1
|
Hukkanen M, Hsu B, Cossin‐Sevrin N, Crombecque M, Delaunay A, Hollmen L, Kaukonen R, Konki M, Lund R, Marciau C, Stier A, Ruuskanen S. From maternal glucocorticoid and thyroid hormones to epigenetic regulation of offspring gene expression: An experimental study in a wild bird species. Evol Appl 2023; 16:1753-1769. [PMID: 38020869 PMCID: PMC10660793 DOI: 10.1111/eva.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Offspring phenotype at birth is determined by its genotype and the prenatal environment including exposure to maternal hormones. Variation in both maternal glucocorticoids and thyroid hormones can affect offspring phenotype, but the underlying molecular mechanisms, especially those contributing to long-lasting effects, remain unclear. Epigenetic changes (such as DNA methylation) have been postulated as mediators of long-lasting effects of early-life environment. In this study, we determined the effects of elevated prenatal glucocorticoid and thyroid hormones on handling stress response (breath rate) as well as DNA methylation and gene expression of glucocorticoid receptor (GR) and thyroid hormone receptor (THR) in great tits (Parus major). Eggs were injected before incubation onset with corticosterone (the main avian glucocorticoid) and/or thyroid hormones (thyroxine and triiodothyronine) to simulate variation in maternal hormone deposition. Breath rate during handling and gene expression of GR and THR were evaluated 14 days after hatching. Methylation status of GR and THR genes was analyzed from the longitudinal blood cells sampled 7 and 14 days after hatching, as well as the following autumn. Elevated prenatal corticosterone level significantly increased the breath rate during handling, indicating an enhanced metabolic stress response. Prenatal corticosterone manipulation had CpG-site-specific effects on DNA methylation at the GR putative promoter region, while it did not significantly affect GR gene expression. GR expression was negatively associated with earlier hatching date and chick size. THR methylation or expression did not exhibit any significant relationship with the hormonal treatments or the examined covariates, suggesting that TH signaling may be more robust due to its crucial role in development. This study provides some support to the hypothesis suggesting that maternal corticosterone may influence offspring metabolic stress response via epigenetic alterations, yet their possible adaptive role in optimizing offspring phenotype to the prevailing conditions, context-dependency, and the underlying molecular interplay needs further research.
Collapse
Affiliation(s)
- Mikaela Hukkanen
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Bin‐Yan Hsu
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | | | - Axelle Delaunay
- Institut des Sciences de l'Evolution de Montpellier (ISEM)Université de Montpellier, CNRS, IRD, EPHEMontpellierFrance
| | - Lotta Hollmen
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Riina Kaukonen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Mikko Konki
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Turku Doctoral Programme of Molecular MedicineUniversity of TurkuTurkuFinland
| | - Riikka Lund
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Coline Marciau
- Department of BiologyUniversity of TurkuTurkuFinland
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Antoine Stier
- Department of BiologyUniversity of TurkuTurkuFinland
- Institut Pluridisciplinaire Hubert Curien, UMR 7178University of Strasbourg, CNRSStrasbourgFrance
| | - Suvi Ruuskanen
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
2
|
Cong W, Han W, Liu J, Zhao R, Wu L. Embryonic thermal manipulation leads growth inhibition and reduced hepatic insulin-like growth factor1 expression due to promoter DNA hypermethylation in broilers. Poult Sci 2023; 102:102562. [PMID: 36878101 PMCID: PMC10006857 DOI: 10.1016/j.psj.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
When broilers cannot adapt to a high-temperature environment through self-regulation, it will cause heat stress, resulting in a large number of deaths and substantial economic losses. Studies have shown that thermal manipulation (TM) during the embryonic stage can improve broilers' ability to resist heat stress later. However, different TM strategies produce different results on broilers' growth. In this study, yellow-feathered broiler eggs were selected and randomly divided into 2 groups between E10 and E18, which the control group was incubated at 37.8°C with 56% humidity, and the TM group was subjected to 39°C with 65% humidity. After hatching, all broilers were reared normally until slaughtered at 12 d of age (D12). During D1 to D12, body weight, feed intake, and body temperature were recorded. The results showed that TM significantly decreased (P < 0.05) the final body weight, weight gain, and average daily feed intake of broilers. Meanwhile, the serum levels of Triiodothyronine (T3) and free T3 were significantly decreased in the TM group (P < 0.05). The expressions of hepatic growth regulation-associated genes, growth hormone receptor (GHR), insulin-like growth factor1, and 2 (IGF1 and IGF2) were significantly down-regulated in the TM group (P < 0.05). In addition, TM altered hepatic DNA methylation, resulting in a significant increase (P < 0.05) in the methylation of the IGF1 and GHR promoter regions. The above results indicated that TM during the embryonic stage decreased the serum thyroid hormone level and increased the methylation level of the IGF1 and GHR promoter regions to down-regulate the expression of growth-related genes, resulting in early growth inhibition of broilers.
