1
|
Zheng X, Wang M, He Q, Chen S, Simayi D, Ma X, Zhao J, Sun X, Yang P, Mao Q, Xia H. Production and characterization of novel monoclonal antibodies against pathological human TDP-43 proteins. J Neuropathol Exp Neurol 2024; 83:655-669. [PMID: 38728009 PMCID: PMC11258413 DOI: 10.1093/jnen/nlae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The RNA/DNA-binding protein TDP-43 plays a pivotal role in the ubiquitinated inclusions characteristic of TDP-43 proteinopathies, including most cases of frontotemporal lobar degeneration (FTLD-TDP) and Alzheimer disease (AD). To understand the mechanisms of pathological TDP-43 processing and identify potential biomarkers, we generated novel phosphorylation-independent monoclonal antibodies (MAbs) using bacteria-expressed human full-length recombinant TDP-43. Remarkably, we identified a distinctive MAb, No. 9, targeting an epitope in amino acid (aa) region 311-360 of the C-terminus. This antibody showed preferential reactivity for pathological TDP-43 inclusions, with only mild reactivity for normal nuclear TDP-43. MAb No. 9 revealed more pathology in FTLD-TDP type A and type B brains and in AD brains compared to the commercial p409/410 MAb. Using synthetic phosphorylated peptides, we also obtained MAbs targeting the p409/410 epitope. Interestingly, MAb No. 14 was found to reveal additional pathology in AD compared to the commercial p409/410 MAb, specifically, TDP-43-immunopositive deposits with amyloid plaques in AD brains. These unique immunopositivities observed with MAbs No. 9 and No. 14 are likely attributed to their conformation-dependent binding to TDP-43 inclusions. We expect that this novel set of MAbs will prove valuable as tools for future patient-oriented investigations into TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Mengtian Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Qiongyan He
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Shuyu Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Dilihumaer Simayi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Xia Ma
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Xiaohong Sun
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi, P.R. China
| |
Collapse
|
2
|
Garcia-Pardo J, Ventura S. Cryo-EM structures of functional and pathological amyloid ribonucleoprotein assemblies. Trends Biochem Sci 2024; 49:119-133. [PMID: 37926650 DOI: 10.1016/j.tibs.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Amyloids are implicated in neurodegenerative and systemic diseases, yet they serve important functional roles in numerous organisms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that control central events of RNA biogenesis in normal and diseased cellular conditions. Many of these proteins contain prion-like sequences of low complexity, which not only assemble into functional fibrils in response to cellular cues but can also lead to disease when missense mutations arise in their sequences. Recent advances in cryo-electron microscopy (cryo-EM) have provided unprecedented high-resolution structural insights into diverse amyloid assemblies formed by hnRNPs and structurally related RBPs, including TAR DNA-binding protein 43 (TDP-43), Fused in Sarcoma (FUS), Orb2, hnRNPA1, hnRNPA2, and hnRNPDL-2. This review provides a comprehensive overview of these structures and explores their functional and pathological implications.
Collapse
Affiliation(s)
- Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
3
|
Zhu L, Deng F, Bai D, Hou J, Jia Q, Zhang C, Ou K, Li S, Li XJ, Yin P. Loss of TDP-43 mediates severe neurotoxicity by suppressing PJA1 gene transcription in the monkey brain. Cell Mol Life Sci 2024; 81:16. [PMID: 38194085 PMCID: PMC11072099 DOI: 10.1007/s00018-023-05066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
The nuclear loss and cytoplasmic accumulation of TDP-43 (TAR DNA/RNA binding protein 43) are pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previously, we reported that the primate-specific cleavage of TDP-43 accounts for its cytoplasmic mislocalization in patients' brains. This prompted us to investigate further whether and how the loss of nuclear TDP-43 mediates neuropathology in primate brain. In this study, we report that TDP-43 knockdown at the similar effectiveness, induces more damage to neuronal cells in the monkey brain than rodent mouse. Importantly, the loss of TDP-43 suppresses the E3 ubiquitin ligase PJA1 expression in the monkey brain at transcriptional level, but yields an opposite upregulation of PJA1 in the mouse brain. This distinct effect is due to the species-dependent binding of nuclear TDP-43 to the unique promoter sequences of the PJA1 genes. Further analyses reveal that the reduction of PJA1 accelerates neurotoxicity, whereas overexpressing PJA1 diminishes neuronal cell death by the TDP-43 knockdown in vivo. Our findings not only uncover a novel primate-specific neurotoxic contribution to the loss of function theory of TDP-43 proteinopathy, but also underscore a potential therapeutic approach of PJA1 to the loss of nuclear TDP-43.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Junqi Hou
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kaili Ou
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Yang L, Jasiqi Y, Lashuel H. Recombinant Full-Length TDP-43 Oligomers Retain Their Ability to Bind RNAs, Are Not Toxic, and Do Not Seed TDP-43 Aggregation in Vitro. ACS Chem Neurosci 2024; 15:193-204. [PMID: 38116987 PMCID: PMC10767740 DOI: 10.1021/acschemneuro.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
