1
|
Nagai N, Otake H. Novel drug delivery systems for the management of dry eye. Adv Drug Deliv Rev 2022; 191:114582. [PMID: 36283491 DOI: 10.1016/j.addr.2022.114582] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
Dry eye disease (DED) is a frequently observed eye complaint, which has recently attracted considerable research interest. Conventional therapy for DED involves the use of artificial tear products, cyclosporin, corticosteroids, mucin secretagogues, antibiotics and nonsteroidal anti-inflammatory drugs. In addition, ocular drug delivery systems based on nanotechnology are currently the focus of significant research effort and several nanotherapeutics, such as nanoemulsions, nanosuspensions, microemulsions, liposomes and nanomicelles, are in clinical trials and some have FDA approval as novel treatments for DED. Thus, there has been remarkable progress in the design of nanotechnology-based approaches to overcome the limitations of ophthalmic formulations for the management of anterior eye diseases. This review presents research results on diagnostic methods for DED, current treatment options, and promising pharmaceuticals as future therapeutics, as well as new ocular drug delivery systems.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
2
|
van Setten GB. GPR-68 in human lacrimal gland. Detection and possible role in the pathogenesis of dry eye disease. J Fr Ophtalmol 2022; 45:921-927. [DOI: 10.1016/j.jfo.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
|
3
|
Aldina R, Sujuti H, Permatasari N, Widodo MA. The effects of genistein on estrogen receptor-β, IL-1β levels, and MUC5AC expression in ovariectomized rats with dry eye. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2017.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Immune Privilege and Eye-Derived T-Regulatory Cells. J Immunol Res 2018; 2018:1679197. [PMID: 29888291 PMCID: PMC5985108 DOI: 10.1155/2018/1679197] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF-β), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2α), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.
Collapse
|
5
|
Baudouin C, Irkeç M, Messmer EM, Benítez-del-Castillo JM, Bonini S, Figueiredo FC, Geerling G, Labetoulle M, Lemp M, Rolando M, Van Setten G, Aragona P. Clinical impact of inflammation in dry eye disease: proceedings of the ODISSEY group meeting. Acta Ophthalmol 2018; 96:111-119. [PMID: 28390092 PMCID: PMC5836968 DOI: 10.1111/aos.13436] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/05/2017] [Indexed: 12/30/2022]
Abstract
Dry eye disease (DED) is a common, multifactorial ocular condition with major impact on vision and quality of life. It is now well recognized that the pathophysiology of chronic DED can include a cycle of inflammation involving both innate and adaptive immune responses. Recently, in vitro/in vivo models have been used to obtain a better understanding of DED‐related inflammatory processes at molecular/cellular levels although they do not truly reproduce the complex and chronic hallmarks of human DED. In clinical DED research, advanced techniques such as impression cytology, conjunctival biopsy, in vivo confocal microscopy and multiplex tear analyses have allowed an improved assessment of inflammation in DED patients. This was supported by the identification of reliable inflammatory markers including matrix metalloproteinase‐9, human leucocyte antigen‐DR or intercellular adhesion molecule‐1 in tears and impression cytology samples. One of the current therapeutic strategies focuses on breaking the inflammatory cycle perpetuating the ocular surface disease, and preclinical/clinical research has led to the development of promising anti‐inflammatory compounds. For instance, cyclosporine, already approved in the United States, has recently been authorized in Europe to treat DED associated with severe keratitis. In addition, other agents such as corticosteroids, doxycycline and essential fatty acids, through their anti‐inflammatory properties, show encouraging results. We now have a clearer understanding of the inflammatory processes involved in DED, and there is hope that the still emerging preclinical/clinical findings will be translated into new and highly effective therapies for patients in the near future.
Collapse
Affiliation(s)
- Christophe Baudouin
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts; INSERM-DHOS CIC 503; Paris France
- UPMC Université Paris 06; UMR-S968; Institut de la Vision; Paris France
- CNRS; UMR-7210; Paris France
- Ambroise Paré Hospital, APHP; Dept Ophthalmology; F-92100 Boulogne France
- University of Versailles Saint Quentin en Yvelines; 78000, Versailles France
| | - Murat Irkeç
- Hacettepe University School of Medicine; Ankara Turkey
| | | | | | | | - Francisco C. Figueiredo
- Department of Ophthalmology; Royal Victoria Infirmary and Newcastle University; Newcastle upon Tyne UK
| | - Gerd Geerling
- Department of Ophthalmology; Heinrich Heine University; Düsseldorf Germany
| | | | - Michael Lemp
- Department of Ophthalmology; Georgetown University; Washington USA
| | | | | | | | | |
Collapse
|
6
|
Barabino S, Horwath-Winter J, Messmer EM, Rolando M, Aragona P, Kinoshita S. The role of systemic and topical fatty acids for dry eye treatment. Prog Retin Eye Res 2017; 61:23-34. [PMID: 28532687 DOI: 10.1016/j.preteyeres.2017.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/26/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
Abstract
Dry eye is a prevalent condition and one of the main reasons for patients to seek ophthalmic medical care. A low systemic level of omega fatty acids is a risk factor for dry eye disease (DED). There are two groups of essential fatty acids (EFAs): the omega-6 (n-6) family and the omega-3 (n-3) family. Humans evolved on a diet in which the n-6:n-3 ratio was approximately 1:1, however the current Western diet tends to be deficient in n-3 EFAs and this ratio is typically much higher (approaching 17:1). The metabolism of EFAs generates four new families of local acting mediators: lipoxins, resolvins, protectins, and maresins. These molecules have anti-inflammatory and pro-resolution properties. We present a critical overview of animal model studies and human clinical trials that have shown that dietary modification and oral supplementation could be complementary therapeutic strategies for the treatment of dry eye. Furthermore, we discuss preliminary results of the topical application of n-3 and n-6 EFAs because these molecules may act as natural anti-inflammatory agents with positive changes of the entire ocular surface system.
