1
|
Sarver DC, Garcia-Diaz J, Saqib M, Riddle RC, Wong GW. Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition. eLife 2024; 12:RP90949. [PMID: 38241182 PMCID: PMC10945605 DOI: 10.7554/elife.90949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first 2 weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
- Cell and Molecular Medicine graduate program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
- Research and Development Service, Baltimore Veterans Administration Medical CenterBaltimoreUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
2
|
Sarver DC, Garcia-Diaz J, Saqib M, Riddle RC, Wong GW. Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551694. [PMID: 37577461 PMCID: PMC10418210 DOI: 10.1101/2023.08.02.551694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first two weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted GH/IGF-1 axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling a wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Cell and Molecular Medicine graduate program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Muthuvel G, Al Remeithi SS, Foley C, Dauber A, Hwa V, Backeljauw P. Recombinant Human Insulin-Like Growth Factor-1 Treatment of Severe Growth Failure in Three Siblings with STAT5B Deficiency. Horm Res Paediatr 2023; 97:195-202. [PMID: 37586336 DOI: 10.1159/000531491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/24/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION Patients with homozygous recessive mutations in STAT5B have severe progressive postnatal growth failure and insulin-like growth factor-I (IGF-I) deficiency associated with immunodeficiency and increased risk of autoimmune and pulmonary conditions. This report describes the efficacy and safety of recombinant human IGF-1 (rhIGF-1) in treating severe growth failure due to STAT5B deficiency. CASE PRESENTATION Three siblings (P1, 4.4 year-old female; P2, 2.3 year-old male; and P3, 7 month-old female) with severe short stature (height SDS [HtSDS] -6.5, -4.9, -5.3, respectively) were referred to the Center for Growth Disorders at Cincinnati Children's Hospital Medical Center. All three had a homozygous mutation (p.Trp631*) in STAT5B. Baseline IGF-I was 14.7, 14.1, and 10.8 ng/mL, respectively (all < -2.5 SDS for age and sex), and IGFBP-3 was 796, 603, and 475 ng/mL, respectively (all < -3 SDS for age and sex). The siblings were started on rhIGF-1 at 40 μg/kg/dose twice daily subcutaneously (SQ), gradually increased to 110-120 μg/kg/dose SQ twice daily as tolerated. HtSDS and height velocity (HV) were monitored over time. RESULTS Six years of growth data was utilized to quantify growth response in the two older siblings and 5 years of data in the youngest. Pre-treatment HVs were, respectively, 3.0 (P1), 3.0 (P2), and 5.2 (P3) cm/year. With rhIGF-1 therapy, HVs increased to 5.2-6.0, 4.8-7.1, and 5.5-7.4 cm/year, respectively, in the first 3 years of treatment, before they decreased to 4.7, 3.8, and 4.3 cm/year, respectively, at a COVID-19 pandemic delayed follow-up visit and with decreased treatment adherence. ΔHtSDS for P1 and P2 was +2.21 and +0.93, respectively, over 6 years, but -0.62 for P3 after 5 years and in the setting of severe local lipohypertrophy and suboptimal weight gain. P3 also experienced hypoglycemia that limited our ability to maintain target rhIGF-1 dosing. CONCLUSION The response to rhIGF-1 therapy is less than observed with rhIGF-1 therapy for patients previously described with severe primary IGF-I deficiency, including patients with documented defects in the growth hormone receptor, but may still provide patients with STAT5B deficiency with an opportunity to prevent worsening growth failure.
Collapse
Affiliation(s)
- Gajanthan Muthuvel
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sareea Salem Al Remeithi
- Division of Endocrinology, Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Corinne Foley
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew Dauber
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Philippe Backeljauw
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
5
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Hwa V. Human growth disorders associated with impaired GH action: Defects in STAT5B and JAK2. Mol Cell Endocrinol 2021; 519:111063. [PMID: 33122102 PMCID: PMC7736371 DOI: 10.1016/j.mce.2020.111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Growth hormone (GH) promotes postnatal human growth primarily by regulating insulin-like growth factor (IGF)-I production through activation of the GH receptor (GHR)-JAK2-signal transducer and activator of transcription (STAT)-5B signaling pathway. Inactivating STAT5B mutations, both autosomal recessive (AR) and dominant-negative (DN), are causal of a spectrum of GH insensitivity (GHI) syndrome, IGF-I deficiency and postnatal growth failure. Only AR STAT5B defects, however, confer additional characteristics of immune dysfunction which can manifest as chronic, potentially fatal, pulmonary disease. Somatic activating STAT5B and JAK2 mutations are associated with a plethora of immune abnormalities but appear not to impact human linear growth. In this review, molecular defects associated with STAT5B deficiency is highlighted and insights towards understanding human growth and immunity is emphasized.