TAR DNA-binding protein with 43 kD (TDP-43) is a partially disordered protein that misfolds and accumulates in the brains of patients affected by several neurodegenerative diseases. TDP-43 oligomers have been reported to form due to aberrant misfolding or self-assembly of TDP-43 monomers. However, very little is known about the molecular and structural basis of TDP-43 oligomerization and the toxic properties of TDP-43 oligomers due to several reasons, including the lack of conditions available for isolating native TDP-43 oligomers or producing pure TDP-43 oligomers in sufficient quantities for biophysical, cellular, and in vivo studies. To address these challenges, we developed new protocols to generate different stable forms of unmodified and small-molecule-induced TDP-43 oligomers. Our results showed that co-incubation of TDP-43 with small molecules, such as epigallocatechin gallate (EGCG), dopamine, and 4-hydroxynonenal (4-HNE), increased the production yield of TDP-43 stable oligomers, which could be purified by size-exclusion chromatography. Interestingly, despite significant differences in the morphology and size distribution of the TDP-43 oligomer preparations revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS), they all retained the ability to bind to nucleotide DNA. Besides, circular dichroism (CD) analysis of these oligomers did not show much difference in the secondary structure composition. Surprisingly, none of these oligomer preparations could seed the aggregation of TDP-43 core peptide 279-360. Finally, we showed that all four types of TDP-43 oligomers exert very mild cytotoxicity to primary neurons. Collectively, our results suggest that functional TDP-43 oligomers can be selectively stabilized by small-molecule compounds. This strategy may offer a new approach to halt TDP-43 aggregation in various proteinopathies.
Collapse
Affiliation(s)
- Lixin Yang
- Laboratory of Molecular and
Chemical Biology of Neurodegeneration, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and
Chemical Biology of Neurodegeneration, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hilal Lashuel
- Laboratory of Molecular and
Chemical Biology of Neurodegeneration, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Alamri SH, Haque S, Alghamdi BS, Tayeb HO, Azhari S, Farsi RM, Elmokadem A, Alamri TA, Harakeh S, Prakash A, Kumar V. Comprehensive mapping of mutations in TDP-43 and α-Synuclein that affect stability and binding. J Biomol Struct Dyn 2023:1-13. [PMID: 38126188 DOI: 10.1080/07391102.2023.2293258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Abnormal aggregation and amyloid inclusions of TAR DNA-binding protein 43 (TDP-43) and α-Synuclein (α-Syn) are frequently co-observed in amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Several reports showed TDP-43 C-terminal domain (CTD) and α-Syn interact with each other and the aggregates of these two proteins colocalized together in different cellular and animal models. Molecular dynamics simulation was conducted to elucidate the stability of the TDP-43 and Syn complex structure. The interfacial mutations in protein complexes changes the stability and binding affinity of the protein that may cause diseases. Here, we have utilized the computational saturation mutagenesis approach including structure-based stability and binding energy calculations to compute the systemic effects of missense mutations of TDP-43 CTD and α-Syn on protein stability and binding affinity. Most of the interfacial mutations of CTD and α-Syn were found to destabilize the protein and reduced the protein binding affinity. The results thus shed light on the functional consequences of missense mutations observed in TDP-43 associated proteinopathies and may provide the mechanisms of co-morbidities involving these two proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sultan H Alamri
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Badra S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- The Mind and Brain Studies Initiative, Neuroscience Research Unit, Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abear Elmokadem
- Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki A Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Gurgaon, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| |
Collapse
|
6
|
Bayandina SV, Mukha DV. Saccharomyces cerevisiae as a Model for Studying Human Neurodegenerative Disorders: Viral Capsid Protein Expression. Int J Mol Sci 2023; 24:17213. [PMID: 38139041 PMCID: PMC10743263 DOI: 10.3390/ijms242417213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In this article, we briefly describe human neurodegenerative diseases (NDs) and the experimental models used to study them. The main focus is the yeast Saccharomyces cerevisiae as an experimental model used to study neurodegenerative processes. We review recent experimental data on the aggregation of human neurodegenerative disease-related proteins in yeast cells. In addition, we describe the results of studies that were designed to investigate the molecular mechanisms that underlie the aggregation of reporter proteins. The advantages and disadvantages of the experimental approaches that are currently used to study the formation of protein aggregates are described. Special attention is given to the similarity between aggregates that form as a result of protein misfolding and viral factories-special structural formations in which viral particles are formed inside virus-infected cells. A separate part of the review is devoted to our previously published study on the formation of aggregates upon expression of the insect densovirus capsid protein in yeast cells. Based on the reviewed results of studies on NDs and related protein aggregation, as well as viral protein aggregation, a new experimental model system for the study of human NDs is proposed. The core of the proposed system is a comparative transcriptomic analysis of changes in signaling pathways during the expression of viral capsid proteins in yeast cells.