Collapse
Affiliation(s)
- Stefano Barabino
- Clinica Oculistica, Di.N.O.G.M.I., University of Genoa, Viale Benedetto XV, 5, 16135 Genoa, Italy.
| | - Jutta Horwath-Winter
- Department of Ophthalmology, Medical University, Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Elisabeth M Messmer
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstr 8, 80336 Munich, Germany
| | - Maurizio Rolando
- Ocular Surface & Dry Eye Center, ISPRE Oftalmica, Piazza della Vittoria 15, 16132, Genoa, Italy
| | - Pasquale Aragona
- Department of Biomedical Sciences, Section of Ophthalmology, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kawaramachi, Kyoto, Japan
| |
Collapse
|
7
|
Wang J, Zhou R, Gao W. The neural pathway for lacrimal gland tear secretion in New Zealand White rabbits. Neurosci Lett 2017; 649:14-19. [PMID: 28396281 DOI: 10.1016/j.neulet.2017.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/26/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE We investigated the neural pathway for tear secretion from the lacrimal gland of New Zealand White rabbits. METHODS Nine healthy adult New Zealand White rabbits were randomly divided into three experimental groups, namely, an irritant-stimulated group, a non-stimulated group, and a saline-stimulated group. Sanitized dry cotton swabs with menthol were used to wipe both of the rabbits' eyelids in the irritant-stimulated group, and the non-stimulated group and saline- stimulated group were compared as controls. The animals in the three groups were killed 2h later and the expressions of c-Fos in the frontal cortex, hippocampus, hypothalamus, pons, and medulla oblongata of the rabbits were detected using immunofluorescence labeling. According to the distribution of c-Fos protein expression, 12 healthy adult New Zealand rabbits were similarly divided into three groups for retrograde tract tracing via pseudorabies virus (PRV) injection into the lacrimal gland. Immunofluorescence labeling was used to analyze PRV-infected neurons in the brains of rabbits after survival for 30h, 38h, and 46h. RESULTS The most c-Fos-positive immunolabeled cells were observed in the menthol-stimulated group, whereas fewer c-Fos-positive immunolabeled cells were observed in the saline-stimulated group.The non-treated group showed the least c-Fos-positive immunolabeled cells. At 30h after PRV injection, PRV-positive neurons were found only in the superior salivary nucleus of the pons (SSN). At 38h, PRV-infected neurons were observed in the lateral nucleus of the superior olive (LSO) and the medial nucleus of the superior olive (MSO). At 46h, PRV-infected neurons were found in the nucleus of the trapezoid body (Tz) and the hypothalamic paraventricular nucleus (PVN), and their distributions were dense in the LSO and MSO. CONCLUSIONS Menthol-induced c-Fos protein expression and PRV-mediated tract tracing suggest that in New Zealand White rabbits, the neural pathway that regulates tear secretion from the lacrimal gland proceeds from the PVN to the superior olivary complex of the pons to the SSN and finally to the lacrimal gland.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Nanjing University of Traditional Chinese Medicine, Xianlin road no. 138, Qixia District, Nanjing City, Jiangsu Province 210023, China.
| | - Rongyi Zhou
- Nanjing University of Traditional Chinese Medicine, Xianlin road no. 138, Qixia District, Nanjing City, Jiangsu Province 210023, China.
| | - Weiping Gao
- Nanjing University of Traditional Chinese Medicine, Xianlin road no. 138, Qixia District, Nanjing City, Jiangsu Province 210023, China.
| |
Collapse
|
8
|
Destefanis S, Giretto D, Muscolo MC, Di Cerbo A, Guidetti G, Canello S, Giovazzino A, Centenaro S, Terrazzano G. Clinical evaluation of a nutraceutical diet as an adjuvant to pharmacological treatment in dogs affected by Keratoconjunctivitis sicca. BMC Vet Res 2016; 12:214. [PMID: 27658509 PMCID: PMC5034585 DOI: 10.1186/s12917-016-0841-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Background Canine keratoconjunctivitis sicca (cKCS) is an inflammatory eye condition related to a deficiency in the tear aqueous fraction. Etiopathogenesis of such disease is substantially multifactorial, combining the individual genetic background with environmental factors that contribute to the process of immunological tolerance disruption and, as a consequence, to the emergence of autoimmunity disease. In this occurrence, it is of relevance the role of the physiological immune-dysregulation that results in immune-mediated processes at the basis of cKCS. Current therapies for this ocular disease rely on immunosuppressive treatments. Clinical response to treatment frequently varies from poor to good, depending on the clinical-pathological status of eyes at diagnosis and on individual response to therapy. In the light of the variability of clinical response to therapies, we evaluated the use of an anti-inflammatory/antioxidant nutraceutical diet with potential immune-modulating activity as a therapeutical adjuvant in cKCS pharmacological treatment. Such combination was administered to a cohort of dogs affected by cKCS in which the only immunosuppressive treatment resulted poorly responsive or ineffective in controlling the ocular symptoms. Results Fifty dogs of different breeds affected by immune-mediated cKSC were equally distributed and randomly assigned to receive either a standard diet (control, n = 25) or the nutraceutical diet (treatment group, n = 25) both combined with standard immunosuppressive therapy over a 60 days period. An overall significant improvement of all clinical parameters (tear production, conjunctival inflammation, corneal keratinization, corneal pigment density and mucus discharge) and the lack of food-related adverse reactions were observed in the treatment group (p < 0.0001). Conclusions Our results showed that the association of traditional immune-suppressive therapy with the antioxidant/anti-inflammatory properties of the nutraceutical diet resulted in a significant amelioration of clinical signs and symptoms in cKSC. The beneficial effects, likely due to the presence of supplemented nutraceuticals in the diet, appeared to specifically reduce the immune-mediated ocular symptoms in those cKCS-affected dogs that were poorly responsive or unresponsive to classical immunosuppressive drugs. These data suggest that metabolic changes could affect the immune response orchestration in a model of immune-mediated ocular disease, as represented by cKSC.
