1
|
Elshani M, Um IH, Leung S, Reynolds PA, Chapman A, Kudsy M, Harrison DJ. Transcription Factor NFE2L1 Decreases in Glomerulonephropathies after Podocyte Damage. Cells 2023; 12:2165. [PMID: 37681897 PMCID: PMC10487238 DOI: 10.3390/cells12172165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Podocyte cellular injury and detachment from glomerular capillaries constitute a critical factor contributing to kidney disease. Notably, transcription factors are instrumental in maintaining podocyte differentiation and homeostasis. This study explores the hitherto uninvestigated expression of Nuclear Factor Erythroid 2-related Factor 1 (NFE2L1) in podocytes. We evaluated the podocyte expression of NFE2L1, Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2), and NAD(P)H:quinone Oxidoreductase (NQO1) in 127 human glomerular disease biopsies using multiplexed immunofluorescence and image analysis. We found that both NFE2L1 and NQO1 expressions were significantly diminished across all observed renal diseases. Furthermore, we exposed human immortalized podocytes and ex vivo kidney slices to Puromycin Aminonucleoside (PAN) and characterized the NFE2L1 protein isoform expression. PAN treatment led to a reduction in the nuclear expression of NFE2L1 in ex vivo kidney slices and podocytes.
Collapse
Affiliation(s)
- Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
- NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Steve Leung
- Urology Department, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Alex Chapman
- Urology Department, Victoria Hospital, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | - Mary Kudsy
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
| |
Collapse
|
2
|
Christofides A, Papagregoriou G, Dweep H, Makrides N, Gretz N, Felekkis K, Deltas C. Evidence for miR-548c-5p regulation of FOXC2 transcription through a distal genomic target site in human podocytes. Cell Mol Life Sci 2020; 77:2441-2459. [PMID: 31531679 PMCID: PMC11105105 DOI: 10.1007/s00018-019-03294-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022]
Abstract
Podocytes are highly differentiated epithelial cells outlining the glomerular vessels. FOXC2 is a transcription factor essential for inducing podocyte differentiation, development and maturation, and is considered to be the earliest podocyte marker. miRNA prediction analysis revealed a full-length target site for the primate-specific miR-548c-5p at a genomic region > 8 kb upstream of FOXC2. We hypothesised that the transcription rates of FOXC2 during podocyte differentiation might be tuned by miR-548c-5p through this target site. Experiments were performed with cultured human podocytes, transfected with luciferase reporter constructs bearing this target site region within an enhancer element of the native plasmid. The results confirmed a seed region-driven targeting potential by the miRNA, with mimics downregulating and inhibitors enhancing luciferase activity. Introducing mutations into the miRNA target seed region abolished the expected response. In cultured podocytes, FOXC2 mRNA and protein levels responded to miR-548c-5p abundance in a coordinated manner before and after induction of differentiation, with high statistical significance. Ago-ChIP experiments revealed occupancy of the miRNA target site by miRNA/RISC in undifferentiated cells and its release when differentiation is initiated, allowing its interaction with the gene's promoter region to amplify FOXC2 expression, as shown by chromosome conformation capture and qRT-PCR. Moreover, the expression pattern of FOXC2 during podocyte differentiation seems to be affected by miR-548c-5p, as removal of either endogenous or mimic miR-548c-5p results in increased FOXC2 protein levels and cells resembling those undergoing differentiation. Collectively, results indicate a well-orchestrated regulatory model of FOXC2 expression by a remote upstream target site for miR-548c-5p.