Collapse
Affiliation(s)
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Vukolova MN, Yen LY, Khmyz MI, Sobolevsky AI, Yelshanskaya MV. Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis-emerging role of AMPA and kainate subtypes of ionotropic glutamate receptors. Front Cell Dev Biol 2023; 11:1252953. [PMID: 38033869 PMCID: PMC10683763 DOI: 10.3389/fcell.2023.1252953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission and are implicated in various neurological disorders. In this review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in the pathogenesis and treatment of Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis. Although both AMPA and kainate receptors represent promising therapeutic targets for the treatment of these diseases, many of their antagonists show adverse side effects. Further studies of factors affecting the selective subunit expression and trafficking of AMPA and kainate receptors, and a reasonable approach to their regulation by the recently identified novel compounds remain promising directions for pharmacological research.
Collapse
Affiliation(s)
- Marina N. Vukolova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Laura Y. Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University, New York, NY, United States
| | - Margarita I. Khmyz
- N. V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander I. Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Maria V. Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Cui S, Zhang T, Xiong X, Zhao J, Cao Q, Zhou H, Xia XG. Detergent-insoluble PFN1 inoculation expedites disease onset and progression in PFN1 transgenic rats. Front Neurosci 2023; 17:1279259. [PMID: 37817804 PMCID: PMC10560758 DOI: 10.3389/fnins.2023.1279259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Accumulating evidence suggests a gain of elusive toxicity in pathogenically mutated PFN1. The prominence of PFN1 aggregates as a pivotal pathological hallmark in PFN1 transgenic rats underscores the crucial involvement of protein aggregation in the initiation and progression of neurodegeneration. Detergent-insoluble materials were extracted from the spinal cords of paralyzed rats afflicted with ALS and were intramuscularly administered to asymptomatic recipient rats expressing mutant PFN1, resulting in an accelerated development of PFN1 inclusions and ALS-like phenotypes. This effect diminished when the extracts derived from wildtype PFN1 transgenic rats were employed, as detergent-insoluble PFN1 was detected exclusively in mutant PFN1 transgenic rats. Consequently, the factor influencing the progression of ALS pathology in recipient rats is likely associated with the presence of detergent-insoluble PFN1 within the extracted materials. Noteworthy is the absence of disease course modification upon administering detergent-insoluble extracts to rats that already displayed PFN1 inclusions, suggesting a seeding rather than augmenting role of such extracts in initiating neuropathological changes. Remarkably, pathogenic PFN1 exhibited an enhanced affinity for the molecular chaperone DNAJB6, leading to the sequestration of DNAJB6 within protein inclusions, thereby depleting its availability for cellular functions. These findings shed light on a novel mechanism that underscores the prion-like characteristics of pathogenic PFN1 in driving neurodegeneration in the context of PFN1-related ALS.
Collapse
Affiliation(s)
- Shiquan Cui
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Tingting Zhang
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Xinrui Xiong
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Qilin Cao
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| | - Hongxia Zhou
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| | - Xu-Gang Xia
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
9
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
10
|
Evangelista BA, Cahalan SR, Ragusa JV, Mordant A, Necarsulmer JC, Perna RJ, Ajit T, White K, Barker NK, Tian X, Cohen S, Meeker R, Herring LE, Cohen TJ. Tandem detergent-extraction and immunoprecipitation of proteinopathy: Scalable enrichment of ALS-associated TDP-43 aggregates. iScience 2023; 26:106645. [PMID: 37182104 PMCID: PMC10173608 DOI: 10.1016/j.isci.2023.106645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Transactive response DNA-binding protein of 43 kDa (TDP-43) is a highly conserved, ubiquitously expressed nucleic acid-binding protein that regulates DNA/RNA metabolism. Genetics and neuropathology studies have linked TDP-43 to several neuromuscular and neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under pathological conditions, TDP-43 mislocalizes to the cytoplasm where it forms insoluble, hyper-phosphorylated aggregates during disease progression. Here, we optimized a scalable in vitro immuno-purification strategy referred to as tandem detergent-extraction and immunoprecipitation of proteinopathy (TDiP) to isolate TDP-43 aggregates that recapitulate those identified in postmortem ALS tissue. Moreover, we demonstrate that these purified aggregates can be utilized in biochemical, proteomics, and live-cell assays. This platform offers a rapid, accessible, and streamlined approach to study ALS disease mechanisms, while overcoming many limitations that have hampered TDP-43 disease modeling and therapeutic drug discovery efforts.