Collapse
Affiliation(s)
- Simona Destefanis
- Clinica Veterinaria Porta Venezia, via Lambro 12, 20121, Milan, Italy
| | - Daniela Giretto
- Clinica Veterinaria Cartesio, viale Olanda 3B, Melzo, 20066, Milan, Italy
| | | | - Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, "G. d'Annunzio" University, Chieti, Italy
| | - Gianandrea Guidetti
- Research and Development Department, SANYpet S.p.a., Bagnoli di Sopra, Padua, Italy
| | - Sergio Canello
- Research and Development Department, SANYpet S.p.a., Bagnoli di Sopra, Padua, Italy
| | - Angela Giovazzino
- Department of Science, University of Basilicata, Via Sauro, 85, 85100, Potenza, Italy
| | - Sara Centenaro
- Research and Development Department, SANYpet S.p.a., Bagnoli di Sopra, Padua, Italy.
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, Via Sauro, 85, 85100, Potenza, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
9
|
Farid M, Agrawal A, Fremgen D, Tao J, Chuyi H, Nesburn AB, BenMohamed L. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease. Ocul Immunol Inflamm 2016; 24:327-47. [PMID: 25535823 PMCID: PMC4478284 DOI: 10.3109/09273948.2014.986581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED.
Collapse
Affiliation(s)
- Marjan Farid
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Daniel Fremgen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Jeremiah Tao
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - He Chuyi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology, University of California Irvine, School of Medicine, Irvine, California, USA
- Biochemistry and Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
10
|
α-Melanocyte-stimulating hormone ameliorates ocular surface dysfunctions and lesions in a scopolamine-induced dry eye model via PKA-CREB and MEK-Erk pathways. Sci Rep 2015; 5:18619. [PMID: 26685899 PMCID: PMC4685655 DOI: 10.1038/srep18619] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022] Open
Abstract
Dry eye is a highly prevalent, chronic, and multifactorial disease that compromises quality of life and generates socioeconomic burdens. The pathogenic factors of dry eye disease (DED) include tear secretion abnormalities, tear film instability, and ocular surface inflammation. An effective intervention targeting the pathogenic factors is needed to control this disease. Here we applied α-Melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced dry eye rat model. The results showed that α-MSH at different doses ameliorated tear secretion, tear film stability, and corneal integrity, and corrected overexpression of proinflammatory factors, TNF-α, IL-1β, and IFN-γ, in ocular surface of the dry eye rats. Moreover, α-MSH, at 10(-4) μg/μl, maintained corneal morphology, inhibited apoptosis, and restored the number and size of conjunctival goblet cells in the dry eye rats. Mechanistically, α-MSH activated both PKA-CREB and MEK-Erk pathways in the dry eye corneas and conjunctivas; pharmacological blockade of either pathway abolished α-MSH's protective effects, suggesting that both pathways are necessary for α-MSH's protection under dry eye condition. The peliotropic protective functions and explicit signaling mechanism of α-MSH warrant translation of the α-MSH-containing eye drop into a novel and effective intervention to DED.
Collapse
|
11
|
Reinach PS, Mergler S, Okada Y, Saika S. Ocular transient receptor potential channel function in health and disease. BMC Ophthalmol 2015; 15 Suppl 1:153. [PMID: 26818117 PMCID: PMC4895786 DOI: 10.1186/s12886-015-0135-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transient receptor potential (TRP) channels sense and transduce environmental stimuli into Ca(2+) transients that in turn induce responses essential for cell function and adaptation. These non-selective channels with variable Ca(2+) selectivity are grouped into seven different subfamilies containing 28 subtypes based on differences in amino acid sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells where they affect a host of stress-induced regulatory responses essential for normal vision maintenance. This article reviews our current knowledge about the expression, function and regulation of TRPs in different eye tissues. We also describe how under certain conditions TRP activation can induce responses that are maladaptive to ocular function. Furthermore, the possibility of an association between TRP mutations and disease is considered. These findings contribute to evidence suggesting that drug targeting TRP channels may be of therapeutic benefit in a clinical setting. We point out issues that must be more extensively addressed before it will be possible to decide with certainty that this is a realistic endeavor. Another possible upshot of future studies is that disease process progression can be better evaluated by profiling changes in tissue specific functional TRP subtype activity as well as their gene and protein expression.
Collapse
Affiliation(s)
- Peter S Reinach
- Department of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xuejuan Road, Wenzhou, Zhejiang, 325027, P. R. China.
| | - Stefan Mergler
- Department of Ophthalmology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| |
Collapse
|
12
|
Gao Y, Min K, Zhang Y, Su J, Greenwood M, Gronert K. Female-Specific Downregulation of Tissue Polymorphonuclear Neutrophils Drives Impaired Regulatory T Cell and Amplified Effector T Cell Responses in Autoimmune Dry Eye Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:3086-99. [PMID: 26324767 DOI: 10.4049/jimmunol.1500610] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
Immune-driven dry eye disease primarily affects women; the cause for this sex-specific prevalence is unknown. Polymorphonuclear neutrophils (PMN) have distinct phenotypes that drive inflammation but also regulate lymphocytes and are the rate-limiting cell for generating anti-inflammatory lipoxin A4 (LXA4). Estrogen regulates the LXA4 circuit to induce delayed female-specific wound healing in the cornea. However, the role of PMNs in dry eye disease remains unexplored. We discovered an LXA4-producing tissue PMN population in the corneal limbus, lacrimal glands, and cervical lymph nodes of healthy male and female mice. These tissue PMNs, unlike inflammatory PMNs, expressed a highly amplified LXA4 circuit and were sex-specifically regulated during immune-driven dry eye disease. Desiccating stress in females, unlike in males, triggered a remarkable decrease in lymph node PMN and LXA4 formation that remained depressed during dry eye disease. Depressed lymph node PMN and LXA4 in females correlated with an increase in effector T cells (Th1 and Th17), a decrease in regulatory T cells (Treg), and increased dry eye pathogenesis. Ab depletion of tissue PMN abrogated LXA4 formation in lymph nodes, as well as caused a marked increase in Th1 and Th17 cells and a decrease in Tregs. To establish an immune-regulatory role for PMN-derived LXA4 in dry eye, females were treated with LXA4. LXA4 treatment markedly inhibited Th1 and Th17 and amplified Treg in draining lymph nodes, while reducing dry eye pathogenesis. These results identify female-specific regulation of LXA4-producing tissue PMN as a potential key factor in aberrant effector T cell activation and initiation of immune-driven dry eye disease.