Collapse
Affiliation(s)
- Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, United States.
| |
Collapse
|
7
|
Foley CL, Al Remeithi SS, Towe CT, Dauber A, Backeljauw PF, Tyzinski L, Kumar AR, Hwa V. Developmental Adaptive Immune Defects Associated with STAT5B Deficiency in Three Young Siblings. J Clin Immunol 2021; 41:136-146. [PMID: 33090292 PMCID: PMC7854992 DOI: 10.1007/s10875-020-00884-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
Patients with rare homozygous mutations in signal transducer and activator of transcription 5B (STAT5B) develop immunodeficiency resulting in chronic eczema, chronic infections, autoimmunity, and chronic lung disease. STAT5B-deficient patients are typically diagnosed in the teenage years, limiting our understanding of the development of associated phenotypic immune abnormalities. We report the first detailed chronological account of post-natal immune dysfunction associated with STAT5B deficiency in humans. Annual immunophenotyping of three siblings carrying a novel homozygous nonsense mutation in STAT5B was carried out over 4 years between the ages of 7 months to 8 years. All three siblings demonstrated consistent B cell hyperactivity including elevated IgE levels and autoantibody production, associated with diagnoses of atopy and autoimmunity. Total T cell levels in each sibling remained normal, with regulatory T cells decreasing in the oldest sibling. Interestingly, a skewing toward memory T cells was identified, with the greatest changes in CD8+ effector memory T cells. These results suggest an importance of STAT5B in B cell function and naïve versus memory T cell survival. Progressive dysregulation of FOXP3+ regulatory T cells and CD8+ memory T cell subsets reveal a crucial role of STAT5B in T cell homeostasis. The early diagnosis and focused immune evaluations of these three young STAT5B-deficient siblings support an important role of STAT5B in adaptive immune development and function.
Collapse
Affiliation(s)
- Corinne L Foley
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sareea S Al Remeithi
- Division of Endocrinology, Department of PediatricsSheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Christopher T Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Philippe F Backeljauw
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Tyzinski
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashish R Kumar
- Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Consonni F, Favre C, Gambineri E. IL-2 Signaling Axis Defects: How Many Faces? Front Pediatr 2021; 9:669298. [PMID: 34277517 PMCID: PMC8282996 DOI: 10.3389/fped.2021.669298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
CD25, Signal transducer and activator of transcription 5B (STAT5B) and Forkhead box P3 (FOXP3) are critical mediators of Interleukin-2 (IL-2) signaling pathway in regulatory T cells (Tregs). CD25 (i.e., IL-2 Receptor α) binds with high affinity to IL-2, activating STAT5B-mediated signaling that eventually results in transcription of FOXP3, a master regulator of Treg function. Consequently, loss-of-function mutations in these proteins give rise to Treg disorders (i.e., Tregopathies) that clinically result in multiorgan autoimmunity. Immunodysregulation, Polyendocrinopathy Enteropathy X-linked (IPEX), due to mutations in FOXP3, has historically been the prototype of Tregopathies. This review describes current knowledge about defects in CD25, STAT5B, and FOXP3, highlighting that these disorders both share a common biological background and display comparable clinical features. However, specific phenotypes are associated with each of these syndromes, while certain laboratory findings could be helpful tools for clinicians, in order to achieve a prompt genetic diagnosis. Current treatment strategies will be outlined, keeping an eye on gene editing, an interesting therapeutic perspective that could definitely change the natural history of these disorders.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
9
|
Carneiro-Sampaio M, Moreira-Filho CA, Bando SY, Demengeot J, Coutinho A. Intrauterine IPEX. Front Pediatr 2020; 8:599283. [PMID: 33330291 PMCID: PMC7714920 DOI: 10.3389/fped.2020.599283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
IPEX is one of the few Inborn Errors of Immunity that may manifest in the fetal period, and its intrauterine forms certainly represent the earliest human autoimmune diseases. Here, we review the clinical, histopathologic, and genetic findings from 21 individuals in 11 unrelated families, with nine different mutations, described as cases of intrauterine IPEX. Recurrent male fetal death (multigenerational in five families) due to hydrops in the midsemester of pregnancy was the commonest presentation (13/21). Noteworthy, in the affected families, there were only fetal- or perinatal-onset cases, with no affected individuals presenting milder forms with later-life manifestation. Most alive births were preterm (5/6). Skin desquamation and intrauterine growth restriction were observed in part of the cases. Fetal ultrasonography showed hyperechoic bowel or dilated bowel loops in the five cases with available imaging data. Histopathology showed multi-visceral infiltrates with T lymphocytes and other cells, including eosinophils, the pancreas being affected in most of the cases (11/21) and as early as at 18 weeks of gestational age. Regarding the nine FOXP3 mutations found in these cases, six determine protein truncation and three predictably impair protein function. Having found distinct presentations for the same FOXP3 mutation in different families, we resorted to the mouse system and showed that the scurfy mutation also shows divergent severity of phenotype and age of death in C57BL/6 and BALB/c backgrounds. We also reviewed age-of-onset data from other monogenic Tregopathies leading to IPEX-like phenotypes. In monogenic IPEX-like syndromes, the intrauterine onset was only observed in two kindreds with IL2RB mutations, with two stillbirths and two premature neonates who did not survive. In conclusion, intrauterine IPEX cases seem to constitute a particular IPEX subgroup, certainly with the most severe clinical presentation, although no strict mutation-phenotype correlations could be drawn for these cases.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Yumi Bando