Collapse
Affiliation(s)
- Wei Cong
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wanwan Han
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
3
|
Yang S, Wei Z, Wu J, Sun M, Ma Y, Liu G. Proteomic analysis of liver tissues in chicken embryo at Day 16 and Day 20 reveals antioxidant mechanisms. J Proteomics 2021; 243:104258. [PMID: 33962068 DOI: 10.1016/j.jprot.2021.104258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/10/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
To investigate the mechanisms of the defense system and antioxidant defense system during chicken embryo development, protein profiling of liver tissues in chicken embryo at Day 16 and Day 20 was conducted. TMT was used to analyze the liver tissues proteomes with significantly different activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in chicken embryo. PRM was operated to validate the target differentially abundant proteins (DAPs) using the same samples. The result showed a total of 34 DAPs were identified. Among these, 9 were upregulated and 25 were downregulated. The screened DAPs strictly related to regulation of oxidoreductase activity (DDO and GAS2L1), response to stress (ERAD2 and SAA), immune system process (GAL3 and PDCD4), and lipid regulation and metabolism (ETNPPL, APOV1, LIPM, and APOA4). These analyses indicated that the antioxidant enzyme activity of chicken embryo is regulated through different pathways. Correlation analysis revealed a linear relationship between mRNA and protein expression and 12 genes (ORM1, C8B, KPNA2, CA4, C1S, SULT1B, ETNPPL, ERCC6L, DDO, SERPINF1, VAT1L, and APOA4) were detected to be differently expressed both at mRNA and protein levels. In consequence, these findings are an important resource that can be used in future studies of antioxidant mechanisms in chicken embryo. BIOLOGICAL SIGNIFICANCE: The genetic mechanisms of antioxidant activity are still unclear in chicken embryo. In the article, the combined transcriptomic and proteomic analysis is used to further explore potential signaling pathways and differentially abundant proteins related to antioxidant activity. These findings will facilitate a better understanding of the mechanism and these DAPs can be further investigated as candidate markers to predict the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Zhangqi Wei
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Jianxin Wu
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Miaomiao Sun
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Yilong Ma
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Guoqing Liu
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
4
|
Abstract
Growth hormone (GH) plays a pivotal role in many physiological processes in humans, and in other mammalian and non-mammalian vertebrate species, through actions on somatic growth, tissue development and repair, and intermediary metabolism. This review will focus on mechanisms of GH actions on gene expression, primarily from the perspective of the genes that encode proteins stimulated by GH to regulate somatic growth, especially insulin-like growth factor 1 (IGF-I), but also others that are induced or repressed by GH. Topics to be discussed will include a brief overview of GH-mediated signal transduction pathways and how these cascades alter the functions of responsive transcription factors, with a specific focus on STAT5B, a key member of the signal transducers and activators of transcription family, characterization of essential GH-regulated genes, and elucidation of mechanisms of their regulation from biochemical, genetic, and genomic perspectives.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX, 79905, USA.