Collapse
Affiliation(s)
- Yuan Gao
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Kyungji Min
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Yibing Zhang
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - John Su
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Matthew Greenwood
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California Berkeley, Berkeley, CA 94598
| |
Collapse
|
13
|
Rai M, Ingle AP, Gaikwad S, Padovani FH, Alves M. The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases. Crit Rev Biotechnol 2015; 36:777-87. [PMID: 26189355 DOI: 10.3109/07388551.2015.1036002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100 nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.
Collapse
Affiliation(s)
- Mahendra Rai
- a Nanobiotechnology Laboratory, Department of Biotechnology , Sant Gadge Baba Amravati University , Amravati , Maharashtra , India
| | - Avinash P Ingle
- a Nanobiotechnology Laboratory, Department of Biotechnology , Sant Gadge Baba Amravati University , Amravati , Maharashtra , India
| | - Swapnil Gaikwad
- a Nanobiotechnology Laboratory, Department of Biotechnology , Sant Gadge Baba Amravati University , Amravati , Maharashtra , India
| | - Felipe Hering Padovani
- b Institute of Medicine, Pontific Catholic University of Campinas (PUCC) , Campinas , Brazil , and
| | - Monica Alves
- c Department of Ophthalmology , State University of Campinas (UNICAMP) , Campinas , Brazil
| |
Collapse
|
14
|
Wiechmann AF, Ceresa BP, Howard EW. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation. PLoS One 2014; 9:e113810. [PMID: 25412440 PMCID: PMC4239109 DOI: 10.1371/journal.pone.0113810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023] Open
Abstract
Background and Objectives The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs) are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium. Methodology/Principal Findings Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2), membrane type 1-MMP (MT1-MMP) and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime. Conclusions/Significance MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and activation, tight junction protein cleavage, and subsequent surface cell desquamation and renewal may be orchestrated by nocturnal circadian signals.
Collapse
Affiliation(s)
- Allan F. Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Eric W. Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
15
|
D’Souza S, Tong L. Practical issues concerning tear protein assays in dry eye. EYE AND VISION (LONDON, ENGLAND) 2014; 1:6. [PMID: 26605353 PMCID: PMC4604107 DOI: 10.1186/s40662-014-0006-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/09/2014] [Indexed: 12/20/2022]
Abstract
Dry eye is a common clinical condition diagnosed by cumulative evidence of symptoms and signs. Many new treatments in dry eye are either expensive, invasive, have potential for side effects, or are not easily accessible. In severe dry eye, the ideal modality of treatment to begin with is often not clear as specific molecular disturbances are not evident from just examination of clinical manifestations. Assessing the effects of ongoing treatment is not straight forward since there is lack of agreement between clinical signs and symptoms. There is a need to have more objective methods of selecting treatment for dry eye and monitoring the effect of treatment. Recently, there are many new technologies applied to the discovery of tear biomarkers, for e.g., mass spectrometry based proteomics techniques and multiplex assays such as the bead-based sandwich indirect immunofluorescent assays. Tear proteins assays have even been made available as point-of-care devices. This review focuses on the evidence for the involvements of tear proteins in dry eye, possible changes in tear concentrations with therapy and the strength of evidence regarding dry eye pathology. Much remains to be done in terms of developing office-based assays and ascertaining their reliability, but current evidence suggests that tear proteins have a role in the clinical practice of dry eye.
Collapse
Affiliation(s)
- Sharon D’Souza
- />Narayana Nethralaya Superspeciality Eye Hospital and Post Graduate Institute, Bangalore, Karnataka India
| | - Louis Tong
- />Singapore Eye Research Institute, 11, Third Hospital Avenue, Singapore, 168751 Singapore
- />Singapore National Eye Center, Singapore, Singapore
- />Duke-NUS Graduate Medical School, Singapore, Singapore
- />Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Truong S, Cole N, Stapleton F, Golebiowski B. Sex hormones and the dry eye. Clin Exp Optom 2014; 97:324-36. [PMID: 24689906 DOI: 10.1111/cxo.12147] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/26/2013] [Accepted: 01/19/2014] [Indexed: 01/15/2023] Open
Abstract
The greater prevalence of dry eye in women compared to men suggests that sex hormones may have a role in this condition. This review aims to present evidence for how sex hormones may affect the ocular structures involved in the production, regulation and maintenance of the normal tear film. It is hypothesised that hormone changes alter the homeostasis of the ocular surface and contribute to dry eye. Androgens impact on the structure and function of the meibomian and lacrimal glands and therefore androgen deficiency is, at least in part, associated with the aetiology of dry eye. In contrast, reports of the effects of oestrogen and progesterone on these ocular structures and on the conjunctiva are contradictory and the mechanisms of action of these female-specific sex hormones in the eye are not well understood. The uncertainty of the effects of oestrogen and progesterone on dry eye symptoms is reflected in the controversial relationship between hormone replacement therapy and the signs and symptoms of dry eye. Current understanding of sex hormone influences on the immune system suggests that oestrogen may modulate a cascade of inflammatory events, which underlie dry eye.
