1
|
SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in Bacillus cereus 905. Appl Microbiol Biotechnol 2021; 105:5943-5957. [PMID: 34350477 DOI: 10.1007/s00253-021-11402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 10/20/2022]
Abstract
Bacillus cereus 905, originally isolated from wheat rhizosphere, exhibits strong colonization ability on wheat roots. Our previous studies showed that root colonization is contributed by the ability of the bacterium to efficiently utilize carbon sources and form biofilms and that the sodA2 gene-encoded manganese-containing superoxide dismutase (MnSOD2) plays an indispensable role in the survival of B. cereus 905 in the wheat rhizosphere. In this investigation, we further demonstrated that the ability of B. cereus 905 to resist adverse environmental conditions is partially attributed to activation of the alternative sigma factor σB, encoded by the sigB gene. The sigB mutant experienced a dramatic reduction in survival when cells were exposed to ethanol, acid, heat, and oxidative stress or under glucose starvation. Analysis of the sodA2 gene transcription revealed a partial, σB-dependent induction of the gene during glucose starvation or when treated with paraquat. In addition, the sigB mutant displayed a defect in biofilm formation under stress conditions. Finally, results from the root colonization assay indicated that sigB and sodA2 collectively contribute to B. cereus 905 colonization on wheat roots. Our study suggests a diverse role of SigB in rhizosphere survival and root colonization of B. cereus 905 under stress conditions. KEY POINTS : • SigB confers resistance to environmental stresses in B. cereus 905. • SigB plays a positive role in glucose utilization and biofilm formation in B. cereus. • SigB and SodA2 collectively contribute to colonization on wheat roots by B. cereus.
Collapse
|
2
|
Phosphotransferase System Uptake and Metabolism of the β-Glucoside Salicin Impact Group A Streptococcal Bloodstream Survival and Soft Tissue Infection. Infect Immun 2020; 88:IAI.00346-20. [PMID: 32719156 DOI: 10.1128/iai.00346-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]), a major human-specific pathogen, relies on efficient nutrient acquisition for successful infection within its host. The phosphotransferase system (PTS) couples the import of carbohydrates with their phosphorylation prior to metabolism and has been linked to GAS pathogenesis. In a screen of an insertional mutant library of all 14 annotated PTS permease (EIIC) genes in MGAS5005, the annotated β-glucoside PTS transporter (bglP) was found to be crucial for GAS growth and survival in human blood and was validated in another M1T1 GAS strain, 5448. In 5448, bglP was shown to be in an operon with a putative phospho-β-glucosidase (bglB) downstream and a predicted antiterminator (licT) upstream. Using defined nonpolar mutants of the β-glucoside permease (bglP) and β-glucosidase enzyme (bglB) in 5448, we showed that bglB, not bglP, was important for growth in blood. Furthermore, transcription of the licT-blgPB operon was found to be repressed by glucose and induced by the β-glucoside salicin as the sole carbon source. Investigation of the individual bglP and bglB mutants determined that they influence in vitro growth in the β-glucoside salicin; however, only bglP was necessary for growth in other non-β-glucoside PTS sugars, such as fructose and mannose. Additionally, loss of BglP and BglB suggests that they are important for the regulation of virulence-related genes that control biofilm formation, streptolysin S (SLS)-mediated hemolysis, and localized ulcerative lesion progression during subcutaneous infections in mice. Thus, our results indicate that the β-glucoside PTS transports salicin and its metabolism can differentially influence GAS pathophysiology during soft tissue infection.
Collapse
|
3
|
Xu J, Xie YD, Liu L, Guo S, Su YL, Li AX. Virulence regulation of cel-EIIB protein mediated PTS system in Streptococcus agalactiae in Nile tilapia. JOURNAL OF FISH DISEASES 2019; 42:11-19. [PMID: 30374993 DOI: 10.1111/jfd.12907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Streptococcus agalactiae is a major pathogen of tilapia causing significant economic losses for the global aquatic industry yearly. To elucidate the role of cel-EIIB protein-mediated phosphotransferase systems (PTS) in the virulence regulation of S. agalactiae, cel-EIIB gene deletion in a virulent strain THN0901 was achieved by homologous recombination. The cellobiose utilization of △cel-EIIB strain was significantly decreased relative to S.a.THN0901 strain incubating in LB with 10 mg/ml cellobiose (p < 0.05). The biofilm formation ability of △cel-EIIB strain was also significantly decreased when cultured in BHI medium (p < 0.05). Under a lower infection dose, the accumulative mortality of tilapia caused by △cel-EIIB strain was dramatically decreased (20%), of which S.a.THN0901 strain and △cel-EIIB::i strain were 53.33% and 50%, respectively. The competition experience using tilapia model indicated the invasion and colonization ability of △cel-EIIB strain was significantly weaker than that of S.a.THN0901 strain (p < 0.05). Compared to △cel-EIIB::i strain, the mRNA expression of csrS, csrR, rgfA, rgfC, bgrR and bgrS was significantly downregulated in △cel-EIIB strain (p < 0.05). In conclusion, cel-EIIB protein-mediated cel-PTS not only contributes to biofilm formation and virulence regulation, but also plays an important role in the invasion and colonization of S. agalactiae.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yun-Dan Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Ling Liu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Song Guo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - You-Lu Su
- College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Gao T, Ding M, Yang CH, Fan H, Chai Y, Li Y. The phosphotransferase system gene ptsH plays an important role in MnSOD production, biofilm formation, swarming motility, and root colonization in Bacillus cereus 905. Res Microbiol 2018; 170:86-96. [PMID: 30395927 DOI: 10.1016/j.resmic.2018.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