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
10
|
Human signal transducer and activator of transcription 5b (STAT5b) mutation causes dysregulated human natural killer cell maturation and impaired lytic function. J Allergy Clin Immunol 2019; 145:345-357.e9. [PMID: 31600547 DOI: 10.1016/j.jaci.2019.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Patients with signal transducer and activator of transcription 5b (STAT5b) deficiency have impairment in T-cell homeostasis and natural killer (NK) cells which leads to autoimmunity, recurrent infections, and combined immune deficiency. OBJECTIVE In this study we characterized the NK cell defect in STAT5b-deficient human NK cells, as well as Stat5b-/- mice. METHODS We used multiparametric flow cytometry, functional NK cell assays, microscopy, and a Stat5b-/- mouse model to elucidate the effect of impaired and/or absent STAT5b on NK cell development and function. RESULTS This alteration generated a nonfunctional CD56bright NK cell subset characterized by low cytokine production. The CD56dim NK cell subset had decreased expression of perforin and CD16 and a greater frequency of cells expressing markers of immature NK cells. We observed low NK cell numbers and impaired NK cell maturation, suggesting that STAT5b is involved in terminal NK cell maturation in Stat5b-/- mice. Furthermore, human STAT5b-deficient NK cells had low cytolytic capacity, and fixed-cell microscopy showed poor convergence of lytic granules. This was accompanied by decreased expression of costimulatory and activating receptors. Interestingly, granule convergence and cytolytic function were restored after IL-2 stimulation. CONCLUSIONS Our results show that in addition to the impaired terminal maturation of NK cells, human STAT5b mutation leads to impairments in early activation events in NK cell lytic synapse formation. Our data provide further insight into NK cell defects caused by STAT5b deficiency.
Collapse
|
11
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Natural killer cells are innate lymphoid cells (ILCs) that play critical roles in human host defense and are especially useful in combating viral pathogens and malignancy. RECENT FINDINGS The NK cell deficiency (NKD) is particularly underscored in patients with a congenital immunodeficiency in which NK cell development or function is affected. The classical NK cell deficiency (cNKD) is a result of absent or a profound decrease in the number of circulating NK cells. In contrast, functional NKD (fNKD) is characterized by abnormal NK cell function but with normal number of NK cells. The combined immune deficiencies with significant impact on NK cells are not considered classical or functional NK cell deficiencies. In these disorders, the impairment of NK cells represents an important aspect of the overall immunodeficiency. In turn, this leads to improved insights on the NK cell development and function. Here, we detail the NK cell biology based upon recent natural killer cell defects described in combined immune deficiencies.
Collapse
|
13
|
Gambineri E, Ciullini Mannurita S, Hagin D, Vignoli M, Anover-Sombke S, DeBoer S, Segundo GRS, Allenspach EJ, Favre C, Ochs HD, Torgerson TR. Clinical, Immunological, and Molecular Heterogeneity of 173 Patients With the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome. Front Immunol 2018; 9:2411. [PMID: 30443250 PMCID: PMC6223101 DOI: 10.3389/fimmu.2018.02411] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) Syndrome is a rare recessive disorder caused by mutations in the FOXP3 gene. In addition, there has been an increasing number of patients with wild-type FOXP3 gene and, in some cases, mutations in other immune regulatory genes. Objective: To molecularly asses a cohort of 173 patients with the IPEX phenotype and to delineate the relationship between the clinical/immunologic phenotypes and the genotypes. Methods: We reviewed the clinical presentation and laboratory characteristics of each patient and compared clinical and laboratory data of FOXP3 mutation-positive (IPEX patients) with those from FOXP3 mutation-negative patients (IPEX-like). A total of 173 affected patients underwent direct sequence analysis of the FOXP3 gene while 85 IPEX-like patients with normal FOXP3 were investigated by a multiplex panel of "Primary Immune Deficiency (PID-related) genes." Results: Forty-four distinct FOXP3 variants were identified in 88 IPEX patients, 9 of which were not previously reported. Among the 85 IPEX-like patients, 19 different disease-associated variants affecting 9 distinct genes were identified. Conclusions: We provide a comprehensive analysis of the clinical features and molecular bases of IPEX and IPEX-like patients. Although we were not able to identify major distinctive clinical features to differentiate IPEX from IPEX-like syndromes, we propose a simple flow-chart to effectively evaluate such patients and to focus on the most likely molecular diagnosis. Given the large number of potential candidate genes and overlapping phenotypes, selecting a panel of PID-related genes will facilitate a molecular diagnosis.