Collapse
Affiliation(s)
- Susan Truong
- The University of New South Wales, Kensington, New South Wales, Australia
| | | | | | | |
Collapse
|
17
|
Kurose M, Meng ID. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells. J Neurophysiol 2013; 110:495-504. [PMID: 23636717 DOI: 10.1152/jn.00222.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dry eye syndrome is a painful condition caused by inadequate or altered tear film on the ocular surface. Primary afferent cool cells innervating the cornea regulate the ocular fluid status by increasing reflex tearing in response to evaporative cooling and hyperosmicity. It has been proposed that activation of corneal cool cells via a transient receptor potential melastatin 8 (TRPM8) channel agonist may represent a potential therapeutic intervention to treat dry eye. This study examined the effect of dry eye on the response properties of corneal cool cells and the ability of the TRPM8 agonist menthol to modify these properties. A unilateral dry eye condition was created in rats by removing the left lacrimal gland. Lacrimal gland removal reduced tears in the dry eye to 35% compared with the contralateral eye and increased the number of spontaneous blinks in the dry eye by over 300%. Extracellular single-unit recordings were performed 8-10 wk following surgery in the trigeminal ganglion of dry eye animals and age-matched controls. Responses of corneal cool cells to cooling were examined after the application of menthol (10 μM-1.0 mM) to the ocular surface. The peak frequency of discharge to cooling was higher and the cooling threshold was warmer in dry eye animals compared with controls. The dry condition also altered the neuronal sensitivity to menthol, causing desensitization to cold-evoked responses at concentrations that produced facilitation in control animals. The menthol-induced desensitization of corneal cool cells would likely result in reduced tearing, a deleterious effect in individuals with dry eye.
Collapse
Affiliation(s)
- Masayuki Kurose
- Division of Oral Physiology, Department of Oral Biological Sciences, Niigata University, Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | |
Collapse
|
18
|
Transport and interaction of cosmetic product material within the ocular surface: Beauty and the beastly symptoms of toxic tears. Cont Lens Anterior Eye 2012; 35:247-59. [PMID: 22890123 DOI: 10.1016/j.clae.2012.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022]
|
19
|
Robbins A, Kurose M, Winterson BJ, Meng ID. Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents. Invest Ophthalmol Vis Sci 2012; 53:7034-42. [PMID: 22952122 DOI: 10.1167/iovs.12-10025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Stimulation to the cornea via noxious chemical and mechanical means evokes tearing, blinking, and pain. In contrast, mild cooling of the ocular surface has been reported to increase lacrimation via activation of corneal cool primary afferent neurons. The purpose of our study was to determine whether menthol induces corneal cool cell activity and lacrimation via the transient receptor potential melastatin-8 (TRPM8) channel without evoking nociceptive responses. METHODS Tear measurements were made using a cotton thread in TRPM8 wild type and knockout mice after application of menthol (0.05-50 mM) to the cornea. In additional studies, nocifensive responses (eye swiping and lid closure) were quantified following cornea menthol application. Trigeminal ganglion electrophysiologic single unit recordings were performed in rats to determine the effect of low and high concentrations of menthol on corneal cool cells. RESULTS At low concentrations, menthol increased tear production in TRPM8 wild type and heterozygous animals, but had no effect in TRPM8 knockout mice, while nocifensive responses remained unaffected. At the highest concentration, menthol (50 mM) increased tearing and nocifensive responses in TRPM8 wild type and knockout animals. A low concentration of menthol (0.1 mM) increased cool cell activity, yet a high concentration of menthol (50 mM) had no effect. CONCLUSIONS These studies indicated that low concentrations of menthol can increase lacrimation via TRPM8 channels without evoking nocifensive behaviors. At high concentrations, menthol can induce lacrimation and nocifensive behaviors in a TRPM8 independent mechanism. The increase in lacrimation is likely due to an increase in cool cell activity.
Collapse
Affiliation(s)
- Ashlee Robbins
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, USA
| | | | | | | |
Collapse
|
20
|
Barabino S, Chen Y, Chauhan S, Dana R. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res 2012; 31:271-85. [PMID: 22426080 DOI: 10.1016/j.preteyeres.2012.02.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 01/17/2023]
Abstract
The tear film, lacrimal glands, corneal and conjunctival epithelia and Meibomian glands work together as a lacrimal functional unit (LFU) to preserve the integrity and function of the ocular surface. The integrity of this unit is necessary for the health and normal function of the eye and visual system. Nervous connections and systemic hormones are well known factors that maintain the homeostasis of the ocular surface. They control the response to internal and external stimuli. Our and others' studies show that immunological mechanisms also play a pivotal role in regulating the ocular surface environment. Our studies demonstrate how anti-inflammatory factors such as the expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in corneal cells, immature corneal resident antigen-presenting cells, and regulatory T cells play an active role in protecting the ocular surface. Dry eye disease (DED) affects millions of people worldwide and negatively influences the quality of life for patients. In its most severe forms, DED may lead to blindness. The etiology and pathogenesis of DED remain largely unclear. Nonetheless, in this review we summarize the role of the disruption of afferent and efferent immunoregulatory mechanisms that are responsible for the chronicity of the disease, its symptoms, and its clinical signs. We illustrate current anti-inflammatory treatments for DED and propose that prevention of the disruption of immunoregulatory mechanisms may represent a promising therapeutic strategy towards controlling ocular surface inflammation.
Collapse
Affiliation(s)
- Stefano Barabino
- Clinica Oculistica, Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy
| | | | | | | |
Collapse
|
21
|
Mergler S, Garreis F, Sahlmüller M, Lyras EM, Reinach PS, Dwarakanath A, Paulsen F, Pleyer U. Calcium regulation by thermo- and osmosensing transient receptor potential vanilloid channels (TRPVs) in human conjunctival epithelial cells. Histochem Cell Biol 2012; 137:743-61. [PMID: 22327830 DOI: 10.1007/s00418-012-0924-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2012] [Indexed: 11/28/2022]
Abstract
Transient receptor potential vanilloid (TRPV) channels respond to polymodal stresses to induce pain, inflammation and tissue fibrosis. In this study, we probed for their functional expression in human conjunctival epithelial (HCjE) cells and ex vivo human conjunctivas. Notably, patients suffering from dry eye syndrome experience the same type of symptomology induced by TRPV channel activation in other ocular tissues. TRPV gene and protein expression were determined by RT-PCR and immunohistochemistry in HCjE cells and human conjunctivas (body donors). The planar patch-clamp technique was used to record nonselective cation channel currents. Ca(2+) transients were monitored in fura-2 loaded cells. Cultivated HCjE cells and human conjunctiva express TRPV1, TRPV2, and TRPV4 mRNA. TRPV1 and TRPV4 localization was identified in human conjunctiva. Whereas the TRPV1 agonist capsaicin (CAP) (5-20 μM) -induced Ca(2+) transients were blocked by capsazepine (CPZ) (10 μM), the TRPV4 activator 4α-PDD (10 μM) -induced Ca(2+) increases were reduced by ruthenium-red (RuR) (20 μM). Different heating (<40°C or >43°C) led to Ca(2+) increases, which were also reduced by RuR. Hypotonic challenges of either 25 or 50% induced Ca(2+) transients and nonselective cation channel currents. In conclusion, conjunctiva express TRPV1, TRPV2, and TRPV4 channels which may provide novel drug targets for dry eye therapeutics. Their usage may have fewer side effects than those currently encountered with less selective drugs.
