway: steroid-5-alpha-reductase, alpha polypeptide 1 (SRD5A1) and gamma-aminobutyric acid receptor subunit alpha-4 (GABRA4). Saliva samples were obtained from a convenience sample of 19 Caucasian females ages 18-25 years, ten cases and nine controls. Deoxyribonucleic acid (DNA) was isolated, and genotyping performed on ten single nucleotide polymorphisms (SNPs). Ten percent of cases and 44% of controls had the cytosine/cytosine (C/C) genotype for the SRD5A1 SNP, rs501999 indicating that this genotype may protect women against severe premenstrual symptoms. Replication of this study using an adequately powered sample size is warranted.
Collapse
Affiliation(s)
- Marlene Adams
- University of Delaware, School of Nursing, Newark, Delaware, USA.
| | | |
Collapse
|
34
|
Erickson CA, Early M, Stigler KA, Wink LK, Mullett JE, McDougle CJ. An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. J Child Adolesc Psychopharmacol 2011; 21:565-9. [PMID: 22136091 PMCID: PMC3243460 DOI: 10.1089/cap.2011.0034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To date, placebo-controlled drug trials targeting the core social impairment of autistic disorder (autism) have had uniformly negative results. Given this, the search for new potentially novel agents targeting the core social impairment of autism continues. Acamprosate is U.S. Food and Drug Administration-approved drug to treat alcohol dependence. The drug likely impacts both gamma-aminobutyric acid and glutamate neurotransmission. This study describes our initial open-label experience with acamprosate targeting social impairment in youth with autism. In this naturalistic report, five of six youth (mean age, 9.5 years) were judged treatment responders to acamprosate (mean dose 1,110 mg/day) over 10 to 30 weeks (mean duration, 20 weeks) of treatment. Acamprosate was well tolerated with only mild gastrointestinal adverse effects noted in three (50%) subjects.
Collapse
Affiliation(s)
- Craig A Erickson
- Department of Psychiatry, Christian Sarkine Autism Treatment Center, Indiana University School of Medicine, James Whitcomb Riley Hospital for Children, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Bakare MO, Munir KM, Kinney DK. Association of hypomelanotic skin disorders with autism: links to possible etiologic role of vitamin-D levels in autism? ACTA ACUST UNITED AC 2011; 9. [PMID: 21949515 DOI: 10.5779/hypothesis.v9i1.200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D is crucial for several key physiological processes, including brain development, DNA repair, and regulation of many genes. Much evidence indicates prenatal and early postnatal vitamin-D deficiency increases autism risk, probably through multiple effects, including impaired brain development and increased de novo mutations. High autism rates in several genetically based hypomelanotic skin disorders are puzzling, because ultraviolet-B radiation (UVB) in sunlight acting on skin is a key source of vitamin-D, and lighter skin protects against vitamin-D deficiency, especially at high latitudes. We consider two hypotheses to help explain autism's co-morbidity with hypomelanosis. 1) Because genetic and epigenetic variants that produce hypomelanosis help protect against vitamin-D deficiency, they increase reproductive fitness of individuals who also have other autism risk factors. 2) Hypomelanotic children have increased autism risk because photosensitivity and skin-cancer concerns lead families to excessively reduce children's sun exposure. Hypothesis testing could involve studies comparing genomes, epigenetic markers, skin pigmentation, and vitamin-D levels in autistic individuals with and without hypomelanosis, their relatives and controls. Conducting such studies in samples from regions that differ widely in UVB availability would provide particularly valuable data. Support for either hypothesis would elucidate vitamin-D's role in autism and suggest vitamin-D enhancement may aid treatment and prevention of autism.
Collapse
Affiliation(s)
- Muideen O Bakare
- Child and Adolescent Unit, Federal Neuro-Psychiatric Hospital, New Haven, Enugu, Enugu State, Nigeria
| | | | | |
Collapse
|
36
|
Chang SC, Pauls DL, Lange C, Sasanfar R, Santangelo SL. Common genetic variation in the GAD1 gene and the entire family of DLX homeobox genes and autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156:233-9. [PMID: 21302352 PMCID: PMC3088769 DOI: 10.1002/ajmg.b.31148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 10/26/2010] [Indexed: 12/13/2022]
Abstract
Biological and positional evidence supports the involvement of the GAD1 and distal-less homeobox genes (DLXs) in the etiology of autism. We investigated 42 single nucleotide polymorphisms in these genes as risk factors for autism spectrum disorders (ASD) in a large family-based association study of 715 nuclear families. No single marker showed significant association after correction for multiple testing. A rare haplotype in the DLX1 promoter was associated with ASD (P-value = 0.001). Given the importance of rare variants to the etiology of autism revealed in recent studies, the observed rare haplotype may be relevant to future investigations. Our observations, when taken together with previous findings, suggest that common genetic variation in the GAD1 and DLX genes is unlikely to play a critical role in ASD susceptibility.