Collapse
Affiliation(s)
- Andrea Christofides
- Molecular Medicine Research Center and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Gregory Papagregoriou
- Molecular Medicine Research Center and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St, Philadelphia, PA, 19104, USA
| | - Neoklis Makrides
- Developmental and Functional Genetics Group, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Norbert Gretz
- Medical Research Center, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kyriacos Felekkis
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
3
|
Lin CL, Hsu YC, Huang YT, Shih YH, Wang CJ, Chiang WC, Chang PJ. A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. EMBO Mol Med 2020; 11:emmm.201809828. [PMID: 30948420 PMCID: PMC6505577 DOI: 10.15252/emmm.201809828] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diabetic nephropathy is the leading cause of end‐stage renal disease. Although dysfunction of podocytes, also termed glomerular visceral epithelial cells, is critically associated with diabetic nephropathy, the mechanism underlying podocyte dysfunction still remains obscure. Here, we identify that KDM6A, a histone lysine demethylase, reinforces diabetic podocyte dysfunction by creating a positive feedback loop through up‐regulation of its downstream target KLF10. Overexpression of KLF10 in podocytes not only represses multiple podocyte‐specific markers including nephrin, but also conversely increases KDM6A expression. We further show that KLF10 inhibits nephrin expression by directly binding to the gene promoter together with the recruitment of methyltransferase Dnmt1. Importantly, inactivation or knockout of either KDM6A or KLF10 in mice significantly suppresses diabetes‐induced proteinuria and kidney injury. Consistent with the notion, we also show that levels of both KDM6A and KLF10 proteins or mRNAs are substantially elevated in kidney tissues or in urinary exosomes of human diabetic nephropathy patients as compared with control subjects. Our findings therefore suggest that targeting the KDM6A–KLF10 feedback loop may be beneficial to attenuate diabetes‐induced kidney injury.
Collapse
Affiliation(s)
- Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ting Huang
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Jen Wang
- Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pey-Jium Chang
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan .,Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Guo B, Lyu Q, Slivano OJ, Dirkx R, Christie CK, Czyzyk J, Hezel AF, Gharavi AG, Small EM, Miano JM. Serum Response Factor Is Essential for Maintenance of Podocyte Structure and Function. J Am Soc Nephrol 2017; 29:416-422. [PMID: 29114040 DOI: 10.1681/asn.2017050473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/11/2017] [Indexed: 01/15/2023] Open
Abstract
Podocytes contain an intricate actin cytoskeleton that is essential for the specialized function of this cell type in renal filtration. Serum response factor (SRF) is a master transcription factor for the actin cytoskeleton, but the in vivo expression and function of SRF in podocytes are unknown. We found that SRF protein colocalizes with podocyte markers in human and mouse kidneys. Compared with littermate controls, mice in which the Srf gene was conditionally inactivated with NPHS2-Cre exhibited early postnatal proteinuria, hypoalbuminemia, and azotemia. Histologic changes in the mutant mice included glomerular capillary dilation and mild glomerulosclerosis, with reduced expression of multiple canonical podocyte markers. We also noted tubular dilation, cell proliferation, and protein casts as well as reactive changes in mesangial cells and interstitial inflammation. Ultrastructure analysis disclosed foot process effacement with loss of slit diaphragms. To ascertain the importance of SRF cofactors in podocyte function, we disabled the myocardin-related transcription factor A and B genes. Although loss of either SRF cofactor alone had no observable effect in the kidney, deficiency of both recapitulated the Srf-null phenotype. These results establish a vital role for SRF and two SRF cofactors in the maintenance of podocyte structure and function.
Collapse
Affiliation(s)
- Bing Guo
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lyu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Orazio J Slivano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ronald Dirkx
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Christine K Christie
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Jan Czyzyk
- Department of Pathology and Laboratory Medicine and
| | - Aram F Hezel
- James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Ali G Gharavi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Eric M Small
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| |
Collapse
|
5
|
Takagi H, Nishibori Y, Katayama K, Katada T, Takahashi S, Kiuchi Z, Takahashi SI, Kamei H, Kawakami H, Akimoto Y, Kudo A, Asanuma K, Takematsu H, Yan K. USP40 gene knockdown disrupts glomerular permeability in zebrafish. Am J Physiol Renal Physiol 2017; 312:F702-F715. [DOI: 10.1152/ajprenal.00197.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/22/2022] Open
Abstract
Unbiased transcriptome profiling and functional genomics approaches have identified ubiquitin-specific protease 40 (USP40) as a highly specific glomerular transcript. This gene product remains uncharacterized, and its biological function is completely unknown. Here, we showed that mouse and rat glomeruli exhibit specific expression of the USP40 protein, which migrated at 150 kDa and was exclusively localized in the podocyte cytoplasm of the adult kidney. Double-labeling immunofluorescence staining and confocal microscopy analysis of fetal and neonate kidney samples revealed that USP40 was also expressed in the vasculature, including in glomerular endothelial cells at the premature stage. USP40 in cultured glomerular endothelial cells and podocytes was specifically localized to the intermediate filament protein nestin. In glomerular endothelial cells, immunoprecipitation confirmed actual protein-protein binding of USP40 with nestin, and USP40-small-interfering RNA transfection revealed significant reduction of nestin. In a rat model of minimal-change nephrotic syndrome, USP40 expression was apparently reduced, which was also associated with the reduction of nestin. Zebrafish morphants lacking Usp40 exhibited disorganized glomeruli with the reduction of the cell junction in the endothelium and foot process effacement in the podocytes. Permeability studies in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. These data indicate that USP40/Usp40 is a novel protein that might play a crucial role in glomerulogenesis and the glomerular integrity after birth through the modulation of intermediate filament protein homeostasis.