| |
Collapse
|
5
|
Thompson LA, Ikenaka Y, Darwish WS, Yohannes YB, van Vuren JJ, Wepener V, Smit NJ, Assefa AG, Tharwat A, Eldin WFS, Nakayama SMM, Mizukawa H, Ishizuka M. Investigation of mRNA expression changes associated with field exposure to DDTs in chickens from KwaZulu-Natal, South Africa. PLoS One 2018; 13:e0204400. [PMID: 30307967 PMCID: PMC6181288 DOI: 10.1371/journal.pone.0204400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 09/08/2018] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to identify potential mRNA expression changes in chicken livers associated with environmental exposure to dichloro-diphenyl-trichloroethane (DDT) and its metabolites (DDTs). In particular, we focused on genes relating to the immune system and metabolism. We analyzed liver samples from free-ranging chickens in KwaZulu-Natal, South Africa, for contamination by DDTs. This area predominantly uses DDT in its malaria control program, and homes are sprayed annually with the pesticide. Genes relating to the immune system and metabolism were selected as potential genetic biomarkers that could be linked to higher contamination with DDTs. RT-qPCR analysis on 39 samples showed strong correlations between DDTs contamination and mRNA expression for the following genes: AvBD1, AvBD2, AvBD6 and AvBD7 (down-regulated), and CYP17, ELOVL2 and SQLE (up-regulated). This study shows for the first time interesting and significant correlations between genetic material collected from environmentally-exposed chickens and mRNA expression of several genes involved in immunity and metabolism. These findings show the usefulness of analysis on field samples from a region with high levels of environmental contamination in detecting potential biomarkers of exposure. In particular, we observed clear effects from DDT contamination on mRNA expression of genes involved in immune suppression, endocrine-disrupting effects, and lipid dysregulation. These results are of interest in guiding future studies to further elucidate the pathways involved in and clinical importance of toxicity associated with DDT exposure from contaminated environments, to ascertain the health risk to livestock and any subsequent risks to food security for people.
Collapse
Affiliation(s)
- Lesa A. Thompson
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Wageh S. Darwish
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yared B. Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar, Ethiopia
| | - Johan J. van Vuren
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nico J. Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Atnafu G. Assefa
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar, Ethiopia
| | - Ahmed Tharwat
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Fathy Saad Eldin
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
6
|
Cogburn LA, Trakooljul N, Chen C, Huang H, Wu CH, Carré W, Wang X, White HB. Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus). BMC Genomics 2018; 19:695. [PMID: 30241500 PMCID: PMC6151027 DOI: 10.1186/s12864-018-5080-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Although hatching is perhaps the most abrupt and profound metabolic challenge that a chicken must undergo; there have been no attempts to functionally map the metabolic pathways induced in liver during the embryo-to-hatchling transition. Furthermore, we know very little about the metabolic and regulatory factors that regulate lipid metabolism in late embryos or newly-hatched chicks. In the present study, we examined hepatic transcriptomes of 12 embryos and 12 hatchling chicks during the peri-hatch period—or the metabolic switch from chorioallantoic to pulmonary respiration. Results Initial hierarchical clustering revealed two distinct, albeit opposing, patterns of hepatic gene expression. Cluster A genes are largely lipolytic and highly expressed in embryos. While, Cluster B genes are lipogenic/thermogenic and mainly controlled by the lipogenic transcription factor THRSPA. Using pairwise comparisons of embryo and hatchling ages, we found 1272 genes that were differentially expressed between embryos and hatchling chicks, including 24 transcription factors and 284 genes that regulate lipid metabolism. The three most differentially-expressed transcripts found in liver of embryos were MOGAT1, DIO3 and PDK4, whereas THRSPA, FASN and DIO2 were highest in hatchlings. An unusual finding was the “ectopic” and extremely high differentially expression of seven feather keratin transcripts in liver of 16 day embryos, which coincides with engorgement of liver with yolk lipids. Gene interaction networks show several transcription factors, transcriptional co-activators/co-inhibitors and their downstream genes that exert a ‘ying-yang’ action on lipid metabolism during the embryo-to-hatching transition. These upstream regulators include ligand-activated transcription factors, sirtuins and Kruppel-like factors. Conclusions Our genome-wide transcriptional analysis has greatly expanded the hepatic repertoire of regulatory and metabolic genes involved in the embryo-to-hatchling transition. New knowledge was gained on interactive transcriptional networks and metabolic pathways that enable the abrupt switch from ectothermy (embryo) to endothermy (hatchling) in the chicken. Several transcription factors and their coactivators/co-inhibitors appear to exert opposing actions on lipid metabolism, leading to the predominance of lipolysis in embryos and lipogenesis in hatchlings. Our analysis of hepatic transcriptomes has enabled discovery of opposing, interconnected and interdependent transcriptional regulators that provide precise ying-yang or homeorhetic regulation of lipid metabolism during the critical embryo-to-hatchling transition. Electronic supplementary material The online version of this article (10.1186/s12864-018-5080-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Larry A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| | - Nares Trakooljul