Collapse
Affiliation(s)
- Baggio A. Evangelista
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon R. Cahalan
- Medical Student Training in Aging Research, Center for Aging and Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joey V. Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie Mordant
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie C. Necarsulmer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert J. Perna
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tejazaditya Ajit
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen White
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K. Barker
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xu Tian
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rick Meeker
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E. Herring
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Todd J. Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Ni J, Ren Y, Su T, Zhou J, Fu C, Lu Y, Li D, Zhao J, Li Y, Zhang Y, Fang Y, Liu N, Geng Y, Chen Y. Loss of TDP-43 function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies. Mol Psychiatry 2023; 28:931-945. [PMID: 34697451 DOI: 10.1038/s41380-021-01346-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
TDP-43 proteinopathy is linked to neurodegenerative diseases that feature synaptic loss in the cortex and hippocampus, although it remains unclear how TDP-43 regulates mature synapses. We report that, in adult mouse hippocampus, TDP-43 knockdown, but not overexpression, induces robust structural and functional damage to excitatory synapses, supporting a role for TDP-43 in maintaining mature synapses. Dendritic spine loss induced by TDP-43 knockdown is rescued by wild-type TDP-43, but not ALS/FTLD-associated mutants, suggesting a common TDP-43 functional deficiency in neurodegenerative diseases. Interestingly, M337V and A90V mutants also display dominant negative activities against WT TDP-43, partially explaining why M337V transgenic mice develop hippocampal degeneration similar to that in excitatory neuronal TDP-43 knockout mice, and why A90V mutation is associated with Alzheimer's disease. Further analyses reveal that a TDP-43 knockdown-induced reduction in GluN2A contributes to synaptic loss. Our results show that loss of TDP-43 function underlies hippocampal and cortical synaptic degeneration in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Jiangxia Ni
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongfei Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De'an Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China.
| |
Collapse
|
12
|
Knight AC, Morrone CD, Varlow C, Yu WH, McQuade P, Vasdev N. Head-to-Head Comparison of Tau-PET Radioligands for Imaging TDP-43 in Post-Mortem ALS Brain. Mol Imaging Biol 2022; 25:513-527. [PMID: 36258099 DOI: 10.1007/s11307-022-01779-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE In vivo detection of transactivation response element DNA binding protein-43 kDa (TDP-43) aggregates through positron emission tomography (PET) would impact the ability to successfully develop therapeutic interventions for a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The purpose of the present study is to evaluate the ability of six tau PET radioligands to bind to TDP-43 aggregates in post-mortem brain tissues from ALS patients. PROCEDURES Herein, we report the first head-to-head evaluation of six tritium labeled isotopologs of tau-targeting PET radioligands, [3H]MK-6240 (a.k.a. florquinitau), [3H]Genentech Tau Probe-1 (GTP-1), [3H]JNJ-64326067(JNJ-067), [3H]CBD-2115, [3H]flortaucipir, and [3H]APN-1607, and their ability to bind to the β-pleated sheet structures of aggregate TDP-43 in post-mortem ALS brain tissues by autoradiography and immunostaining methods. Post-mortem frontal cortex, motor cortex, and cerebellum tissues were evaluated, and binding intensity was aligned with areas of elevated phosphorylated tau (ptau), pTDP-43, and β-amyloid. RESULTS Negligible binding was observed with [3H]MK-6240, [3H]JNJ-067, and [3H]GTP-1. While [3H]CBD-2115 displayed marginal specific binding, this binding did not significantly correlate with the distribution of pTDP-43 and AT8 inclusions. Of the remaining ligands, the distribution of [3H]flortaucipir did not significantly correlate to pTDP-43 pathology; however, specific binding trends to a positive relationship with tau. Finally, [3H]APN-1607 relates most strongly to amyloid load and does not indicate pTDP-43 pathology as confirmed by [3H]PiB distribution in sister sections. CONCLUSIONS Our results demonstrate the prominent nature of mixed pathology in ALS, and do not support the application of [3H]MK-6240, [3H]JNJ-067, [3H]GTP-1, [3H]CBD-2115, [3H]flortaucipir, or [3H]APN-1607 for selective imaging TDP-43 in ALS for clinical research with the currently available in vitro data. Identification of potent and selective radiotracers for TDP-43 remains an ongoing challenge.