Collapse
Affiliation(s)
- Hisashi Takagi
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yukino Nishibori
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kan Katayama
- Division of Matrix Biology, Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Tomohisa Katada
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Shohei Takahashi
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Zentaro Kiuchi
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Laboratory of Cell Regulation, Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Katsuhiko Asanuma
- Medical Innovation Center, TMK Project, Kyoto University Graduate School of Medicine, Kyoto, Japan; and
| | - Hiromu Takematsu
- Laboratory of Biochemistry, Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
6
|
Burghardt T, Kastner J, Suleiman H, Rivera-Milla E, Stepanova N, Lottaz C, Kubitza M, Böger CA, Schmidt S, Gorski M, de Vries U, Schmidt H, Hertting I, Kopp J, Rascle A, Moser M, Heid IM, Warth R, Spang R, Wegener J, Mierke CT, Englert C, Witzgall R. LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. J Am Soc Nephrol 2013; 24:1830-48. [PMID: 23990680 DOI: 10.1681/asn.2012080788] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations of the LMX1B gene cause nail-patella syndrome, a rare autosomal-dominant disorder affecting the development of the limbs, eyes, brain, and kidneys. The characterization of conventional Lmx1b knockout mice has shown that LMX1B regulates the development of podocyte foot processes and slit diaphragms, but studies using podocyte-specific Lmx1b knockout mice have yielded conflicting results regarding the importance of LMX1B for maintaining podocyte structures. In order to address this question, we generated inducible podocyte-specific Lmx1b knockout mice. One week of Lmx1b inactivation in adult mice resulted in proteinuria with only minimal foot process effacement. Notably, expression levels of slit diaphragm and basement membrane proteins remained stable at this time point, and basement membrane charge properties also did not change, suggesting that alternative mechanisms mediate the development of proteinuria in these mice. Cell biological and biophysical experiments with primary podocytes isolated after 1 week of Lmx1b inactivation indicated dysregulation of actin cytoskeleton organization, and time-resolved DNA microarray analysis identified the genes encoding actin cytoskeleton-associated proteins, including Abra and Arl4c, as putative LMX1B targets. Chromatin immunoprecipitation experiments in conditionally immortalized human podocytes and gel shift assays showed that LMX1B recognizes AT-rich binding sites (FLAT elements) in the promoter regions of ABRA and ARL4C, and knockdown experiments in zebrafish support a model in which LMX1B and ABRA act in a common pathway during pronephros development. Our report establishes the importance of LMX1B in fully differentiated podocytes and argues that LMX1B is essential for the maintenance of an appropriately structured actin cytoskeleton in podocytes.