Collapse
Affiliation(s)
- Eleonora Gambineri
- Department of NEUROFARBA, University of Florence, Florence, Italy
- Oncology/Hematology Department, “Anna Meyer” Children's Hospital, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of NEUROFARBA, University of Florence, Florence, Italy
- Oncology/Hematology Department, “Anna Meyer” Children's Hospital, Florence, Italy
| | - David Hagin
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Marina Vignoli
- Department of NEUROFARBA, University of Florence, Florence, Italy
- Oncology/Hematology Department, “Anna Meyer” Children's Hospital, Florence, Italy
| | | | - Stacey DeBoer
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Gesmar R. S. Segundo
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Eric J. Allenspach
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Claudio Favre
- Oncology/Hematology Department, “Anna Meyer” Children's Hospital, Florence, Italy
| | - Hans D. Ochs
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Troy R. Torgerson
- Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Scalco RC, Gonçalves FT, Santos HC, Cardena MMSG, Tonelli CA, Funari MFA, Aracava RM, Pereira AC, Fridman C, Jorge AAL. Growth hormone insensitivity with immune dysfunction caused by a STAT5B mutation in the south of Brazil: evidence for a founder effect. Genet Mol Biol 2017; 40:436-441. [PMID: 28590503 PMCID: PMC5488464 DOI: 10.1590/1678-4685-gmb-2016-0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/16/2016] [Indexed: 11/22/2022] Open
Abstract
Homozygous STAT5B mutations causing growth hormone insensitivity
with immune dysfunction were described in 10 patients since 2003, including two
Brazilian brothers from the south of Brazil. Our objectives were to evaluate the
prevalence of their STAT5B mutation in this region and to analyze
the presence of a founder effect. We obtained DNA samples from 1,205 local
inhabitants, 48 relatives of the homozygous patients and four individuals of another
affected family. Genotyping for STAT5B c.424_427del mutation and for
two polymorphic markers around it was done through fragment analysis technique. We
also determined Y-chromosome and mtDNA haplotypes and genomic ancestry in
heterozygous carriers. We identified seven families with STAT5B
c.424_427del mutation, with 33 heterozygous individuals. The minor allelic frequency
of this mutation was 0.29% in this population (confidence interval 95% 0.08-0.5%),
which is significantly higher than the frequency of other pathogenic
STAT5B allele variants observed in public databases (p <
0.001). All heterozygous carriers had the same haplotype present in the homozygous
patients, found in only 9.4% of non-carriers (p < 0.001), supporting the existence
of a founder effect. The Y-chromosome haplotype, mtDNA and genomic ancestry analysis
indicated a European origin of this mutation. Our results provide compelling evidence
for a founder effect of STAT5B c.424_427del mutation.
Collapse
Affiliation(s)
- Renata C Scalco
- Unidade de Endocrinologia Genética (LIM25), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.,Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Fernanda T Gonçalves
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, SP, Brazil
| | - Hadassa C Santos
- Laboratório de Cardiologia Genética e Molecular, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mari M S G Cardena
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, SP, Brazil
| | - Carlos A Tonelli
- Universidade do Extremo Sul de Santa Catarina, Criciúma, SC, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Rosana M Aracava
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Alexandre C Pereira
- Laboratório de Cardiologia Genética e Molecular, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cintia Fridman
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM25), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
15
|
Hwa V. STAT5B deficiency: Impacts on human growth and immunity. Growth Horm IGF Res 2016; 28:16-20. [PMID: 26703237 PMCID: PMC4846566 DOI: 10.1016/j.ghir.2015.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023]
Abstract
Growth hormone (GH) promotes postnatal human growth primarily by regulating insulin-like growth factor (IGF)-I production through activation of the GH receptor (GHR)-signal transducer and activator of transcription (STAT)-5B signaling cascade. The critical importance of STAT5B in human IGF-I production was confirmed with the identification of the first homozygous, autosomal recessive, STAT5B mutation in a young female patient who phenotypically resembled patients with classical growth hormone insensitivity (GHI) syndrome (Laron syndrome) due to mutations in the GHR gene, presenting with severe postnatal growth failure and marked IGF-I deficiency. Of note, the closely related STAT5A, which shares >95% amino acid identity with STAT5B, could not compensate for loss of functional STAT5B. To date, 7 homozygous, inactivating, STAT5B mutations in 10 patients have been reported. STAT5B deficient patients, unlike patients deficient in GHR, can also present with a novel, potentially fatal, primary immunodeficiency, which can manifest as chronic pulmonary disease. STAT5B deficiency may be underestimated in endocrine, immunology and pulmonary clinics.