Collapse
Affiliation(s)
- Ashley C Knight
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Christopher D Morrone
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Wai Haung Yu
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Paul McQuade
- Takeda Pharmaceutical Company, Ltd, 35 Landsdowne Street, Cambridge, MA, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada.
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Canada.
| |
Collapse
|
13
|
Spinelli EG, Ghirelli A, Riva N, Canu E, Castelnovo V, Domi T, Pozzi L, Carrera P, Silani V, Chiò A, Filippi M, Agosta F. Profiling morphologic MRI features of motor neuron disease caused by TARDBP mutations. Front Neurol 2022; 13:931006. [PMID: 35911889 PMCID: PMC9334911 DOI: 10.3389/fneur.2022.931006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Mutations in the TARDBP gene are a rare cause of genetic motor neuron disease (MND). Morphologic MRI characteristics of MND patients carrying this mutation have been poorly described. Our objective was to investigate distinctive clinical and MRI features of a relatively large sample of MND patients carrying TARDBP mutations. Methods Eleven MND patients carrying a TARDBP mutation were enrolled. Eleven patients with sporadic MND (sMND) and no genetic mutations were also selected and individually matched by age, sex, clinical presentation and disease severity, along with 22 healthy controls. Patients underwent clinical and cognitive evaluations, as well as 3D T1-weighted and diffusion tensor (DT) MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a whole-brain level using voxel-based morphometry (VBM). GM volumes and DT MRI metrics of the main white matter (WM) tracts were also obtained. Clinical, cognitive and MRI features were compared between groups. Results MND with TARDBP mutations was associated with all possible clinical phenotypes, including isolated upper/lower motor neuron involvement, with no predilection for bulbar or limb involvement at presentation. Greater impairment at naming tasks was found in TARDBP mutation carriers compared with sMND. VBM analysis showed significant atrophy of the right lateral parietal cortex in TARDBP patients, compared with controls. A distinctive reduction of GM volumes was found in the left precuneus and right angular gyrus of TARDBP patients compared to controls. WM microstructural damage of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was found in both sMND and TARDBP patients, compared with controls, although decreased fractional anisotropy of the right CST and increased axial diffusivity of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers. Conclusions TARDBP patients showed a distinctive parietal pattern of cortical atrophy and greater damage of motor and extra-motor WM tracts compared with controls, which sMND patients matched for disease severity and clinical presentation were lacking. Our findings suggest that TDP-43 pathology due to TARDBP mutations may cause deeper morphologic alterations in both GM and WM.
Collapse
Affiliation(s)
- Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nilo Riva
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Adriano Chiò
- Rita Levi Montalcini “Department of Neuroscience, ” ALS Center, University of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta
| |
Collapse
|
14
|
Hur SK, Hunter M, Dominique MA, Farag M, Cotton-Samuel D, Khan T, Trojanowski JQ, Spiller KJ, Lee VMY. Slow motor neurons resist pathological TDP-43 and mediate motor recovery in the rNLS8 model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2022; 10:75. [PMID: 35568882 PMCID: PMC9107273 DOI: 10.1186/s40478-022-01373-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/22/2023] Open
Abstract
In the intermediate stages of amyotrophic lateral sclerosis (ALS), surviving motor neurons (MNs) that show intrinsic resistance to TDP-43 proteinopathy can partially compensate for the loss of their more disease-susceptible counterparts. Elucidating the mechanisms of this compensation may reveal approaches for attenuating motor impairment in ALS patients. In the rNLS8 mouse model of ALS-like pathology driven by doxycycline-regulated neuronal expression of human TDP-43 lacking a nuclear localization signal (hTDP-43ΔNLS), slow MNs are more resistant to disease than fast-fatigable (FF) MNs and can mediate recovery following transgene suppression. In the present study, we used a viral tracing strategy to show that these disease-resistant slow MNs sprout to reinnervate motor endplates of adjacent muscle fibers vacated by degenerated FF MNs. Moreover, we found that neuromuscular junctions within fast-twitch skeletal muscle (tibialis anterior, TA) reinnervated by SK3-positive slow MNs acquire resistance to axonal dieback when challenged with a second course of hTDP-43ΔNLS pathology. The selective resistance of reinnervated neuromuscular junctions was specifically induced by the unique pattern of reinnervation following TDP-43-induced neurodegeneration, as recovery from unilateral sciatic nerve crush did not produce motor units resistant to subsequent hTDP-43ΔNLS. Using cross-reinnervation and self-reinnervation surgery in which motor axons are disconnected from their target muscle and reconnected to a new muscle, we show that FF MNs remain hTDP-43ΔNLS-susceptible and slow MNs remain resistant, regardless of which muscle fibers they control. Collectively, these findings demonstrate that MN identity dictates the susceptibility of neuromuscular junctions to TDP-43 pathology and slow MNs can drive recovery of motor systems due to their remarkable resilience to TDP-43-driven degeneration. This study highlights a potential pathway for regaining motor function with ALS pathology in the advent of therapies that halt the underlying neurodegenerative process.