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Present Address: Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Wilfrid Carré
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033, Rennes, France
| | - Xiaofei Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Harold B White
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
7
|
Rotwein P. Insulinlike Growth Factor 1 Gene Variation in Vertebrates. Endocrinology 2018; 159:2288-2305. [PMID: 29697760 PMCID: PMC6692883 DOI: 10.1210/en.2018-00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
IGF1-a small, single-chain, secreted peptide in mammals-is essential for normal somatic growth and is involved in a variety of other physiological and pathophysiological processes. IGF1 expression appears to be controlled by several different signaling mechanisms in mammals, with GH playing a key role by activating an inducible transcriptional pathway via the Jak2 protein kinase and the Stat5b transcription factor. Here, to understand aspects of Igf1 gene regulation over a substantially longer timeline than is discernible in mammals, Igf1 genes have been examined in 21 different nonmammalian vertebrates representing five different classes and ranging over ∼500 million years of evolutionary history. Parts of vertebrate Igf1 genes resemble components found in mammals. Conserved exons encoding the mature IGF1 protein are detected in all 21 species studied and are separated by a large intron, as seen in mammals; the single promoter contains putative regulatory elements that are similar to those functionally mapped in human IGF1 promoter 1. In contrast, GH-activated Stat5b-binding enhancers found in mammalian IGF1 loci are completely absent, there is no homolog of promoter 2 or exon 2 in any nonmammalian vertebrate, and different types of "extra" exons not present in mammals are found in birds, reptiles, and teleosts. These data collectively define properties of Igf1 genes and IGF1 proteins that were likely present in the earliest vertebrates and support the contention that common structural and regulatory features in Igf1 genes have a long evolutionary history.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
- Correspondence: Peter Rotwein, MD, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905. E-mail:
| |
Collapse
|
8
|
Resnyk CW, Carré W, Wang X, Porter TE, Simon J, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Cogburn LA. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC Genomics 2017; 18:626. [PMID: 28814270 PMCID: PMC5559791 DOI: 10.1186/s12864-017-4035-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Decades of intensive genetic selection in the domestic chicken (Gallus gallus domesticus) have enabled the remarkable rapid growth of today’s broiler (meat-type) chickens. However, this enhanced growth rate was accompanied by several unfavorable traits (i.e., increased visceral fatness, leg weakness, and disorders of metabolism and reproduction). The present descriptive analysis of the abdominal fat transcriptome aimed to identify functional genes and biological pathways that likely contribute to an extreme difference in visceral fatness of divergently selected broiler chickens. Methods We used the Del-Mar 14 K Chicken Integrated Systems microarray to take time-course snapshots of global gene transcription in abdominal fat of juvenile [1-11 weeks of age (wk)] chickens divergently selected on bodyweight at two ages (8 and 36 wk). Further, a RNA sequencing analysis was completed on the same abdominal fat samples taken from high-growth (HG) and low-growth (LG) cockerels at 7 wk, the age with the greatest divergence in body weight (3.2-fold) and visceral fatness (19.6-fold). Results Time-course microarray analysis revealed 312 differentially expressed genes (FDR ≤ 0.05) as the main effect of genotype (HG versus LG), 718 genes in the interaction of age and genotype, and 2918 genes as the main effect of age. The RNA sequencing analysis identified 2410 differentially expressed genes in abdominal fat of HG versus LG chickens at 7 wk. The HG chickens are fatter and over-express numerous genes that support higher rates of visceral adipogenesis and lipogenesis. In abdominal fat of LG chickens, we found higher expression of many genes involved in hemostasis, energy catabolism and endocrine signaling, which likely contribute to their leaner phenotype and slower growth. Many transcription factors and their direct target genes identified in HG and LG chickens could be involved in their