Collapse
Affiliation(s)
- Vivian Hwa
- Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States.
| |
Collapse
|
16
|
Schilbach K, Bidlingmaier M. Growth hormone binding protein - physiological and analytical aspects. Best Pract Res Clin Endocrinol Metab 2015; 29:671-83. [PMID: 26522453 DOI: 10.1016/j.beem.2015.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A significant proportion of total circulating growth hormone (GH) is bound to a high affinity growth hormone binding protein (GHBP). Several low affinity binding proteins have also been described. Significant differences between species exist with respect to origin and regulation of GHBP, but generally it resembles the extracellular domain of the GH receptor. Concentrations are associated with GH status, body composition and other factors. Although the clinical relevance of GHBP is not fully understood it is suggested that concentrations indirectly reflect GH receptor status. This is supported by cases of Laron's syndrome where a molecular defect in the extracellular domain of the GH receptor is associated with low or unmeasurable GHBP concentrations. Methods to measure GHBP have evolved from chromatographic, activity based procedures to direct immunoassays. In clinical practice, measurement of GHBP can be helpful to differentiate between GH deficiency and GH insensitivity, particularly if GHBP is absent.
Collapse
Affiliation(s)
- Katharina Schilbach
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.
| |
Collapse
|
17
|
Scalco RC, Hwa V, Domené HM, Jasper HG, Belgorosky A, Marino R, Pereira AM, Tonelli CA, Wit JM, Rosenfeld RG, Jorge AAL. STAT5B mutations in heterozygous state have negative impact on height: another clue in human stature heritability. Eur J Endocrinol 2015; 173:291-6. [PMID: 26034074 PMCID: PMC4898761 DOI: 10.1530/eje-15-0398] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 01/16/2023]
Abstract
CONTEXT AND OBJECTIVE GH insensitivity with immune dysfunction caused by STAT5B mutations is an autosomal recessive condition. Heterozygous mutations in other genes involved in growth regulation were previously associated with a mild height reduction. Our objective was to assess for the first time the phenotype of heterozygous STAT5B mutations. METHODS We genotyped and performed clinical and laboratory evaluations in 52 relatives of two previously described Brazilian brothers with homozygous STAT5B c.424_427del mutation (21 heterozygous). Additionally, we obtained height data and genotype from 1104 adult control individuals from the same region in Brazil and identified five additional families harboring the same mutation (18 individuals, 11 heterozygous). Furthermore, we gathered the available height data from first-degree relatives of patients with homozygous STAT5B mutations (17 individuals from seven families). Data from heterozygous individuals and non-carriers were compared. RESULTS Individuals carrying heterozygous STAT5B c.424_427del mutation were 0.6 SDS shorter than their non-carrier relatives (P = 0.009). Heterozygous subjects also had significantly lower SDS for serum concentrations of IGF1 (P = 0.028) and IGFBP3 (P = 0.02) than their non-carrier relatives. The 17 heterozygous first-degree relatives of patients carrying homozygous STAT5B mutations had an average height SDS of -1.4 ± 0.8 when compared with population-matched controls (P < 0.001). CONCLUSIONS STAT5B mutations in the heterozygous state have a significant negative impact on height (∼ 3.9 cm). This effect is milder than the effect seen in the homozygous state, with height usually within the normal range. Our results support the hypothesis that heterozygosity of rare pathogenic variants contributes to normal height heritability.
Collapse
Affiliation(s)
- Renata C Scalco
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Vivian Hwa
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Horacio M Domené
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Héctor G Jasper
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Alicia Belgorosky
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Roxana Marino
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Alberto M Pereira
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Carlos A Tonelli
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Jan M Wit
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Ron G Rosenfeld
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| | - Alexander A L Jorge
- Unidade de Endocrinologia GeneticaLaboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Avenida Dr Arnaldo, 455 5° Andar Sala 5340, 01246-903 Sao Paulo, Sao Paulo, BrazilDivision of EndocrinologyCincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USACentro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE)CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, ArgentinaEndocrine ServiceHospital de Pediatria Garrahan, Ciudad Autonoma de Buenos Aires Pozos 1881, 1245 Buenos Aires, ArgentinaDivision of EndocrinologyDepartment of Medicine, Leiden University Medical Center, 2300 RC Leiden, The NetherlandsUniversidade do Extremo Sul Catarinense88806-000 Criciúma, Santa Catarina, BrazilDepartment of PediatricsLeiden University Medical Center, 2300 RC Leiden, The NetherlandsDepartment of PediatricsOregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
18
|
Long-term follow-up of STAT5B deficiency in three argentinian patients: clinical and immunological features. J Clin Immunol 2015; 35:264-72. [PMID: 25753012 DOI: 10.1007/s10875-015-0145-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/17/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED The signal transducer and activator of transcription (STAT) family of proteins regulate gene transcription in response to a variety of cytokines. STAT5B, in particular, plays an important role in T cells, where it is a key mediator of interleukin-2 (IL-2) induced responses. STAT5B deficiency causes a rare autosomal recessive disorder reported in only a handful of individuals. There are currently ten published cases of STAT5B deficiency, four of which are Argentinians. AIM This is a report of more than 10 years follow up of the clinical and immunological features of three Argentinian STAT5B deficient patients. CONCLUSION More than a decade of follow-up demonstrates that STAT5B deficiency is associated with various clinical pathologies that cause significant morbidity. Early diagnosis is critical for the prevention and improvement of clinical outcomes for STAT5B deficient patients.