Collapse
|
7
|
Zhou TB, Qin YH. The signaling pathways of LMX1B and its role in glomerulosclerosis. J Recept Signal Transduct Res 2012; 32:285-9. [PMID: 23046462 DOI: 10.3109/10799893.2012.727832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Yan K, Ito N, Nakajo A, Kurayama R, Fukuhara D, Nishibori Y, Kudo A, Akimoto Y, Takenaka H. The struggle for energy in podocytes leads to nephrotic syndrome. Cell Cycle 2012; 11:1504-11. [PMID: 22433955 DOI: 10.4161/cc.19825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Podocytes are terminally differentiated post-mitotic cells similar to neurons, and their damage leads to nephrotic syndrome, which is characterized by massive proteinuria associated with generalized edema. A recent functional genetic approach has identified the pathological relevance of several mutated proteins in glomerular podocytes to the mechanism of proteinuria in hereditary nephrotic syndrome. In contrast, the pathophysiology of acquired primary nephrotic syndrome, including minimal change disease, is still largely unknown. We recently demonstrated the possible linkage of an energy-consuming process in glomerular podocytes to the mechanism of proteinuria. Puromycin aminonucleoside nephrosis, a rat model of minimal change disease, revealed the activation of the unfolded protein response (UPR) in glomerular podocytes to be a cause of proteinuria. The pretreatment of puromycin aminonucleoside rat podocytes and cultured podocytes with the mammalian target of rapamycin (mTOR) inhibitor everolimus further revealed that mTOR complex 1 consumed energy, which was followed by UPR activation. In this paper, we will review nutritional transporters to summarize the energy uptake process in podocytes and review the involvement of the UPR in the pathogenesis of glomerular diseases. We will also present additional data that reveal how mTOR complex 1 acts upstream of the UPR. Finally, we will discuss the potential significance of targeting the energy metabolism of podocytes to develop new therapeutic interventions for acquired nephrotic syndrome.
Collapse
Affiliation(s)
- Kunimasa Yan
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wessely O, Tran U. Xenopus pronephros development--past, present, and future. Pediatr Nephrol 2011; 26:1545-51. [PMID: 21499947 PMCID: PMC3425949 DOI: 10.1007/s00467-011-1881-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/08/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
Abstract
Kidney development is a multi-step process where undifferentiated mesenchyme is converted into a highly complex organ through several inductive events. The general principles regulating these events have been under intense investigation and despite extensive progress, many open questions remain. While the metanephric kidneys of mouse and rat have served as the primary model, other organisms also significantly contribute to the field. In particular, the more primitive pronephric kidney has emerged as an alternative model due to its simplicity and experimental accessibility. Many aspects of nephron development such as the patterning along its proximo-distal axis are evolutionarily conserved and are therefore directly applicable to higher vertebrates. This review will focus on the current understanding of pronephros development in Xenopus. It summarizes how signaling, transcriptional regulation, as well as post-transcriptional mechanisms contribute to the differentiation of renal epithelial cells. The data show that even in the simple pronephros the mechanisms regulating kidney organogenesis are highly complex. It also illustrates that a multifaceted analysis embracing modern genome-wide approaches combined with single gene analysis will be required to fully understand all the intricacies.
Collapse
Affiliation(s)
- Oliver Wessely
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, LA, USA.
| | - Uyen Tran
- LSU Health Sciences Center, Department of Cell Biology & Anatomy, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Lindenmeyer MT, Eichinger F, Sen K, Anders HJ, Edenhofer I, Mattinzoli D, Kretzler M, Rastaldi MP, Cohen CD. Systematic analysis of a novel human renal glomerulus-enriched gene expression dataset. PLoS One 2010; 5:e11545. [PMID: 20634963 PMCID: PMC2902524 DOI: 10.1371/journal.pone.0011545] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/16/2010] [Indexed: 02/04/2023] Open
Abstract
Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED) by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with 'a priori' known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1). The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1) and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found.In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specific gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease.