divergence in adiposity and growth rate. Conclusions The present analyses of the visceral fat transcriptome in chickens divergently selected for a large difference in growth rate and abdominal fatness clearly demonstrate that abdominal fat is a very dynamic metabolic and endocrine organ in the chicken. The HG chickens overexpress many transcription factors and their direct target genes, which should enhance in situ lipogenesis and ultimately adiposity. Our observation of enhanced expression of hemostasis and endocrine-signaling genes in diminished abdominal fat of LG cockerels provides insight into genetic mechanisms involved in divergence of abdominal fatness and somatic growth in avian and perhaps mammalian species, including humans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4035-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C W Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - W Carré
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033, Rennes, France
| | - X Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - J Simon
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - E Le Bihan-Duval
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - M J Duclos
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - S E Aggrey
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
9
|
Zhou ZR, Huang P, Song GH, Zhang Z, An K, Lu HW, Ju XL, Ding W. Comparative proteomic analysis of rats subjected to water immersion and restraint stress as an insight into gastric ulcers. Mol Med Rep 2017; 16:5425-5433. [PMID: 28849061 PMCID: PMC5647087 DOI: 10.3892/mmr.2017.7241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
In the present study, comparative proteomic analysis was performed in rats subjected to water immersion-restraint stress (WRS). A total of 26 proteins were differentially expressed and identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Among the 26 differentially expressed protein spots identified, 13 proteins were significantly upregulated under WRS, including pyruvate kinase and calreticulin, which may be closely associated with energy metabolism. In addition, 12 proteins were downregulated under WRS, including hemoglobin subunit β-2 and keratin type II cytoskeletal 8, which may be important in protein metabolism and cell death. Gene Ontology analysis revealed the cellular distribution, molecular function and biological processes of the identified proteins. The mRNA levels of certain differentially expressed proteins were analyzed using fluorescence quantitative polymerase chain reaction analysis. The results of the present study aimed to offer insights into proteins, which are differentially expressed in gastric ulcers in stress, and provide theoretical evidence of a radical cure for gastric ulcers in humans.
Collapse
Affiliation(s)
- Zheng-Rong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Guang-Hao Song
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhuang Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ke An
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Han-Wen Lu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiao-Li Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Ding
- Department of Animal Husbandry and Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, Jiangsu 212499, P.R. China
| |
Collapse
|
10
|
Hsu BY, Dijkstra C, Darras VM, de Vries B, Groothuis TGG. Maternal thyroid hormones enhance hatching success but decrease nestling body mass in the rock pigeon (Columba livia). Gen Comp Endocrinol 2017; 240:174-181. [PMID: 27793722 DOI: 10.1016/j.ygcen.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 11/22/2022]
Abstract
Thyroid hormones (THs) - triiodothyronine (T3) and thyroxine (T4) - are essential for embryonic development in vertebrates. All vertebrate embryos are exposed to THs from maternal origin. As maternal TH levels are known to be essential to embryonic development, the natural variation of maternal THs probably represents a pathway of maternal effects that can modify offspring phenotype. However, potential fitness consequences of variation of maternal TH exposure within the normal physiological range and without confounding effects of the mother have never been experimentally investigated. We experimentally manipulated the levels of yolk T3 and T4 within the physiological range in a species in which the embryo develops outside the mother's body, the Rock Pigeon (Columba livia) eggs. Making use of the natural difference of yolk testosterone between the two eggs of pigeon clutches, we were also able to investigate the potential interaction between THs and testosterone. Elevated yolk TH levels enhanced embryonic development and hatching success, and reduced body mass but not tarsus length between day 14 and fledging. The yolk hormones increased plasma T4 concentrations in females but reduced it in males, in line with the effect on metabolic rate at hatching. Plasma concentrations of T3 and testosterone were not significantly affected. The effects of treatment did not differ between eggs with high or low testosterone levels. Our data indicate that natural variation in maternal yolk TH levels affects offspring phenotype and embryonic survival, potentially influencing maternal and chick fitness.