Collapse
|
19
|
Kopchick JJ, List EO, Kelder B, Gosney ES, Berryman DE. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 2014; 386:34-45. [PMID: 24035867 PMCID: PMC3943600 DOI: 10.1016/j.mce.2013.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Bruce Kelder
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - Elahu S Gosney
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; School of Applied Health Sciences and Wellness, Ohio University, Athens, OH 45701, United States
| |
Collapse
|
20
|
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases. Curr Opin Pediatr 2013; 25:708-14. [PMID: 24240290 PMCID: PMC4047515 DOI: 10.1097/mop.0000000000000029] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW To summarize recent progress in our understanding of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders. RECENT FINDINGS A number of Mendelian disorders of immune dysregulation and autoimmunity have been noted to result from defects in T regulatory cell, development and function. The best characterized of these is IPEX, resulting from mutations affecting FOXP3. A number of other gene defects that affect T regulatory cell function also give rise to IPEX-related phenotypes, including loss-of-function mutations in CD25, STAT5b and ITCH. Recent progress includes the identification of gain-of-function mutations in STAT1 as a cause of an IPEX-like disease, emerging FOXP3 genotype/phenotype relationships in IPEX, and the elucidation of a role for the microbiota in the immune dysregulation associated with regulatory T cell deficiency. SUMMARY An expanding spectrum of genetic defects that compromise T regulatory cell function underlies human disorders of immune dysregulation and autoimmunity. Collectively, these disorders offer novel insights into pathways of peripheral tolerance and their disruption in autoimmunity.
Collapse
|
21
|
Abstract
Large granular lymphocytic (LGL) leukemia is characterized by clonal expansion of cytotoxic T cells or natural killer cells. Recently, somatic mutations in the signal transducer and activator of transcription 3 (STAT3) gene were discovered in 28% to 40% of LGL leukemia patients. By exome and transcriptome sequencing of 2 STAT3 mutation-negative LGL leukemia patients, we identified a recurrent, somatic missense mutation (Y665F) in the Src-like homology 2 domain of the STAT5b gene. Targeted amplicon sequencing of 211 LGL leukemia patients revealed 2 additional patients with STAT5b mutations (N642H), resulting in a total frequency of 2% (4 of 211) of STAT5b mutations across all patients. The Y665F and N642H mutant constructs increased the transcriptional activity of STAT5 and tyrosine (Y694) phosphorylation, which was also observed in patient samples. The clinical course of the disease in patients with the N642H mutation was aggressive and fatal, clearly different from typical LGL leukemia with a relatively favorable outcome. This is the first time somatic STAT5 mutations are discovered in human cancer and further emphasizes the role of STAT family genes in the pathogenesis of LGL leukemia.
Collapse
|
22
|
Kanai T, Jenks J, Nadeau KC. The STAT5b Pathway Defect and Autoimmunity. Front Immunol 2012; 3:234. [PMID: 22912632 PMCID: PMC3418548 DOI: 10.3389/fimmu.2012.00234] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023] Open
Abstract
The signal transducer and activator of transcription (STAT) 5b is a universal transcription factor that plays key biological roles in allergic diseases, immunodeficiencies, autoimmunities, cancers, hematological diseases, growth disorders, and lung diseases. The identification of distinct pathological manifestations of STAT5b deficiency in humans has highlighted the critical role of the STAT5b pathway. Proper gene transcription at IL-2R α, FOXP3, Bcl-2, and growth hormone (GH) associated loci are thought to be associated with normal STAT5b transcriptional activity. These genes are thought to play important roles in allergy/autoimmunity, immunodeficiency, cancer/anemia, and growth, respectively. The STAT5A and STAT5B genes are collocated on 17q11. Although these two monomeric proteins exhibit peptide sequence similarities of >90%, it is known through observations of STAT5b deficient subjects that STAT5a and STAT5b are not fully redundant in humans. Patients with STAT5b deficiency have decreased numbers of regulatory CD4+CD25high T cell (Treg) despite their STAT5a levels being normal. Prior studies on STAT5b deficient subjects have revealed immunological aberrations associated with the following disease phenotype: modest lymphopenia and decreased populations of Treg, γ−δ T cells, and natural killer (NK) cells. Most subjects with STAT5b deficiency show severe eczema, and autoimmune disease (juvenile idiopathic arthritis, autoimmune thyroiditis, idiopathic thrombocytic purpura) which are thought to be associated with Treg dysfunction. We will review the likely pathophysiological mechanisms associated with STAT5b deficiency.