Collapse
Affiliation(s)
- Shun-Chiao Chang
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - David L. Pauls
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Christoph Lange
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA, Channing Laboratories, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Roksana Sasanfar
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan L. Santangelo
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Kitsiou-Tzeli S, Tzetis M, Sofocleous C, Vrettou C, Xaidara A, Giannikou K, Pampanos A, Mavrou A, Kanavakis E. De novo interstitial duplication of the 15q11.2-q14 PWS/AS region of maternal origin: Clinical description, array CGH analysis, and review of the literature. Am J Med Genet A 2010; 152A:1925-32. [PMID: 20575009 DOI: 10.1002/ajmg.a.33447] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The 15q11-q13 PWS/AS critical region involves genes that are characterized by genomic imprinting. Multiple repeat elements within the region mediate rearrangements, including interstitial duplications, interstitial triplications, and supernumerary isodicentric marker chromosomes, as well as the deletions that cause Prader-Willi syndrome (PWS) and Angelman syndrome (AS). Recently, duplications of maternal origin concerning the same critical region have been implicated in autism spectrum disorders (ASD). We present a 6-month-old girl carrying a de novo duplication of maternal origin of the 15q11.2-q14 PWS/AS region (17.73 Mb in size) [46,XX,dup(15)(q11.2-q14)] detected with a high-resolution microarray-based comparative genomic hybridization (array-CGH). The patient is characterized by severe hypotonia, obesity, microstomia, long eyelashes, hirsutism, microretrognathia, short nose, severe psychomotor retardation, and multiple episodes of drug-resistant epileptic seizures, while her brain magnetic resonance imaging (MRI) documented partial corpus callosum dysplasia. In our patient the duplicated region is quite large extending beyond the Prader-Willi-Angelman critical region (PWACR), containing a number of genes that have been shown to be involved in ASD, exhibiting a severe phenotype, beyond the typical PWS/AS clinical manifestations. Reporting of similar well-characterized clinical cases with clearly delineated breakpoints of the duplicated region will clarify the contribution of specific genes to the phenotype.
Collapse
Affiliation(s)
- Sophia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fatemi SH, Reutiman TJ, Folsom TD, Rooney RJ, Patel DH, Thuras PD. mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 2010; 40:743-50. [PMID: 20066485 DOI: 10.1007/s10803-009-0924-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have shown altered expression of gamma-aminobutyric acid A (GABA(A)) and gamma-aminobutyric acid B (GABA(B)) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3 GABA(A) subunits previously associated with autism (GABRalpha4; GABRalpha5; GABRbeta1). Three GABA receptor subunits demonstrated mRNA and protein level concordance in superior frontal cortex (GABRalpha4, GABRalpha5, GABRbeta1) and one demonstrated concordance in cerebellum (GABBetaR1). These results provide further evidence of impairment of GABAergic signaling in autism.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota School of Medicine, 420 Delaware St SE MMC 392, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Restricted, repetitive behaviors (RRBs) are heterogeneous ranging from stereotypic body movements to rituals to restricted interests. RRBs are most strongly associated with autism but occur in a number of other clinical disorders as well as in typical development. There does not seem to be a category of RRB that is unique or specific to autism and RRB does not seem to be robustly correlated with specific cognitive, sensory or motor abnormalities in autism. Despite its clinical significance, little is known about the pathophysiology of RRB. Both clinical and animal models studies link repetitive behaviors to genetic mutations and a number of specific genetic syndromes have RRBs as part of the clinical phenotype. Genetic risk factors may interact with experiential factors resulting in the extremes in repetitive behavior phenotypic expression that characterize autism. Few studies of individuals with autism have correlated MRI findings and RRBs and no attempt has been made to associate RRB and post-mortem tissue findings. Available clinical and animal models data indicate functional and structural alterations in cortical-basal ganglia circuitry in the expression of RRB, however. Our own studies point to reduced activity of the indirect basal ganglia pathway being associated with high levels of repetitive behavior in an animal model. These findings, if generalizable, suggest specific therapeutic targets. These, and perhaps other, perturbations to cortical basal ganglia circuitry are mediated by specific molecular mechanisms (e.g., altered gene expression) that result in long-term, experience-dependent neuroadaptations that initiate and maintain repetitive behavior. A great deal more research is needed to uncover such mechanisms. Work in areas such as substance abuse, OCD, Tourette syndrome, Parkinson's disease, and dementias promise to provide findings critical for identifying neurobiological mechanisms relevant to RRB in autism. Moreover, basic research in areas such as birdsong, habit formation, and procedural learning may provide additional, much needed clues. Understanding the pathophysioloy of repetitive behavior will be critical to identifying novel therapeutic targets and strategies for individuals with autism.