Collapse
Affiliation(s)
- Bin-Yan Hsu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Cor Dijkstra
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Section of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 61, B-3000 Leuven, Belgium
| | - Bonnie de Vries
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ton G G Groothuis
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Wang X, Yang L, Wang H, Shao F, Yu J, Jiang H, Han Y, Gong D, Gu Z. Growth hormone-regulated mRNAs and miRNAs in chicken hepatocytes. PLoS One 2014; 9:e112896. [PMID: 25386791 PMCID: PMC4227886 DOI: 10.1371/journal.pone.0112896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/16/2014] [Indexed: 12/02/2022] Open
Abstract
Growth hormone (GH) is a key regulatory factor in animal growth, development and metabolism. Based on the expression level of the GH receptor, the chicken liver is a major target organ of GH, but the biological effects of GH on the chicken liver are not fully understood. In this work we identified mRNAs and miRNAs that are regulated by GH in primary hepatocytes from female chickens through RNA-seq, and analyzed the functional relevance of these mRNAs and miRNAs through GO enrichment analysis and miRNA target prediction. A total of 164 mRNAs were found to be differentially expressed between GH-treated and control chicken hepatocytes, of which 112 were up-regulated and 52 were down-regulated by GH. A total of 225 chicken miRNAs were identified by the RNA-Seq analysis. Among these miRNAs 16 were up-regulated and 1 miRNA was down-regulated by GH. The GH-regulated mRNAs were mainly involved in growth and metabolism. Most of the GH-upregulated or GH-downregulated miRNAs were predicted to target the GH-downregulated or GH-upregulated mRNAs, respectively, involved in lipid metabolism. This study reveals that GH regulates the expression of many mRNAs involved in metabolism in female chicken hepatocytes, which suggests that GH plays an important role in regulating liver metabolism in female chickens. The results of this study also support the hypothesis that GH regulates lipid metabolism in chicken liver in part by regulating the expression of miRNAs that target the mRNAs involved in lipid metabolism.
Collapse
Affiliation(s)
- Xingguo Wang
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P R China
| | - Lei Yang
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - Huijuan Wang
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - Fang Shao
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - JianFeng Yu
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Yaoping Han
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P R China
| | - Zhiliang Gu
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
- * E-mail:
| |
Collapse
|
12
|
Resnyk CW, Carré W, Wang X, Porter TE, Simon J, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Cogburn LA. Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness. BMC Genomics 2013; 14:557. [PMID: 23947536 PMCID: PMC3765218 DOI: 10.1186/1471-2164-14-557] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Background This descriptive study of the abdominal fat transcriptome takes advantage of two experimental lines of meat-type chickens (Gallus domesticus), which were selected over seven generations for a large difference in abdominal (visceral) fatness. At the age of selection (9 wk), the fat line (FL) and lean line (LL) chickens exhibit a 2.5-fold difference in abdominal fat weight, while their feed intake and body weight are similar. These unique avian models were originally created to unravel genetic and endocrine regulation of adiposity and lipogenesis in meat-type chickens. The Del-Mar 14K Chicken Integrated Systems microarray was used for a time-course analysis of gene expression in abdominal fat of FL and LL chickens during juvenile development (1–11 weeks of age). Results Microarray analysis of abdominal fat in FL and LL chickens revealed 131 differentially expressed (DE) genes (FDR≤0.05) as the main effect of genotype, 254 DE genes as an interaction of age and genotype and 3,195 DE genes (FDR≤0.01) as the main effect of age. The most notable discoveries in the abdominal fat transcriptome were higher expression of many genes involved in blood coagulation in the LL and up-regulation of numerous adipogenic and lipogenic genes in FL chickens. Many of these DE genes belong to pathways controlling the synthesis, metabolism and transport of lipids or endocrine signaling pathways activated by adipokines, retinoid and thyroid hormones. Conclusions The present study