Collapse
Affiliation(s)
- Stefan Mergler
- Department of Ophthalmology, Campus Virchow-Clinic, Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Influence of sex hormones and genetic predisposition in Sjögren's syndrome: a new clue to the immunopathogenesis of dry eye disease. Exp Eye Res 2011; 96:88-97. [PMID: 22227485 DOI: 10.1016/j.exer.2011.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/02/2011] [Accepted: 12/14/2011] [Indexed: 11/24/2022]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by lymphocytic infiltration, destruction of lacrimal and salivary glands and the presence of serum autoantibodies. Most women that suffer from SS are post-menopausal however, not all post-menopausal women develop SS, suggesting that other factors, in addition to the decrease in ovarian hormones, are necessary for the development of SS. The purposes of this study were to investigate a) the time course of lymphocytic infiltration and apoptosis in the lacrimal gland after ovariectomy, b) if a predisposed genetic background for SS aggravates the effects of decreasing levels of sex hormones in the lacrimal glands and c) if physiological doses of estrogen or androgen prevent the effects observed after ovariectomy. Six weeks old mice that are genetically predisposed to SS (NOD.B10.H2(b)) and control (C57BL/10) mice were either sham operated, ovariectomized (OVX), OVX + 17β estradiol (E(2)) or OVX + Dihydrotestosterone (DHT). Lacrimal glands were collected at 3, 7, 21 or 30 days after surgery and processed for immunohistochemistry to measure CD4(+), CD8(+) T cells, B220(+) B cells, nuclear DNA degradation and cleaved caspase-3 activity. Quantification of the staining was done by light microscopy and Image Pro Plus software. The results of our study show that lymphocytic infiltration preceded lacrimal gland apoptosis after ovariectomy. Moreover, removal of ovarian sex hormones accelerated these effects in the genetically predisposed animal and these effects were more severe and persistent compared to control animals. In addition, sex hormone replacement at physiological levels prevented these symptoms. The mechanisms by which decreased levels of sex hormones caused lymphocytic infiltration and apoptosis and the interaction of lack of sex hormones with the genetic elements remain to be elucidated.
Collapse
|
23
|
Wang SB, Hu KM, Seamon KJ, Mani V, Chen Y, Gronert K. Estrogen negatively regulates epithelial wound healing and protective lipid mediator circuits in the cornea. FASEB J 2011; 26:1506-16. [PMID: 22186873 DOI: 10.1096/fj.11-198036] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Estrogen receptors (ERs) are expressed in leukocytes and in every ocular tissue. However, sex-specific differences and the role of estradiol in ocular inflammatory-reparative responses are not well understood. We found that female mice exhibited delayed corneal epithelial wound closure and attenuated polymorphonuclear (PMN) leukocyte responses, a phenotype recapitulated by estradiol treatment both in vivo (topically in male mice) and in vitro (corneal epithelial cell wound healing). The cornea expresses 15-lipoxygenase (15-LOX) and receptors for lipoxin A(4) (LXA(4)), which have been implicated in an intrinsic lipid circuit that regulates corneal inflammation and wound healing. Delayed epithelial wound healing correlated with lower expression of 15-LOX in the regenerated epithelium of female mice. Estradiol in vitro and in vivo down-regulated epithelial 15-LOX expression and LXA(4) formation, while estradiol abrogation of epithelial wound healing was completely reversed by treatment with LXA(4). More important, ERβ and ERα selectively regulated epithelial wound healing, PMN cell recruitment, and activity of the intrinsic 15-LOX/LXA(4) circuit. Our results demonstrate for the first time a sex-specific difference in the corneal reparative response, which is mediated by ERβ and ERα selective regulation of the epithelial and PMN 15-LOX/LXA(4) circuit. These findings may provide novel insights into the etiology of sex-specific ocular inflammatory diseases.
Collapse
Affiliation(s)
- Samantha B Wang
- University of California, Berkeley, Vision Science Program, School of Optometry, 594 Minor Hall, MC 2020, Berkeley, CA 94720-2020, USA
| | | | | | | | | | | |
Collapse
|
24
|
Imbert-Fernandez Y, Radde BN, Teng Y, Young WW, Hu C, Klinge CM. MUC1/A and MUC1/B splice variants differentially regulate inflammatory cytokine expression. Exp Eye Res 2011; 93:649-57. [PMID: 21854773 DOI: 10.1016/j.exer.2011.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/13/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
Abstract
The frequency of a splice variant of mucin 1 (MUC1), MUC1/A was lower in dry eye disease patients compared to normal controls, suggesting a link between the absence of MUC1/A and the development of dry eye disease which is characterized by chronic inflammation. The objectives of the present study were to clone and characterize the phenotype of cells expressing solely MUC1/A versus MUC1/B or a variant lacking the extracellular domain (ΔEX) and to determine whether MUC1/A and MUC1/B differentially modulate inflammatory responses in transfected cells. The additional 27 bp and SNP present in the N-terminus of MUC1/A were cloned into a FLAG-MUC1/B expression vector. Transient transfection of MUC1/A and MUC1/B plasmids into MUC1-null COS-7 cells resulted in similar protein expression and plasma membrane localization. MUC1/B and MUC1/A differed in their ability to modulate tumor necrosis α (TNFα)-induced transcription of IL-1β and IL-8. MUC1/B and MUC1/A inhibited IL-8 induction by TNFα at 4 h. However with 24 h TNFα, MUC1/A increased IL-1β and IL-8 whereas MUC1/B had no effect on cytokine expression. MUC1/B inhibited TNFα-induced luciferase activity from an NF-κB reporter whereas MUC1/A either inhibited or increased this luciferase activity depending on the time of TNFα treatment. MUC1/A, but not MUC1/B, increased the basal TGFβ expression. Both MUC1/B and MUC1/A blocked TNFα-induced miR-21 expression. These data demonstrate that MUC1/A and MUC1/B have different inflammatory activities and support the hypothesis that MUC1 genotypic differences may affect susceptibility to ocular surface damage in dry eye disease.