Collapse
Affiliation(s)
- Takahiro Kanai
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University Stanford, CA, USA
| | | | | |
Collapse
|
23
|
Backeljauw PF, Chernausek SD. The insulin-like growth factors and growth disorders of childhood. Endocrinol Metab Clin North Am 2012; 41:265-82, v. [PMID: 22682630 DOI: 10.1016/j.ecl.2012.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific lesions of the growth hormone (GH)/insulin-like growth factor (IGF) axis have been identified in humans, each of which has distinctive auxologic and biochemical features. Measures of circulating IGF-I are useful in diagnosing growth disorders in childhood and in evaluating response to GH therapy. Recombinant human IGF-I is an effective treatment of severe primary IGF deficiency, which is typical of patients with GH receptor defects (Laron syndrome). Such treatment has been limited to a few severely affected patients. Future studies will provide new insight into IGF-I as treatment and into the nature of growth disorders that involve the IGF axis.
Collapse
Affiliation(s)
- Philippe F Backeljauw
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
24
|
Savage MO, Hwa V, David A, Rosenfeld RG, Metherell LA. Genetic Defects in the Growth Hormone-IGF-I Axis Causing Growth Hormone Insensitivity and Impaired Linear Growth. Front Endocrinol (Lausanne) 2011; 2:95. [PMID: 22654835 PMCID: PMC3356141 DOI: 10.3389/fendo.2011.00095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/21/2011] [Indexed: 11/13/2022] Open
Abstract
Human genetic defects in the growth hormone (GH)-IGF-I axis affecting the IGF system present with growth failure as their principal clinical feature. This is usually associated with GH insensitivity (GHI) presenting in childhood as severe or mild short stature. Dysmorphic features and metabolic abnormalities may also be present. The field of GHI due to mutations affecting GH action has evolved rapidly since the first description of the extreme phenotype related to homozygous GH receptor (GHR) mutations in 1966. A continuum of genetic, phenotypic, and biochemical abnormalities can be defined associated with clinically relevant defects in linear growth. The mechanisms of the GH-IGF-I axis in the regulation of normal human growth is discussed followed by descriptions of mutations in GHR, STAT5B, IGF-I, IGFALS, IGF1R, and GH1 defects causing bio-inactive GH or anti-GH antibodies. These GH-IGF-I axis defects are associated with a range of clinical, and hormonal characteristics. An up-dated approach to the clinical assessment of the patient with GHI focusing on investigation of the GH-IGF-I axis and relevant molecular studies contributing to the identification of causative genetic defects is also discussed.
Collapse
Affiliation(s)
- Martin O. Savage
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryLondon, UK
| | - Vivian Hwa
- Department of Pediatrics, Oregon Health and Science UniversityPortland, OR, USA
| | - Alessia David
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryLondon, UK
| | - Ron G. Rosenfeld
- Department of Pediatrics, Oregon Health and Science UniversityPortland, OR, USA
| | - Louise A. Metherell
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryLondon, UK
| |
Collapse
|
25
|
Nadeau K, Hwa V, Rosenfeld RG. STAT5b deficiency: an unsuspected cause of growth failure, immunodeficiency, and severe pulmonary disease. J Pediatr 2011; 158:701-8. [PMID: 21414633 DOI: 10.1016/j.jpeds.2010.12.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/02/2010] [Accepted: 12/23/2010] [Indexed: 01/03/2023]
Affiliation(s)
- Kari Nadeau
- Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
26
|
Hwa V, Nadeau K, Wit JM, Rosenfeld RG. STAT5b deficiency: lessons from STAT5b gene mutations. Best Pract Res Clin Endocrinol Metab 2011; 25:61-75. [PMID: 21396575 DOI: 10.1016/j.beem.2010.09.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth hormone (GH) regulates insulin-like growth factor (IGF)-I production primarily through activation of the GH receptor (GHR)-signal transducer and activator of transcription (STAT)-5b signaling cascade. One of four STAT proteins (STAT1, -3, -5a and -5b) activated by the GH-GHR system, the critical importance of STAT5b in IGF-I production became evident with the identification of homozygous, autosomal recessive STAT5b mutations in patients who presented with severe postnatal growth failure, growth hormone insensitivity syndrome (GHIS) and marked IGF-I deficiency. Unlike GHIS due to GHR mutations, patients carrying STAT5b mutations also presented with chronic pulmonary disease and evidence of perturbations of T-cell homeostasis. At present, no single treatment(s) is available to improve both poor statural growth and immune deficiency. Continued clinical evaluations of patients with STAT5b mutations and elucidating the impact of the mutation on STAT5b structure and function, are important to understanding the pathophysiology of this rare, complex, disease (MIM 245590).
