1
|
Di Donato M, Giovannelli P, Migliaccio A, Castoria G. The nerve growth factor-delivered signals in prostate cancer and its associated microenvironment: when the dialogue replaces the monologue. Cell Biosci 2023; 13:60. [PMID: 36941697 PMCID: PMC10029315 DOI: 10.1186/s13578-023-01008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Prostate cancer (PC) represents the most diagnosed and the second most lethal cancer in men worldwide. Its development and progression occur in concert with alterations in the surrounding tumor microenvironment (TME), made up of stromal cells and extracellular matrix (ECM) that dynamically interact with epithelial PC cells affecting their growth and invasiveness. PC cells, in turn, can functionally sculpt the TME through the secretion of various factors, including neurotrophins. Among them, the nerve growth factor (NGF) that is released by both epithelial PC cells and carcinoma-associated fibroblasts (CAFs) triggers the activation of various intracellular signaling cascades, thereby promoting the acquisition of a metastatic phenotype. After many years of investigation, it is indeed well established that aberrations and/or derangement of NGF signaling are involved not only in neurological disorders, but also in the pathogenesis of human proliferative diseases, including PC. Another key feature of cancer progression is the nerve outgrowth in TME and the concept of nerve dependence related to perineural invasion is currently emerging. NGF released by cancer cells can be a driver of tumor neurogenesis and nerves infiltrated in TME release neurotransmitters, which might stimulate the growth and sustainment of tumor cells.In this review, we aim to provide a snapshot of NGF action in the interactions between TME, nerves and PC cells. Understanding the molecular basis of this dialogue might expand the arsenal of therapeutic strategies against this widespread disease.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
2
|
March B, Lockhart KR, Faulkner S, Smolny M, Rush R, Hondermarck H. ELISA-based quantification of neurotrophic growth factors in urine from prostate cancer patients. FASEB Bioadv 2021; 3:888-896. [PMID: 34761171 PMCID: PMC8565200 DOI: 10.1096/fba.2021-00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Non-invasive procedures are needed for prostate cancer management, and urine represents a potential source of new biomarkers with translational value. Recent evidence has shown that the growth of new nerves in the tumor microenvironment is essential to prostate cancer progression. Neurotrophic growth factors are expressed by prostate cancer cells and contribute to prostate tumor innervation, but their presence in urine is unclear. In the present study, we have assayed the concentration of neurotrophic factors in the urine of prostate cancer patients. Urine was collected from a prospective cohort of 45 men with prostate cancer versus 30 men without cancer and enzyme-linked immunosorbent assay was used to quantify nerve growth factor (NGF) and its precursor proNGF, brain-derived neurotrophic factor (BDNF) and proBDNF, neurotrophin-3, neurotrophin-4/5, and glia-derived neurotrophic growth factor. The results show that neurotrophic factors are detectable in various concentrations in both cancer and healthy urine, but no significant difference was found. Also, no association was observed between neurotrophic factor concentrations and prostate cancer grade. This study is the first quantification of neurotrophins in urine, and although no significant differences were observed between prostate cancer patients versus those without prostate cancer, or between prostate cancers of various grades, the potential value of neurotrophins for prostate cancer diagnosis and prognosis warrants further investigations in larger patient cohorts.
Collapse
Affiliation(s)
- Brayden March
- School of Biomedical Sciences & PharmacyThe University of NewcastleCallaghanNSWAustralia
- Hunter Medical Research InstituteNew LambtonNSWAustralia
- School of Medicine & Public HealthThe University of NewcastleCallaghanNSWAustralia
- Department of UrologyJohn Hunter HospitalNew Lambton HeightsNSWAustralia
| | | | - Sam Faulkner
- School of Biomedical Sciences & PharmacyThe University of NewcastleCallaghanNSWAustralia
- Hunter Medical Research InstituteNew LambtonNSWAustralia
| | | | - Robert Rush
- Biosensis Pty LtdThebartonSAAustralia
- Department of Human PhysiologyFlinders UniversityAdelaideSAAustralia
| | - Hubert Hondermarck
- School of Biomedical Sciences & PharmacyThe University of NewcastleCallaghanNSWAustralia
- Hunter Medical Research InstituteNew LambtonNSWAustralia
| |
Collapse
|
3
|
Fontana F, Raimondi M, Marzagalli M, Sommariva M, Gagliano N, Limonta P. Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. Int J Mol Sci 2020; 21:E6806. [PMID: 32948069 PMCID: PMC7554845 DOI: 10.3390/ijms21186806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decade, three-dimensional (3D) cell culture technology has gained a lot of interest due to its ability to better recapitulate the in vivo organization and microenvironment of in vitro cultured cancer cells. In particular, 3D tumor models have demonstrated several different characteristics compared with traditional two-dimensional (2D) cultures and have provided an interesting link between the latter and animal experiments. Indeed, 3D cell cultures represent a useful platform for the identification of the biological features of cancer cells as well as for the screening of novel antitumor agents. The present review is aimed at summarizing the most common 3D cell culture methods and applications, with a focus on prostate cancer modeling and drug discovery.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Androgens
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Culture Techniques/instrumentation
- Cell Culture Techniques/methods
- Cell Hypoxia
- Drug Discovery/methods
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Energy Metabolism
- Epithelial-Mesenchymal Transition
- Extracellular Matrix/metabolism
- Humans
- Inflammation
- Male
- Molecular Targeted Therapy
- Monitoring, Immunologic
- Neoplasm Metastasis
- Neoplasm Proteins/metabolism
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neovascularization, Pathologic/drug therapy
- Oxidation-Reduction