Collapse
Affiliation(s)
- Maja T. Lindenmeyer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Felix Eichinger
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kontheari Sen
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Ilka Edenhofer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Matthias Kretzler
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Maria P. Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Clemens D. Cohen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Institute of Physiology with Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
White JT, Zhang B, Cerqueira DM, Tran U, Wessely O. Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 2010; 137:1863-73. [PMID: 20431116 PMCID: PMC2867321 DOI: 10.1242/dev.042887] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2010] [Indexed: 11/20/2022]
Abstract
Podocytes are highly specialized cells in the vertebrate kidney. They participate in the formation of the size-exclusion barrier of the glomerulus/glomus and recruit mesangial and endothelial cells to form a mature glomerulus. At least six transcription factors (wt1, foxc2, hey1, tcf21, lmx1b and mafb) are known to be involved in podocyte specification, but how they interact to drive the differentiation program is unknown. The Xenopus pronephros was used as a paradigm to address this question. All six podocyte transcription factors were systematically eliminated by antisense morpholino oligomers. Changes in the expression of the podocyte transcription factors and of four selected markers of terminal differentiation (nphs1, kirrel, ptpru and nphs2) were analyzed by in situ hybridization. The data were assembled into a transcriptional regulatory network for podocyte development. Although eliminating the six transcription factors individually interfered with aspects of podocyte development, no single gene regulated the entire differentiation program. Only the combined knockdown of wt1 and foxc2 resulted in a loss of all podocyte marker gene expression. Gain-of-function studies showed that wt1 and foxc2 were sufficient to increase podocyte gene expression within the glomus proper. However, the combination of wt1, foxc2 and Notch signaling was required for ectopic expression in ventral marginal zone explants. Together, this approach demonstrates how complex interactions are required for the correct spatiotemporal execution of the podocyte gene expression program.
Collapse
Affiliation(s)
- Jeffrey T. White
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Bo Zhang
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Débora M. Cerqueira
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Uyen Tran
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Oliver Wessely
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
- Department of Genetics, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Sekine Y, Nishibori Y, Akimoto Y, Kudo A, Ito N, Fukuhara D, Kurayama R, Higashihara E, Babu E, Kanai Y, Asanuma K, Nagata M, Majumdar A, Tryggvason K, Yan K. Amino acid transporter LAT3 is required for podocyte development and function. J Am Soc Nephrol 2009; 20:1586-96. [PMID: 19443642 DOI: 10.1681/asn.2008070809] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
LAT3 is a Na+-independent neutral l-amino acid transporter recently isolated from a human hepatocellular carcinoma cell line. Although liver, skeletal muscle, and pancreas are known to express LAT3, the tissue distribution and physiologic function of this transporter are not completely understood. Here, we observed that glomeruli express LAT3. Immunofluorescence, confocal microscopy, and immunoelectron microscopy revealed that LAT3 localizes to the apical plasma membrane of podocyte foot processes. In mice, starvation upregulated glomerular LAT3, phosphorylated AKT1, reconstituted the actin network, and elongated foot processes. In the fetal kidney, we observed intense LAT3 expression at the capillary loops stage of renal development. Finally, zebrafish morphants lacking lat3 function showed collapsed glomeruli with thickened glomerular basement membranes. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of selective glomerular permeability. Our data suggest that LAT3 may play a crucial role in the development and maintenance of podocyte structure and function by regulating protein synthesis and the actin cytoskeleton.
Collapse
Affiliation(s)
- Yuji Sekine
- Kyorin University School of Medicine, Department of Pediatrics, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Barisoni L, Schnaper HW, Kopp JB. Advances in the biology and genetics of the podocytopathies: implications for diagnosis and therapy. Arch Pathol Lab Med 2009; 133:201-16. [PMID: 19195964 DOI: 10.5858/133.2.201] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2008] [Indexed: 11/06/2022]
Abstract
CONTEXT Etiologic factors and pathways leading to altered podocyte phenotype are clearly numerous and involve the activity of different cellular function. OBJECTIVE To focus on recent discoveries in podocyte biology and genetics and their relevance to these human glomerular diseases, named podocytopathies. DATA SOURCES Genetic mutations in genes encoding for proteins in the nucleus, slit diaphragm, podocyte cytoplasm, and cell membrane are responsible for podocyte phenotype and functional abnormalities. Podocyte injury may also derive from secondary stimuli, such as mechanical stress, infections, or use of certain medications. Podocytes can respond to injury in a limited number of ways, which include (1) effacement, (2) apoptosis, (3) arrest of development, and (4) dedifferentiation. Each of these pathways results in a specific glomerular morphology: minimal change nephropathy, focal segmental glomerulosclerosis, diffuse mesangial sclerosis, and collapsing glomerulopathy. CONCLUSIONS Based on current knowledge of podocyte biology, we organized etiologic factors and morphologic features in a taxonomy of podocytopathies, which provides a novel approach to the classification of these diseases. Current and experimental therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Laura Barisoni
- Department of Pathology and Medicine, Division of Nephrology, New York University School of Medicine, New York, NY 10017, USA.