Collapse
Affiliation(s)
- Seong Kwon Hur
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Mandana Hunter
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Myrna A. Dominique
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Madona Farag
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Dejania Cotton-Samuel
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Tahiyana Khan
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - John Q. Trojanowski
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Krista J. Spiller
- grid.497530.c0000 0004 0389 4927Janssen Research and Development, Neuroscience Therapeutic Area, 1400 McKean Rd, Spring House, PA 19002 USA
| | - Virginia M.-Y. Lee
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
15
|
Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Front Mol Neurosci 2022; 15:883358. [PMID: 35514431 PMCID: PMC9063566 DOI: 10.3389/fnmol.2022.883358] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases represent a formidable challenge to global health. As advances in other areas of medicine grant healthy living into later decades of life, aging diseases such as Alzheimer's disease (AD) and other neurodegenerative disorders can diminish the quality of these additional years, owed largely to the lack of efficacious treatments and the absence of durable cures. Alzheimer's disease prevalence is predicted to more than double in the next 30 years, affecting nearly 15 million Americans, with AD-associated costs exceeding $1 billion by 2050. Delaying onset of AD and other neurodegenerative diseases is critical to improving the quality of life for patients and reducing the burden of disease on caregivers and healthcare systems. Significant progress has been made to model disease pathogenesis and identify points of therapeutic intervention. While some researchers have contributed to our understanding of the proteins and pathways that drive biological dysfunction in disease using in vitro and in vivo models, others have provided mathematical, biophysical, and computational technologies to identify potential therapeutic compounds using in silico modeling. The most exciting phase of the drug discovery process is now: by applying a target-directed approach that leverages the strengths of multiple techniques and validates lead hits using Drosophila as an animal model of disease, we are on the fast-track to identifying novel therapeutics to restore health to those impacted by neurodegenerative disease.
Collapse
Affiliation(s)
- Judith A. Tello
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Haley E. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Robert M. Eppler
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| |
Collapse
|
16
|
Lye YS, Chen YR. TAR DNA-binding protein 43 oligomers in physiology and pathology. IUBMB Life 2022; 74:794-811. [PMID: 35229461 DOI: 10.1002/iub.2603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA/DNA-binding protein involved in RNA regulation and diseases. In 2006, TDP-43 inclusions were found in the disease lesions of several neurodegenerative diseases. It is the pathological hallmark in both amyotrophic lateral sclerosis and frontotemporal lobar dementia. It also presents in a large portion of patients with Alzheimer's disease. TDP-43 is prone to aggregate; however, the role of TDP-43 oligomers remains poorly understood in both physiological and pathological conditions. In this review, we emphasize the role of oligomeric TDP-43 in both physiological and pathological conditions and discuss the potential mechanisms of oligomer formation. Finally, we suggest therapeutic strategies against the TDP-43 oligomers in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuh Shen Lye
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
How Molecular Topology Can Help in Amyotrophic Lateral Sclerosis (ALS) Drug Development: A Revolutionary Paradigm for a Merciless Disease. Pharmaceuticals (Basel) 2022; 15:ph15010094. [PMID: 35056151 PMCID: PMC8781553 DOI: 10.3390/ph15010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Even if amyotrophic lateral sclerosis is still considered an orphan disease to date, its prevalence among the population is growing fast. Despite the efforts made by researchers and pharmaceutical companies, the cryptic information related to the biological and physiological onset mechanisms, as well as the complexity in identifying specific pharmacological targets, make it almost impossible to find effective treatments. Furthermore, because of complex ethical and economic aspects, it is usually hard to find all the necessary resources when searching for drugs for new orphan diseases. In this context, computational methods, based either on receptors or ligands, share the capability to improve the success rate when searching and selecting potential candidates for further experimentation and, consequently, reduce the number of resources and time taken when delivering a new drug to the market. In the present work, a computational strategy based on Molecular Topology, a mathematical paradigm capable of relating the chemical structure of a molecule to a specific biological or pharmacological property by means of numbers, is presented. The result was the creation of a reliable and accessible tool to help during the early in silico stages in the identification and repositioning of potential hits for ALS treatment, which can also apply to other orphan diseases. Considering that further computational and experimental results will be required for the final identification of viable hits, three linear discriminant equations combined with molecular docking simulations on specific proteins involved in ALS are reported, along with virtual screening of the Drugbank database as a practical example. In this particular case, as reported, a clinical trial has been already started for one of the drugs proposed in the present study.