Collapse
Affiliation(s)
- Yoannis Imbert-Fernandez
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The ocular surface is continuously exposed to environmental agents such as allergens, pollutants, and microorganisms, which could provoke inflammation. However, an array of anatomical, physiological, and immunological features of the ocular surface conspire to limit corneal inflammation and endow the eye with immune privilege. A remarkable example of ocular immune privilege is the success of corneal allografts, which unlike all other forms of organ transplantation, survive without the use of systemic immunosuppressive drugs or MHC matching. This review describes the anatomical, physiological, and dynamic immunoregulatory processes that contribute to immune privilege.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
26
|
Khanal S, Tomlinson A. Tear physiology in dry eye associated with chronic GVHD. Bone Marrow Transplant 2011; 47:115-9. [PMID: 21383687 DOI: 10.1038/bmt.2011.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to compare tear physiology characteristics of chronic GVHD (cGVHD)-associated dry eye to dry eye caused by Sjogren's syndrome (SS), a extreme form of aqueous-deficient dry eye, and meibomian gland dysfunction (MGD), the major cause of evaporative dry eye. Tear turnover rate, evaporation and osmolarity along with meibomian gland dropout and lipid layer interferometric patterns were assessed in the right eyes of 12 patients with dry eye associated with cGVHD, 12 age-matched patients with SS and 12 age-sex matched subjects with MGD. In cGVHD, the decrease in tear turnover rate was similar (P=0.33), but the number of non-functioning meibomian glands was significantly higher (P<0.01) than in SS. Tear evaporation rate in cGVHD dry eye was found to be similar to that in MGD (P=0.36) and significantly higher than in SS (P<0.01). The lipid layer was most unstable in cGVHD compared with other groups. There was no variation in tear volume across all groups. Although statistical significance was not detected, the mean tear osmolarity (333.51±14.67mOsm/L) was highest in cGVHD. Major aspects of tear physiology were severely impaired in cGVHD-associated dry eye.
Collapse
Affiliation(s)
- S Khanal
- School of Natural Sciences, University of Western Sydney, Sydney, Australia.
| | | |
Collapse
|
27
|
Barabino S, Montaldo E, Solignani F, Valente C, Mingari MC, Rolando M. Immune response in the conjunctival epithelium of patients with dry eye. Exp Eye Res 2010; 91:524-9. [DOI: 10.1016/j.exer.2010.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/18/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
|
28
|
Zhang JZ, Ward KW. WY-14 643, a Selective PPARα Agonist, Induces Proinflammatory and Proangiogenic Responses in Human Ocular Cells. Int J Toxicol 2010; 29:496-504. [DOI: 10.1177/1091581810376674] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) agonism in ocular inflammation has not been thoroughly investigated. The objective of this investigation was to determine the effect of WY-14 643, a selective PPARα agonist, on inflammatory cytokine release in human ocular cells. Stimulation of primary human corneal epithelial cells, keratocytes, and retinal endothelial cells with 1 to 10 ng/mL interleukin 1β (IL-1β) resulted in a significant increase in numerous inflammatory cytokines, including IL-6, IL-8, and tumor necrosis factor α (TNF-α); and dexamethasone was able to significantly inhibit these effects. However, WY-14 643 did not effectively block IL-1β-induced cytokine release in ocular cells; rather, significant increases in IL-1β-induced inflammatory cytokines were observed in these cells but not in aortic smooth muscle cells. WY-14 643 also significantly upregulated vascular endothelial growth factor (VEGF) expression in corneal epithelial cells and keratocytes. These studies demonstrate for the first time that PPARα agonism may be proinflammatory and proangiogenic in a variety of ocular cells and suggest that therapeutic applications of such agents in ophthalmology may be limited.
Collapse
Affiliation(s)
| | - Keith W. Ward
- Pharmaceutical R&D, Bausch & Lomb, Inc, Rochester, NY, USA
| |
Collapse
|
29
|
Chen YT, Nikulina K, Lazarev S, Bahrami AF, Noble LB, Gallup M, McNamara NA. Interleukin-1 as a phenotypic immunomodulator in keratinizing squamous metaplasia of the ocular surface in Sjögren's syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1333-43. [PMID: 20696775 DOI: 10.2353/ajpath.2010.100227] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic inflammation of the ocular surface in Sjögren's syndrome (SS) is associated with a vision-threatening, phenotypic change of the ocular surface, which converts from a nonkeratinized, stratified squamous epithelium to a nonsecretory, keratinized epithelium. This pathological process is known as squamous metaplasia. Based on a significant correlation between ocular surface interleukin (IL)-1beta expression and squamous metaplasia in patients with SS, we investigated the role of IL-1 in the pathogenesis of squamous metaplasia in an animal model that mimics the clinical characteristics of SS. Using autoimmune-regulator (aire)-deficient mice, we assessed lacrimal gland and ocular surface immunopathology by quantifying the infiltration of major histocompatibility complex class II(+) (I-A(d+)) dendritic cells and CD4(+) T cells. We examined squamous metaplasia using a biomarker of keratinization, small proline-rich protein 1B. We used lissamine green staining as a readout for ocular surface epitheliopathy and Alcian blue/periodic acid-Schiff histochemical analysis to characterize goblet cell muco-glycoconjugates. Within 8 weeks, the eyes of aire-deficient mice were pathologically keratinized with significant epithelial damage and altered mucin glycosylation. Although knockdown of IL-1 receptor 1 did not attenuate lymphocytic infiltration of the lacrimal gland or eye, it significantly reduced ocular surface keratinization, epitheliopathy, and muco-glycoconjugate acidification. These data demonstrate a phenotypic modulation role for IL-1 in the pathogenesis of squamous metaplasia and suggest that IL-1 receptor 1-targeted therapies may be beneficial for treating ocular surface disease associated with SS.