The rhizosphere bacterium Bacillus cereus 905 is capable of promoting plant growth through effective colonization on plant roots. The sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) is important for survival of B. cereus 905 in the wheat rhizosphere. However, the genes involved in regulating sodA2 expression and the mechanisms of rhizosphere colonization of B. cereus 905 are not well elucidated. In this study, we found that the deletion of the ptsH gene, which encodes the histidine-phosphorylatable protein (HPr), a component of the phosphotransferase system (PTS), causes a decrease of about 60% in the MnSOD2 expression. Evidences indicate that the ptsH dramatically influences resistance to oxidative stress, glucose uptake, as well as biofilm formation and swarming motility of B. cereus 905. Root colonization assay demonstrated that ΔptsH is defective in colonizing wheat roots, while complementation of the sodA2 gene could partially restore the ability in utilization of arabinose, a non-PTS sugar, and root colonization caused by the loss of the ptsH gene. In toto, based on the current findings, we propose that PtsH contributes to root colonization of B. cereus 905 through multiple indistinct mechanisms, involving PTS and uptake of PTS-sugars, up-regulation of MnSOD2 production, and promotion of biofilm formation and swarming motility.
Collapse
Affiliation(s)
- Tantan Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02215, USA.
| | - Mingzheng Ding
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA.
| | - Haiyan Fan
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Yunrong Chai
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02215, USA.
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 2017; 44:1-30. [PMID: 28485690 DOI: 10.1080/1040841x.2017.1303660] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elio Rossi
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy.,b Novo Nordisk Center for Biosustainabiliy , Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Annika Cimdins
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,d Institute of Hygiene, University of Münster , Münster , Germany
| | - Petra Lüthje
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,e Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Annelie Brauner
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Åsa Sjöling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Paolo Landini
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy
| | - Ute Römling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
6
|
Lindenstrauss AG, Ehrmann MA, Behr J, Landstorfer R, Haller D, Sartor RB, Vogel RF. Transcriptome analysis of Enterococcus faecalis toward its adaption to surviving in the mouse intestinal tract. Arch Microbiol 2014; 196:423-33. [PMID: 24700373 DOI: 10.1007/s00203-014-0982-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
We have performed a transcriptomic in vivo study with Enterococcus faecalis OG1RF in the intestine of living mice to identify novel latent and adaptive fitness determinants within E. faecalis. From 2,658 genes that are present in E. faecalis strain OG1RF, 124 genes were identified as significantly differentially expressed within the intestinal tract of living mice as compared to exponential growth in BHI broth. The groups of significantly up- or down-regulated genes consisted of 94 and 30 genes, respectively, for which 46 and 18 a clear annotation to a functionally described protein was found. These included genes involved in energy metabolism (e.g., dhaK and glpK pathway), transport and binding mechanisms (e.g., phosphoenolpyruvate carbohydrate PTS) as well as fatty acid metabolism (fab genes). The novel putative fitness determinants found in this work may be helpful for future studies of E. faecalis adaptation to the intestinal tract, which is also a prerequisite for infection in a compromised or inflamed host.
Collapse
Affiliation(s)
- Angela G Lindenstrauss
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Weihenstephaner Steig 16, 85350, Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Dosselli R, Millioni R, Puricelli L, Tessari P, Arrigoni G, Franchin C, Segalla A, Teardo E, Reddi E. Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach. J Proteomics 2012; 77:329-43. [PMID: 23000218 DOI: 10.1016/j.jprot.2012.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/19/2012] [Accepted: 09/08/2012] [Indexed: 12/24/2022]
Abstract
Antimicrobial photodynamic therapy (PDT) is a promising tool to combat antibiotic-resistant bacterial infections. During PDT, bacteria are killed by reactive oxygen species generated by a visible light absorbing photosensitizer (PS). We used a classical proteomic approach that included two-dimensional gel electrophoresis and mass spectrometry analysis, to identify some proteins of Staphylococcus aureus that are damaged during PDT with the cationic PS meso-tetra-4-N-methyl pyridyl porphine (T4). Suspensions of S. aureus cells were incubated with selected T4 concentrations and irradiated with doses of blue light that reduced the survival to about 60% or 1%. Proteomics analyses of a membrane proteins enriched fraction revealed that these sub-lethal PDT treatments affected the expression of several functional classes of proteins, and that this damage is selective. Most of these proteins were found to be involved in metabolic activities, in oxidative stress response, in cell division and in the uptake of sugar. Subsequent analyses revealed that PDT treatments delayed the growth and considerably reduced the glucose consumption capacity of S. aureus cells. This investigation provides new insights towards the characterization of PDT induced damage and mechanism of bacterial killing using, for the first time, a proteomic approach.
Collapse
Affiliation(s)
- Ryan Dosselli
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35128 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|