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- Spheroids, Cellular/drug effects
- Therapies, Investigational
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| |
Collapse
|
4
|
Di Donato M, Cernera G, Migliaccio A, Castoria G. Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers (Basel) 2019; 11:E784. [PMID: 31174415 PMCID: PMC6627659 DOI: 10.3390/cancers11060784] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Resistance to hormone therapy and disease progression is the major challenge in clinical management of prostate cancer (PC). Drugs currently used in PC therapy initially show a potent antitumor effects, but PC gradually develops resistance, relapses and spreads. Most patients who fail primary therapy and have recurrences eventually develop castration-resistant prostate cancer (CRPC), which is almost incurable. The nerve growth factor (NGF) acts on a variety of non-neuronal cells by activating the NGF tyrosine-kinase receptor, tropomyosin receptor kinase A (TrkA). NGF signaling is deregulated in PC. In androgen-dependent PC cells, TrkA mediates the proliferative action of NGF through its crosstalk with the androgen receptor (AR). Epithelial PC cells, however, acquire the ability to express NGF and TrkA, as the disease progresses, indicating a role for NGF/TrkA axis in PC progression and androgen-resistance. We here report that once activated by NGF, TrkA mediates proliferation, invasiveness and epithelial-mesenchymal transition (EMT) in various CRPC cells. NGF promotes organoid growth in 3D models of CRPC cells, and specific inhibition of TrkA impairs all these responses. Thus TrkA represents a new biomarker to target in CRPC.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Gustavo Cernera
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Gabriella Castoria
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| |
Collapse
|
5
|
Nerve growth factor in cancer cell death and survival. Cancers (Basel) 2011; 3:510-30. [PMID: 24212627 PMCID: PMC3756375 DOI: 10.3390/cancers3010510] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 12/19/2022] Open
Abstract
One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75NTR, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75NTR. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75NTR. This latter signaling through p75NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer.
Collapse
|
6
|
Brackenbury WJ, Djamgoz MBA. Nerve growth factor enhances voltage-gated Na+ channel activity and Transwell migration in Mat-LyLu rat prostate cancer cell line. J Cell Physiol 2007; 210:602-8. [PMID: 17149708 PMCID: PMC4123444 DOI: 10.1002/jcp.20846] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The highly dynamic nature of voltage-gated Na+ channel (VGSC) expression and its controlling mechanism(s) are not well understood. In this study, we investigated the possible involvement of nerve growth factor (NGF) in regulating VGSC activity in the strongly metastatic Mat-LyLu cell model of rat prostate cancer (PCa). NGF increased peak VGSC current density in a time- and dose-dependent manner. NGF also shifted voltage to peak and the half-activation voltage to more positive potentials, and produced currents with faster kinetics of activation; sensitivity to the VGSC blocker tetrodotoxin (TTX) was not affected. The NGF-induced increase in peak VGSC current density was suppressed by both the pan-trk antagonist K252a, and the protein kinase A (PKA) inhibitor KT5720. NGF did not affect the Nav1.7 mRNA level, but the total VGSC alpha-subunit protein level was upregulated. NGF potentiated the cells' migration in Transwell assays, and this was not affected by TTX. We concluded that NGF upregulated functional VGSC expression in Mat-LyLu cells, with PKA as a signaling intermediate, but enhancement of migration by NGF was independent of VGSC activity.
Collapse
Affiliation(s)
| | - Mustafa B. A. Djamgoz
- Correspondence to: Professor M. B. A. Djamgoz, Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK, Tel: (0) 207 594 5370, Fax: (0) 207 584 2056,
| |
Collapse
|
7
|
Walch ET, Marchetti D. Role of neurotrophins and neurotrophins receptors in the in vitro invasion and heparanase production of human prostate cancer cells. Clin Exp Metastasis 1999; 17:307-14. [PMID: 10545017 DOI: 10.1023/a:1006652605568] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of the neurotrophins (NTs) and their corresponding receptors (NTRs) TrkA, TrkB, TrkC, and p75NTR in neoplasia has received relatively little attention. However, because malignant cell migration within the prostate occurs predominantly by direct extension around prostatic nerves, the presence and possible upregulation of NTs from autocrine/paracrine sources and NTR expression within prostate epithelial tumor cells may be important in metastasis. We have been addressing their expression and interactions in human prostate cancer cell lines (LNCaP, PC-3, and DU145) and their role in prostate cancer invasion. In this study, we demonstrated that nerve growth factor (NGF), the prototypic NT, and NT-4/5 increased in vitro invasion through a reconstituted basement membrane and induced time- and dose-dependent expression of heparanase, a heparan sulfate-specific endo-beta-D-glucuronidase, an important molecular determinant of tumor metastasis. The NT effects were most marked in the DU 145 brain-metastatic cells and were detected at NT concentrations sufficient to fully saturate both low- and high-affinity NTRs. Additionally, we characterized the molecular expression of NT high-affinity (Trk) and low-affinity (p75NTR) receptors in these cell lines by reverse transcription-polymerase chain reaction. These lines had negligible trkA and trkC expression, although trkB was expressed in the three prostatic tumor cell lines examined. The brain-metastatic DU 145 cells were also positive for p75NTR. Our data showed that the NTs and NTRs are important in metastasis and that their expression coincides with transformation to a malignant phenotype capable of invasion along the perineural space and extracapsular metastasis to distant sites. These findings set the stage for more research into this area as related to prostate cancer evolution and may improve therapy for prostate cancer metastasis.
Collapse
Affiliation(s)
- E T Walch
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|