Collapse
Affiliation(s)
- Mark Lewis
- University of Florida, Gainesville, FL, USA,
| | | |
Collapse
|
40
|
Yoo HK, Chung S, Hong JP, Kim BN, Cho SC. Microsatellite marker in gamma - aminobutyric acid - a receptor beta 3 subunit gene and autism spectrum disorders in Korean trios. Yonsei Med J 2009; 50:304-6. [PMID: 19430570 PMCID: PMC2678711 DOI: 10.3349/ymj.2009.50.2.304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/08/2007] [Accepted: 10/08/2007] [Indexed: 01/26/2023] Open
Abstract
This study aimed to identify the association between gamma-aminobutyric acid-A (GABA-A) receptor subunit beta3 (GABRB3) gene and autism spectrum disorders (ASD) in Korea. Fifty-eight children with ASD [47 boys (81.0%), 5.5 +/- 4.1 years old], 46 family trios, and 86 healthy control subjects [71 males (82.6%), 33.6 +/- 9.3 years old] were recruited. Transmission disequilibrium test revealed that, 183 bp long allele in GABRB3 gene was preferentially transmitted in families with ASD (p = 0.025), whereas a population-based case-control study, however, showed no association between ASD and GABRB3 microsatellite polymorphism. Our data provide preliminary evidence that GABRB3 gene is associated with ASD in Korea.
Collapse
Affiliation(s)
- Hanik K. Yoo
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seockhoon Chung
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jin Pyo Hong
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Boong-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Soo Churl Cho
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
41
|
Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation. Toxicol Appl Pharmacol 2009; 237:168-77. [PMID: 19289137 DOI: 10.1016/j.taap.2009.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 01/19/2023]
Abstract
Exposure to polychlorinated biphenyls impairs cognition and behavior in children. Two environmental PCBs 2,2',3,3',4,4',5-heptachlorobiphenyl (PCB170) and 2,2',3,5',6-pentachlorobiphenyl (PCB95) were examined in vitro for influences on synaptic transmission in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 region using a multi-electrode array. Perfusion with PCB170 (10 nM) had no effect on fEPSP slope relative to baseline period, whereas (100 nM) initially enhanced then depressed fEPSP slope. Perfusion of PCB95 (10 or 100 nM) persistently enhanced fEPSP slope >200%, an effect that could be inhibited by dantrolene, a drug that attenuates ryanodine receptor signaling. Perfusion with picrotoxin (PTX) to block GABA neurotransmission resulted in a modest increase in fEPSP slope, whereas PTX+PCB170 (1-100 nM) persistently enhanced fEPSP slope in a dose dependent manner. fEPSP slope reached >250% of baseline period in the presence of PTX+100 nM PCB170, conditions that evoked marked epileptiform after-potential discharges. PCB95 and PCB170 were found to differentially influence the Ca(2+)-dependence of [(3)H]ryanodine-binding to hippocampal ryanodine receptors. Non-coplanar PCB congeners can differentially alter neurotransmission in a manner suggesting they can elicit imbalances between inhibitory and excitatory circuits within the hippocampus. Differential sensitization of ryanodine receptors by Ca(2+) appears to mediate, at least in part, hippocampal excitotoxicity by non-coplanar PCBs.