| | | | | |
Collapse
|
14
|
Barisoni L, Schnaper HW, Kopp JB. Advances in the biology and genetics of the podocytopathies: implications for diagnosis and therapy. Arch Pathol Lab Med 2009. [PMID: 19195964 DOI: 10.1043/1543-2165-133.2.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Etiologic factors and pathways leading to altered podocyte phenotype are clearly numerous and involve the activity of different cellular function. OBJECTIVE To focus on recent discoveries in podocyte biology and genetics and their relevance to these human glomerular diseases, named podocytopathies. DATA SOURCES Genetic mutations in genes encoding for proteins in the nucleus, slit diaphragm, podocyte cytoplasm, and cell membrane are responsible for podocyte phenotype and functional abnormalities. Podocyte injury may also derive from secondary stimuli, such as mechanical stress, infections, or use of certain medications. Podocytes can respond to injury in a limited number of ways, which include (1) effacement, (2) apoptosis, (3) arrest of development, and (4) dedifferentiation. Each of these pathways results in a specific glomerular morphology: minimal change nephropathy, focal segmental glomerulosclerosis, diffuse mesangial sclerosis, and collapsing glomerulopathy. CONCLUSIONS Based on current knowledge of podocyte biology, we organized etiologic factors and morphologic features in a taxonomy of podocytopathies, which provides a novel approach to the classification of these diseases. Current and experimental therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Laura Barisoni
- Department of Pathology and Medicine, Division of Nephrology, New York University School of Medicine, New York, NY 10017, USA.
| | | | | |
Collapse
|
15
|
Rascle A, Neumann T, Raschta AS, Neumann A, Heining E, Kastner J, Witzgall R. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes. Exp Cell Res 2008; 315:76-96. [PMID: 18996370 DOI: 10.1016/j.yexcr.2008.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 12/18/2022]
Abstract
LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-kappaB target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-kappaB activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-kappaB activity by TNF-alpha synergizes induction of NF-kappaB target genes by LMX1B. Chromatin immunoprecipitation demonstrated that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized kappaB site, and that LMX1B recruitment correlates with increased NF-kappaB DNA association. IL-6 promoter-reporter assays showed that the kappaB site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-kappaB target genes is affected in the kidney of Lmx1b(-/-) knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-kappaB target genes in cooperation with nuclear p50/p65 NF-kappaB.
Collapse
Affiliation(s)
- Anne Rascle
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Witzgall R. How are podocytes affected in nail-patella syndrome? Pediatr Nephrol 2008; 23:1017-20. [PMID: 18253764 PMCID: PMC2413093 DOI: 10.1007/s00467-007-0714-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 10/30/2007] [Accepted: 11/16/2007] [Indexed: 11/24/2022]
Abstract
Nail-patella syndrome is an autosomal-dominant hereditary disease named for dysplastic fingernails and toenails and hypoplastic or absent kneecaps evident in patients with the syndrome. Prognosis is determined by the nephropathy that develops in many such patients. Besides podocyte foot-process effacement, pathognomonic changes in the kidney comprise electron-lucent areas and fibrillar inclusions in the glomerular basement membrane. These characteristic symptoms are caused by mutations in the gene encoding the transcription factor LMX1B, a member of the LIM-homeodomain gene family. Comparable with the human syndrome, homozygous Lmx1b knockout mice lack patellae and suffer from severe podocyte damage. In contrast, however, podocin and the alpha3 and alpha4 chains of collagen IV are absent in the glomeruli of Lmx1b knockout mice. Further studies with podocyte-specific Lmx1b knockout mice have confirmed the importance of LMX1B in podocytes, as these mice apparently develop foot processes initially but lose them later on. We therefore conclude that LMX1B is essential for the development of metanephric precursor cells into podocytes and possibly also for maintaining the differentiation status of podocytes. LMX1B can serve as a model system to elucidate a genetic program in podocytes.
Collapse
Affiliation(s)
- Ralph Witzgall
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|