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
27
|
Vigliano I, Fusco A, Palamaro L, Aloj G, Cirillo E, Salerno MC, Pignata C. γ Chain transducing element: A shared pathway between endocrine and immune system. Cell Immunol 2011; 269:10-5. [DOI: 10.1016/j.cellimm.2011.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
|
28
|
Abstract
Insulin-like growth factor-1 (IGF-1) plays a central role in cellular growth, differentiation, survival, and cell cycle progression. It is expressed early during development and its effects are mediated through binding to a tyrosine kinase receptor, the insulin-like growth factor-1 receptor (IGF-1R). In the circulation, the IGFs bind to IGF-binding proteins (IGFBPs), which determine their bioavailability and regulate the interaction between the IGFs and IGF-1R. Studies in animal models and in humans have established critical roles for IGFs in skeletal growth and development. In this review we present new and old findings from mouse models of the IGF system and discuss their clinical relevance to normal and pathological skeletal physiology.
Collapse
Affiliation(s)
- Shoshana Yakar
- Division of Endocrinology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | |
Collapse
|
29
|
Yang TL, Guo Y, Zhang LS, Tian Q, Yan H, Papasian CJ, Recker RR, Deng HW. Runs of homozygosity identify a recessive locus 12q21.31 for human adult height. J Clin Endocrinol Metab 2010; 95:3777-82. [PMID: 20466785 PMCID: PMC2913044 DOI: 10.1210/jc.2009-1715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Runs of homozygosity (ROHs) have recently been proposed to have potential recessive significance for complex traits. Human adult height is a classic complex trait with heritability estimated up to 90%, and recessive loci that contribute to adult height variation have been identified. METHODS Using the Affymetrix 500K array set, we performed a genome-wide ROHs analysis to identify genetic loci for adult height in a discovery sample including 998 unrelated Caucasian subjects from the midwest United States. For the significant ROHs identified, we replicated these findings in a family-based sample of 8385 Caucasian subjects from the Framingham Heart Study (FHS). RESULTS Our results revealed one ROH, located in 12q21.31, that had a strong association with adult height variation both in the discovery (P=6.69x10(-6)) and replication samples (P=5.40x10(-5)). We further validated the presence of this ROH using the HapMap sample. CONCLUSION Our findings open a new avenue for identifying loci with recessive contributions to adult height variation. Further molecular and functional studies are needed to explore and clarify the potential mechanism.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
David A, Rose S, Miraki-Moud F, Metherell L, Savage M, Clark A, Camacho-Hübner C. Acid-labile subunit deficiency and growth failure: description of two novel cases. Horm Res Paediatr 2010; 73:328-34. [PMID: 20389102 PMCID: PMC2868526 DOI: 10.1159/000308164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/07/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Mutations in the acid-labile subunit (ALS) gene (IGFALS) have been associated with circulating insulin-like growth factor I (IGF-I) deficiency and short stature. Whether severe pubertal delay is also part of the phenotype remains controversial due to the small number of cases reported. We report 2 children with a history of growth failure due to novel IGFALS mutations. METHODS The growth hormone receptor gene (GHR) and IGFALS were analyzed by direct sequencing. Ternary complex formation was studied by size exclusion chromatography. RESULTS Two boys of 13.3 and 10.6 years, with pubertal stages 2 and 1, had mild short stature (-3.2 and -2.8 SDS, respectively) and a biochemical profile suggestive of growth hormone resistance. No defects were identified in the GHR. Patient 1 was homozygous for the IGFALS missense mutation P73L. Patient 2 was a compound heterozygote for the missense mutation L134Q and a novel GGC to AG substitution at position 546-548 (546-548delGGCinsAG). The latter causes a frameshift and the appearance of a premature stop codon. Size exclusion chromatography showed no peaks corresponding to ternary and binary complexes in either patient. CONCLUSION Screening of the IGFALS is important in children with short stature associated with low serum IGF-I, IGFBP-3 and ALS.
Collapse
Affiliation(s)
- A David
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - S.J. Rose
- Department of Paediatrics, Heartlands Hospital, Birmingham, UK
| | - F. Miraki-Moud
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - L.A. Metherell
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - M.O. Savage
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - A.J.L. Clark
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - C. Camacho-Hübner
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|