Collapse
|
42
|
Kim SJ, Brune CW, Kistner EO, Christian SL, Courchesne EH, Cox NJ, Cook EH. Transmission disequilibrium testing of the chromosome 15q11-q13 region in autism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1116-25. [PMID: 18361419 PMCID: PMC4095800 DOI: 10.1002/ajmg.b.30733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evidence implicates the serotonin transporter gene (SLC6A4) and the 15q11-q13 genes as candidates for autism as well as restricted repetitive behavior (RRB). We conducted dense transmission disequilibrium mapping of the 15q11-q13 region with 93 single nucleotide polymorphisms (SNPs) in 86 strictly defined autism trios and tested association between SNPs and autism using the transmission disequilibrium test (TDT). As exploratory analyses, parent-of-origin effects were examined using likelihood-ratio tests (LRTs) and genotype-phenotype associations for specific RRB using the Family-Based Association Test (FBAT). Additionally, gene-gene interactions between nominally associated 15q11-q13 variants and 5-HTTLPR, the common length polymorphism of SLC6A4, were examined using conditional logistic regression (CLR). TDT revealed nominally significant transmission disequilibrium between autism and five SNPs, three of which are located within close proximity of the GABA(A) receptor subunit gene clusters. Three SNPs in the SNRPN/UBE3A region had marginal imprinting effects. FBAT for genotype-phenotype relations revealed nominally significant association between two SNPs and one ADI-R subdomain item. However, both TDT and FBAT were not statistically significant after correcting for multiple comparisons. Gene-gene interaction analyses by CLR revealed additive genetic effect models, without interaction terms, fit the data best. Lack of robust association between the 15q11-q13 SNPs and RRB phenotypes may be due to a small sample size and absence of more specific RRB measurement. Further investigation of the 15q11-q13 region with denser genotyping in a larger sample set may be necessary to determine whether this region confers risk to autism, indicated by association, or to specific autism phenotypes.
Collapse
Affiliation(s)
- Soo-Jeong Kim
- Department of Psychiatry, College of Medicine, University of Florida
| | - Camille W. Brune
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois-Chicago
| | | | | | | | - Nancy J. Cox
- Section of Genetic Medicine, Department of Medicine and Department of Human Genetics, University of Chicago
| | - Edwin H. Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois-Chicago,Corresponding author: Edwin H. Cook, Jr., M.D., Institute for Juvenile Research, Department of Psychiatry, University of Illinois-Chicago,
| |
Collapse
|
43
|
Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD. GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 2008; 39:223-30. [PMID: 18821008 DOI: 10.1007/s10803-008-0646-7] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/27/2008] [Indexed: 11/28/2022]
Abstract
Gamma-aminobutyric acid A (GABA(A)) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABA(A) receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann's Area 40 (BA40)), while GABRA1 and GABRB3 were significantly altered in cerebellum, and GABRA1 was significantly altered in superior frontal cortex (BA9). The presence of seizure disorder did not have a significant impact on GABA(A) receptor subunit expression in the three brain areas. Our results demonstrate that GABA(A) receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
44
|
Yoo HJ, Cho IH, Park M, Cho E, Cho SC, Kim BN, Kim JW, Kim SA. Association between PTGS2 polymorphism and autism spectrum disorders in Korean trios. Neurosci Res 2008; 62:66-9. [PMID: 18579107 DOI: 10.1016/j.neures.2008.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/24/2022]
Abstract
Cyclooxygenase-2 (Cox-2) is an inducible enzyme involved in neuroplasticity and the neuropathology of the central nervous system. This study evaluated the relationship between autism spectrum disorders (ASDs) and polymorphisms of PTGS2 (the gene encoding Cox-2) with 151 Korean family trios including children with ASDs. We found that the A allele of rs2745557 was preferentially transmitted in ASDs (p < 0.01) and that the GAAA haplotype was significantly associated with ASDs (p < 0.01). We also observed statistically significant associations between each genotype and the specific symptom domain scores of ADOS and ADI-R, including communication, qualitative abnormalities in reciprocal social interaction, and overactivity/agitation.
Collapse
Affiliation(s)
- Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Kyeonggi, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tochigi M, Kato C, Koishi S, Kawakubo Y, Yamamoto K, Matsumoto H, Hashimoto O, Kim SY, Watanabe K, Kano Y, Nanba E, Kato N, Sasaki T. No evidence for significant association between GABA receptor genes in chromosome 15q11–q13 and autism in a Japanese population. J Hum Genet 2007; 52:985-989. [DOI: 10.1007/s10038-007-0207-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 09/26/2007] [Indexed: 02/06/2023]
|