Collapse
|
18
|
Yuan G, Cui S, Chen X, Song H, Huang C, Tong J, Yuan Z, Yu L, Xiong X, Zhao J, Huang B, Wu Q, Zhou Y, Chen G, Zhou H, Xia XG. Detergent-insoluble inclusion constitutes the first pathology in PFN1 transgenic rats. J Neurochem 2021; 157:1244-1252. [PMID: 32754913 PMCID: PMC8994973 DOI: 10.1111/jnc.15139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Mutation of profilin 1 (PFN1) can cause amyotrophic lateral sclerosis (ALS). To assess how PFN1 mutation causes the disease, we created transgenic rats with human genomic DNA that harbors both the coding and the regulatory sequences of the human PFN1 gene. Selected transgenic lines expressed human PFN1 with or without the pathogenic mutation C71G at a moderate and a comparable level and in the similar pattern of spatial and temporal expression to rat endogenous PFN1. The artificial effects of arbitrary transgene expression commonly observed in cDNA transgenic animals were minimized in PFN1 transgenic rats. Expression of the mutant, but not the wild type, human PFN1 in rats recapitulated the cardinal features of ALS including the progressive loss of motor neurons and the subsequent denervation atrophy of skeletal muscles. Detergent-insoluble PFN1 inclusions were detected as the first pathology in otherwise asymptomatic transgenic rats expressing mutant human PFN1. The findings suggest that protein aggregation is involved in the neurodegeneration of ALS associated with PFN1 mutation. The resulting rat model is useful to mechanistic study on the ALS.
Collapse
Affiliation(s)
- Guixiu Yuan
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Shiquan Cui
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Xuan Chen
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Haochang Song
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Cao Huang
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jianbin Tong
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Zhentin Yuan
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Xinrui Xiong
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Bo Huang
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qinxue Wu
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yibo Zhou
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Gong Chen
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Hongxia Zhou
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Xu-Gang Xia
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
19
|
Chang KJ, Agrawal I, Vainshtein A, Ho WY, Xin W, Tucker-Kellogg G, Susuki K, Peles E, Ling SC, Chan JR. TDP-43 maximizes nerve conduction velocity by repressing a cryptic exon for paranodal junction assembly in Schwann cells. eLife 2021; 10:e64456. [PMID: 33689679 PMCID: PMC7946431 DOI: 10.7554/elife.64456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
TDP-43 is extensively studied in neurons in physiological and pathological contexts. However, emerging evidence indicates that glial cells are also reliant on TDP-43 function. We demonstrate that deletion of TDP-43 in Schwann cells results in a dramatic delay in peripheral nerve conduction causing significant motor deficits in mice, which is directly attributed to the absence of paranodal axoglial junctions. By contrast, paranodes in the central nervous system are unaltered in oligodendrocytes lacking TDP-43. Mechanistically, TDP-43 binds directly to Neurofascin mRNA, encoding the cell adhesion molecule essential for paranode assembly and maintenance. Loss of TDP-43 triggers the retention of a previously unidentified cryptic exon, which targets Neurofascin mRNA for nonsense-mediated decay. Thus, TDP-43 is required for neurofascin expression, proper assembly and maintenance of paranodes, and rapid saltatory conduction. Our findings provide a framework and mechanism for how Schwann cell-autonomous dysfunction in nerve conduction is directly caused by TDP-43 loss-of-function.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Ira Agrawal
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Wan Yun Ho
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Wendy Xin
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, and Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, United States
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shuo-Chien Ling
- Department of Physiology, National University of Singapore, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore, Singapore
- Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jonah R Chan
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
20
|
Capitini C, Fani G, Vivoli Vega M, Penco A, Canale C, Cabrita LD, Calamai M, Christodoulou J, Relini A, Chiti F. Full-length TDP-43 and its C-terminal domain form filaments in vitro having non-amyloid properties. Amyloid 2021; 28:56-65. [PMID: 33026249 PMCID: PMC7613275 DOI: 10.1080/13506129.2020.1826425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature.