Collapse
Affiliation(s)
- Ying-Ting Chen
- University of California, San Francisco, Francis I. Proctor Foundation, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Cosmetic Product Migration Onto the Ocular Surface: Exacerbation of Migration After Eyedrop Instillation. Cornea 2010; 29:400-3. [DOI: 10.1097/ico.0b013e3181bd4756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
|
32
|
Thomas PB, Samant DM, Zhu Z, Selvam S, Stevenson D, Wang Y, Song SW, Mircheff AK, Schechter JE, Yiu SC, Trousdale MD. Long-term topical cyclosporine treatment improves tear production and reduces keratoconjunctivitis in rabbits with induced autoimmune dacryoadenitis. J Ocul Pharmacol Ther 2009; 25:285-92. [PMID: 19456259 DOI: 10.1089/jop.2008.0138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To use a rabbit model of induced autoimmune dacryoadenitis to evaluate the efficacy of topical ophthalmic cyclosporine A (CsA). METHODS Autoimmune dacryoadenitis was induced by injecting autologous peripheral blood lymphocytes, which had been activated in a mixed cell reaction with acinar cells isolated from one inferior lacrimal gland (LG), back into the donor animal's remaining inferior LG. Schirmer's test, tear breakup time, and rose Bengal staining were assessed. Animals with established disease were treated topically with either CsA or Endura twice daily for 5 months. RESULTS Without treatment tear production and tear stability were abnormal for 6 months, and clear signs of ocular surface defects were evident. Severe immune cell infiltration was observed in the LG. Long-term CsA treatment increased tear production only slightly, but the severity of LG histopathology decreased noticeably. CD4(+) T-cell infiltration of the LG was decreased and infiltration by MHC class II-expressing cells was also decreased. For the Endura-treated group tear production did not improve, rose Bengal scores remained high, and histopathology showed infiltration comparable to the untreated group, but by the end of the study the tear breakup time did improve. CONCLUSIONS The rabbit model of autoimmune dacryoadenitis had signs of chronic dry eye disease 6 months after induction of disease. Tear production improved slightly with CsA treatment and CD4(+) T-cell infiltration decreased significantly in the LG. This suggests that some Sjögren's patients may benefit from long-term CsA treatment.
Collapse
Affiliation(s)
- Padmaja B Thomas
- Ocular Surface Center, Department of Ophthalmology, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chauhan SK, Dana R. Role of Th17 cells in the immunopathogenesis of dry eye disease. Mucosal Immunol 2009; 2:375-6. [PMID: 19532120 PMCID: PMC2719854 DOI: 10.1038/mi.2009.21] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Chauhan SK, El Annan J, Ecoiffier T, Goyal S, Zhang Q, Saban DR, Dana R. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. THE JOURNAL OF IMMUNOLOGY 2009; 182:1247-52. [PMID: 19155469 DOI: 10.4049/jimmunol.182.3.1247] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dry eye disease (DED), an inflammatory autoimmune disorder affecting the ocular surface, degrades visual performance and the quality of life of >10 million people in the United States alone. The primary limitation in the effective treatment of DED is an incomplete understanding of its specific cellular and molecular pathogenic elements. Using a validated mouse model of DED, herein we functionally characterize the different T cell subsets, including regulatory T cells (Tregs) and pathogenic effector T cells, and determine their contribution to the pathogenesis of DED. Our data demonstrate the presence of dysfunctional Tregs and the resistance of pathogenic T cells, particularly Th17 cells, to Treg suppression in DED. In addition, we clearly show that in vivo blockade of IL-17 significantly reduces the severity and progression of disease, which is paralleled by a reduction in the expansion of Th17 cells and restoration of Treg function. Our findings elucidate involvement of a previously unknown pathogenic T cell subset (Th17) in DED that is associated specifically with Treg dysfunction and disease pathogenesis and suggest a new target for dry eye therapy.
Collapse
Affiliation(s)
- Sunil K Chauhan
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Versura P, Fresina M, Campos EC. Ocular surface changes over the menstrual cycle in women with and without dry eye. Gynecol Endocrinol 2007; 23:385-90. [PMID: 17701769 DOI: 10.1080/09513590701350390] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AIM To analyze whether dry eye symptoms and ocular surface parameters change during different phases of the menstrual cycle. METHOD Twenty-nine women of fertile age and with regular, 26-29-day menstrual cycles were included in the study. Fourteen subjects suffered and 15 did not suffer from dry eye symptoms. Symptoms were scored by the validated Ocular Surface Disease Index questionnaire. Tear production was evaluated with the Schirmer I test and the Schirmer II test (Jones test); tear stability with tear breakup time and Ferning test; and degree of dryness by the tear function index and imprint conjunctival cytology. Degree of inflammation was evaluated with conjunctival brush cytology and concentration of exudated serum albumin in tears. Hormonal cytology procedures were applied to exfoliated cells in tears. Patients were analyzed during menstruation, in the follicular phase and the luteal phase over two consecutive cycles, and results were statistically evaluated. RESULTS Subjective symptoms, tear production and stability, surface dryness and inflammation were significantly related to hormonal fluctuations in the menstrual cycle. In particular, the impairment of these functions appeared to be related to the estrogen peak occurring during the follicular phase, especially in patients with dry eye. CONCLUSION The ocular surface is confirmed to be an estrogen-dependent unit; clinicians should take into account these cyclic variations during examination of subjects affected by symptoms of eye dryness.
Collapse
Affiliation(s)
- Piera Versura
- Department of Surgical Science and Transplants, Section of Ophthalmology, Alma Mater Studiorum Università di Bologna, Bologna, Italy.
| | | | | |
Collapse
|