1
|
Reiter RJ, Sharma R, Rosales-Corral S, de Campos Zuccari DAP, de Almeida Chuffa LG. Melatonin: A mitochondrial resident with a diverse skill set. Life Sci 2022; 301:120612. [PMID: 35523285 DOI: 10.1016/j.lfs.2022.120612] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Melatonin is an ancient molecule that originated in bacteria. When these prokaryotes were phagocytized by early eukaryotes, they eventually developed into mitochondria and chloroplasts. These new organelles retained the melatonin synthetic capacity of their forerunners such that all present-day animal and plant cells may produce melatonin in their mitochondria and chloroplasts. Melatonin concentrations are higher in mitochondria than in other subcellular compartments. Isolated mouse oocyte mitochondria form melatonin when they are incubated with serotonin, a necessary precursor. Oocyte mitochondria subsequently give rise to these organelles in all adult vertebrate cells where they continue to synthesize melatonin. The enzymes that convert serotonin to melatonin, i.e., arylalkylamine-N-acetyltransferase (AANAT) and acetylserotonin-O-methyltransferase, have been identified in brain mitochondria which, when incubated with serotonin, also form melatonin. Melatonin is a potent antioxidant and anti-cancer agent and is optimally positioned in mitochondria to aid in the maintenance of oxidative homeostasis and to reduce cancer cell transformation. Melatonin stimulates the transfer of mitochondria from healthy cells to damaged cells via tunneling nanotubes. Melatonin also regulates the major NAD+-dependent deacetylase, sirtuin 3, in the mitochondria. Disruptions of mitochondrial melatonin synthesis may contribute to a number of mitochondria-related diseases, as discussed in this review.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP45150, Mexico
| | | | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP-São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| |
Collapse
|
2
|
Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules 2018; 23:molecules23081999. [PMID: 30103453 PMCID: PMC6222335 DOI: 10.3390/molecules23081999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation–proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary ‘ancient’ molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here.
Collapse
|
3
|
Mendoza-Vargas L, Báez-Saldaña A, Alvarado R, Fuentes-Pardo B, Flores-Soto E, Solís-Chagoyán H. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish. INVERTEBRATE NEUROSCIENCE 2017; 17:6. [PMID: 28540583 DOI: 10.1007/s10158-017-0199-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.
Collapse
Affiliation(s)
- Leonor Mendoza-Vargas
- Departamento El Hombre Y Su Ambiente, Universidad Autónoma Metropolitana Unidad Xochimilco, CP 04960, Mexico, Mexico
| | - Armida Báez-Saldaña
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Nueva Sede, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Ramón Alvarado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Beatriz Fuentes-Pardo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, CP 14370, Mexico, D.F, Mexico.
| |
Collapse
|
4
|
Mayo JC, Sainz RM, González Menéndez P, Cepas V, Tan DX, Reiter RJ. Melatonin and sirtuins: A "not-so unexpected" relationship. J Pineal Res 2017; 62. [PMID: 28109165 DOI: 10.1111/jpi.12391] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications, including methylation or acetylation as well as post-transcriptional modifications, are mechanisms used by eukaryotic cells to increase the genome diversity in terms of differential gene expression and protein diversity. Among these modifying enzymes, sirtuins, a class III histone deacetylase (HDAC) enzymes, are of particular importance. Sirtuins regulate the cell cycle, DNA repair, cell survival, and apoptosis, thus having important roles in normal and cancer cells. Sirtuins can also regulate metabolic pathways by changing preference for glycolysis under aerobic conditions as well as glutaminolysis. These actions make sirtuins a major target in numerous physiological processes as well as in other contexts such as calorie restriction-induced anti-aging, cancer, or neurodegenerative disease. Interestingly, melatonin, a nighttime-produced indole synthesized by pineal gland and many other organs, has important cytoprotective effects in many tissues including aging, neurodegenerative diseases, immunomodulation, and cancer. The pleiotropic actions of melatonin in different physiological and pathological conditions indicate that may be basic cellular targeted for the indole. Thus, much research has focused attention on the potential mechanisms of the indole in modulating expression and/or activity of sirtuins. Numerous findings report a rise in activity, especially on SIRT1, in a diversity of cells and animal models after melatonin treatment. This contrasts, however, with data reporting an inhibitory effect of melatonin on this sirtuin in some tumor cells. This review tabulates and discusses the recent findings relating melatonin with sirtuins, particularly SIRT1 and mitochondrial SIRT3, showing the apparent dichotomy with the differential actions documented in normal and in cancer cells.