provides a dynamic view of differential gene transcription in abdominal fat of chickens genetically selected for fatness (FL) or leanness (LL). Remarkably, the LL chickens over-express a large number of hemostatic genes that could be involved in proteolytic processing of adipokines and endocrine factors, which contribute to their higher lipolysis and export of stored lipids. Some of these changes are already present at 1 week of age before the divergence in fatness. In contrast, the FL chickens have enhanced expression of numerous lipogenic genes mainly after onset of divergence, presumably directed by multiple transcription factors. This transcriptional analysis shows that abdominal fat of the chicken serves a dual function as both an endocrine organ and an active metabolic tissue, which could play a more significant role in lipogenesis than previously thought.
Collapse
Affiliation(s)
- Christopher W Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
De Groef B, Grommen SV, Darras VM. Hatching the cleidoic egg: the role of thyroid hormones. Front Endocrinol (Lausanne) 2013; 4:63. [PMID: 23755041 PMCID: PMC3668268 DOI: 10.3389/fendo.2013.00063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/16/2013] [Indexed: 12/30/2022] Open
Abstract
A major life stage transition in birds and other oviparous sauropsids is the hatching of the cleidoic egg. Not unlike amphibian metamorphosis, hatching in these species can be regarded as a transition from a relatively well-protected "aqueous" environment to a more hazardous and terrestrial life outside the egg, a transition in which thyroid hormones (THs) (often in concert with glucocorticoids) play an important role. In precocial birds such as the chicken, the perihatch period is characterized by peak values of THs. THs are implicated in the control of muscle development, lung maturation and the switch from chorioallantoic to pulmonary respiration, yolk sac retraction, gut development and induction of hepatic genes to accommodate the change in dietary energy source, initiation of thermoregulation, and the final stages of brain maturation as well as early post-hatch imprinting behavior. There is evidence that, at least for some of these processes, THs may have similar roles in non-avian sauropsids. In altricial birds such as passerines on the other hand, THs do not rise significantly until well after hatching and peak values coincide with the development of endothermy. It is not known how hatching-associated processes are regulated by hormones in these animals or how this developmental mode evolved from TH-dependent precocial hatching.
Collapse
Affiliation(s)
- Bert De Groef
- Department of Agricultural Sciences, La Trobe University, Melbourne, VIC, Australia
- AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia
| | - Sylvia V.H. Grommen
- Department of Agricultural Sciences, La Trobe University, Melbourne, VIC, Australia
- AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia
| | - Veerle M. Darras
- Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Abstract
In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their structure and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Levy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
15
|
Wang X, Newkirk RF, Carre W, Ghose P, Igobudia B, Townsel JG, Cogburn LA. Regulation of ANKRD9 expression by lipid metabolic perturbations. BMB Rep 2009; 42:568-73. [PMID: 19788857 DOI: 10.5483/bmbrep.2009.42.9.568] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fatty acid oxidation (FAO) defects cause abnormal lipid accumulation in various tissues, which provides an opportunity to uncover novel genes that are involved in lipid metabolism. During a gene expression study in the riboflavin deficient induced FAO disorder in the chicken, we discovered the dramatic increase in mRNA levels of an uncharacterized gene, ANKRD9. No functions have been ascribed to ANKRD9 and its orthologs, although their sequences are well conserved among vertebrates. To provide insight into the function of ANKRD9, the expression of ANKRD9 mRNA in lipidperturbed paradigms was examined. The hepatic mRNA level of ANKRD9 was repressed by thyroid hormone (T(3)) and fasting, elevated by re-feeding upon fasting. However, ANKRD9 mRNA level is reduced in response to apoptosis. Transient transfection assay with green fluorescent protein tagged- ANKRD9 showed that this protein is localized within the cytoplasm. These findings point to the possibility that ANKRD9 is involved in intracellular lipid accumulation. [BMB reports 2009; 42(9): 568-573].
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37221, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
High-resolution mapping of gene expression using association in an outbred mouse stock. PLoS Genet 2008; 4:e1000149. [PMID: 18688273 PMCID: PMC2483929 DOI: 10.1371/journal.pgen.1000149] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 07/01/2008] [Indexed: 11/19/2022] Open
Abstract
Quantitative trait locus (QTL) analysis is a powerful tool for mapping genes for complex traits in mice, but its utility is limited by poor resolution. A promising mapping approach is association analysis in outbred stocks or different inbred strains. As a proof of concept for the association approach, we applied whole-genome association analysis to hepatic gene expression traits in an outbred mouse population, the MF1 stock, and replicated expression QTL (eQTL) identified in previous studies of F2 intercross mice. We found that the mapping resolution of these eQTL was significantly greater in the outbred population. Through an example, we also showed how this precise mapping can be used to resolve previously identified loci (in intercross studies), which affect many different transcript levels (known as eQTL “hotspots”), into distinct regions. Our results also highlight the importance of correcting for population structure in whole-genome association studies in the outbred stock. In rodents, as in humans, traits such as obesity or diabetes are under the influence of many genes spread throughout the genome. Using linkage analysis, the locations of the major contributing genes can be mapped only to very large regions of chromosomes, usually encompassing hundreds of genes. This has made it difficult to identify the underlying genes and mutations. Another approach, analogous to genome-wide association in human populations, is to use association analyses among outbred stocks of mice. In this proof-of-principle article, we make use of common variations that locally perturb gene expression to demonstrate the greatly improved mapping resolution of association in mice. Our results indicate that association analyses in mice are a powerful approach to the dissection of complex traits and their underlying molecular networks.
Collapse
|
17
|
Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC, Zhu JJ, Cheng HH, Dodgson JB, Burnside J. Functional genomics of the chicken--a model organism. Poult Sci 2007; 86:2059-94. [PMID: 17878436 DOI: 10.1093/ps/86.10.2059] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the sequencing of the genome and the development of high-throughput tools for the exploration of functional elements of the genome, the chicken has reached model organism status. Functional genomics focuses on understanding the function and regulation of genes and gene products on a global or genome-wide scale. Systems biology attempts to integrate functional information derived from multiple high-content data sets into a holistic view of all biological processes within a cell or organism. Generation of a large collection ( approximately 600K) of chicken expressed sequence tags, representing most tissues and developmental stages, has enabled the construction of high-density microarrays for transcriptional profiling. Comprehensive analysis of this large expressed sequence tag collection and a set of approximately 20K full-length cDNA sequences indicate that the transcriptome of the chicken represents approximately 20,000 genes. Furthermore, comparative analyses of these sequences have facilitated functional annotation of the genome and the creation of several bioinformatic resources for the chicken. Recently, about 20 papers have been published on transcriptional profiling with DNA microarrays in chicken tissues under various conditions. Proteomics is another powerful high-throughput tool currently used for examining the dynamics of protein expression in chicken tissues and fluids. Computational analyses of the chicken genome are providing new insight into the evolution of gene families in birds and other organisms. Abundant functional genomic resources now support large-scale analyses in the chicken and will facilitate identification of transcriptional mechanisms, gene networks, and metabolic or regulatory pathways that will ultimately determine the phenotype of the bird. New technologies such as marker-assisted selection, transgenics, and RNA interference offer the opportunity to modify the phenotype of the chicken to fit defined production goals. This review focuses on functional genomics in the chicken and provides a road map for large-scale exploration of the chicken genome.
Collapse
Affiliation(s)
- L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark 19717, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|