Collapse
Affiliation(s)
- Juan C Mayo
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Pedro González Menéndez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Vanesa Cepas
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario Oncológico del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, USA
| |
Collapse
|
5
|
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. [PMID: 27500468 DOI: 10.1111/jpi.12360] [Citation(s) in RCA: 1087] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Juan C Mayo
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rosa M Sainz
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Moises Alatorre-Jimenez
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lilian Qin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
6
|
Tan DX, Hardeland R, Manchester LC, Rosales-Corral S, Coto-Montes A, Boga JA, Reiter RJ. Emergence of naturally occurring melatonin isomers and their proposed nomenclature. J Pineal Res 2012; 53:113-21. [PMID: 22332602 DOI: 10.1111/j.1600-079x.2012.00979.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin was considered to be the sole member of this natural family. The emergence of naturally occurring melatonin isomers (MIs) has opened an exciting new research area. Currently, several MIs have been identified in wine, and these molecules are believed to be synthesized by either yeasts or bacteria. A tentative nomenclature for the MIs is proposed in this article. It will be important to explore whether all organisms have the capacity to synthesize MIs, especially under the conditions of environmental stress. These isomers probably share many of the biological functions of melatonin, but their activities seem to exceed those of melatonin. On basis of the limited available information, it seems that MIs differ in their biosynthetic pathways from melatonin. Especially in those compounds in which the aliphatic side chain is not attached to ring atom 3, the starting material may not be tryptophan. Also, the metabolic pathways of MIs remain unknown. This, therefore, is another promising area of research to explore. It is our hypothesis that MIs would increase the performance of yeasts and probiotic bacteria during the processes of fermentation. Therefore, yeasts producing elevated levels of these isomers might have a superior alcohol tolerance and be able to produce higher levels of alcohol. This can be tested by comparing existing yeast strains differing in alcohol tolerance. Selection for MIs may become a strategy for isolating more resistant yeast and Lactobacillus strains, which can be of interest for industrial alcohol production and quality improvements in bacterially fermented foods such as kimchi.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:789-97. [DOI: 10.1007/s00359-011-0641-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
|
8
|
Arnoult F, Vernet G. Immunocytochemical localization of hydroxyindole-o-methyltransferase (HIOMT) in the brain of Myoisophagos lacteus (Nemertea: Heteronemertea: Lineidae). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:156-62. [PMID: 11471145 DOI: 10.1002/jez.1045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In an attempt to identify the brain structures that synthesize melatonin and that probably mediate the photoperiodic response of the heteronemertean Myoisophagos lacteus, we utilized immunocytochemical techniques and employed immunoglobulins directed against hydroxyindole-O-methyltransferase (HIOMT, EC 2.1.1.4). This enzyme catalyzes the last step of melatonin biosynthesis. In immunocytochemically treated head sections of Myoisophagos lacteus, antibodies labelled a few cells in the dorsal region of the dorsal cerebral ganglia. Previous studies have shown that melatonin is present both in the brain and eyes of this nemertean species and that melatonin is involved in control of the worm reproduction. Other studies have demonstrated the presence of photoreceptor-like cells in the same region of the worm brain that showed HIOMT immunostaining. Therefore, anatomical findings of the present study, coupled with results of previous works, provide strong evidence that this region of the worm brain houses a photoperiodic receptor involved in melatonin biosynthesis. J. Exp. Zool. 290:156-162, 2001.
Collapse
Affiliation(s)
- F Arnoult
- Laboratoire d'Eco-Toxicologie, Faculté des Sciences, Université de Reims Champagne-Ardenne, 51687 Reims cedex 2, France.
| | | |
Collapse
|
9
|
Mechawar N, Anctil M. Melatonin in a primitive metazoan: Seasonal changes of levels and immunohistochemical visualization in neurons. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971020)387:2<243::aid-cne6>3.0.co;2-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
|
11
|
Arnoult F, Vernet G. Inhibition of regeneration by melatonin in nemertean worms of the genus Lineus. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0300-9629(94)00181-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|