Collapse
Affiliation(s)
- Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy
| | - Giulia Fani
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mirella Vivoli Vega
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Genoa, Italy
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, UCL and Birkbeck College London, London, UK
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - John Christodoulou
- Institute of Structural and Molecular Biology, UCL and Birkbeck College London, London, UK
| | | | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
21
|
Zhu J, Wang N, Li X, Zheng X, Zhao J, Xia H, Mao Q. Suppression of Progranulin Expression Leads to Formation of Intranuclear TDP-43 Inclusions In Vitro: A Cell Model of Frontotemporal Lobar Degeneration. J Neuropathol Exp Neurol 2020; 78:1124-1129. [PMID: 31626287 DOI: 10.1093/jnen/nlz102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in the GRN gene coding for progranulin (PGRN) are responsible for many cases of familial frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein 43 (TDP-43)-positive inclusions (FTLD-TDP). GRN mutations create null alleles resulting in decreased progranulin protein or haploinsufficiency. FTLD-TDP with GRN mutations is characterized by lentiform neuronal intranuclear inclusions that are positive for TDP-43 in affected brain regions. In this study, by stably expressed short hairpin RNA, we established a neuroblastoma cell line with decreased PGRN level. This cell line reveals TDP-43-positive intranuclear inclusions. In addition, replacement with purified PGRN protein restores normal TDP-43 nuclear distribution. This cell model can be valuable for the study of the role of PGRN in the pathogenesis in FTLD-TDP.
Collapse
Affiliation(s)
- Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | | | - Xianan Li
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China
| | | | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
22
|
Williamson MG, Finelli MJ, Sleigh JN, Reddington A, Gordon D, Talbot K, Davies KE, Oliver PL. Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo. Hum Mol Genet 2020; 28:3584-3599. [PMID: 31642482 PMCID: PMC6927465 DOI: 10.1093/hmg/ddz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.
Collapse
Affiliation(s)
- Matthew G Williamson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK.,UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Amy Reddington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.,MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
23
|
François-Moutal L, Felemban R, Scott DD, Sayegh MR, Miranda VG, Perez-Miller S, Khanna R, Gokhale V, Zarnescu DC, Khanna M. Small Molecule Targeting TDP-43's RNA Recognition Motifs Reduces Locomotor Defects in a Drosophila Model of Amyotrophic Lateral Sclerosis (ALS). ACS Chem Biol 2019; 14:2006-2013. [PMID: 31241884 DOI: 10.1021/acschembio.9b00481] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA dysregulation likely contributes to disease pathogenesis of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. A pathological form of the transactive response (TAR) DNA binding protein (TDP-43) binds to RNA in stress granules and forms membraneless, amyloid-like TDP-43 aggregates in the cytoplasm of ALS motor neurons. In this study, we hypothesized that by targeting the RNA recognition motif (RRM) domains of TDP-43 that confer a pathogenic interaction between TDP-43 and RNA, motor neuron toxicity could be reduced. In silico docking of 50000 compounds to the RRM domains of TDP-43 identified a small molecule (rTRD01) that (i) bound to TDP-43's RRM1 and RRM2 domains, (ii) partially disrupted TDP-43's interaction with the hexanucleotide RNA repeat of the disease-linked c9orf72 gene, but not with (UG)6 canonical binding sequence of TDP-43, and (iii) improved larval turning, an assay measuring neuromuscular coordination and strength, in an ALS fly model based on the overexpression of mutant TDP-43. Our findings provide an instructive example of a chemical biology approach pivoted to discover small molecules targeting RNA-protein interactions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Razaz Felemban
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, United States
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard, Jeddah, Kingdom of Saudi Arabia
| | - David D. Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Melissa R. Sayegh
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States
- Department of Neurology, University of Arizona, Tucson Arizona 85721, United States
| | - Victor G. Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Vijay Gokhale
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Daniela C. Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States
- Department of Neurology, University of Arizona, Tucson Arizona 85721, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
24
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
25
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
26
|
Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathol 2019; 137:227-238. [PMID: 30604226 DOI: 10.1007/s00401-018-1951-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/13/2022]
Abstract
TDP-43 is present in a high proportion of aged brains that do not meet criteria for frontotemporal lobar degeneration (FTLD). We determined whether there are distinct TDP-43 types in non-FTLD brains. From a cohort of 553 brains (Braak neurofibrillary tangle (NFT) stage 0-VI), excluding cases meeting criteria for FTLD, we identified those that had screened positive for TDP-43. We reviewed 14 different brain regions in these TDP-43 positive cases and classified them into those with "typical" TDP-43 immunoreactive inclusions (TDP type-α), and those in which TDP-43 immunoreactivity was adjacent to/associated with NFTs in the same neuron (TDP type-β). We compared pathological, genetic (APOE4, TMEM106B and GRN variants), neuroimaging and clinical data between types, as well as compared neuroimaging between types and a group of TDP-43 negative cases (n = 309). Two-hundred forty-one cases were classified as TDP type-α (n = 131, 54%) or TDP type-β (n = 110, 46%). Type-α cases were older than type-β at death (median 89 years vs. 87 years; p = 0.02). Hippocampal sclerosis was present in 78 (60%) type-α cases and 16 (15%) type-β cases (p < 0.001). Type-α cases showed a pattern of widespread TDP-43 deposition commonly extending into temporal, frontal and brainstem regions (84% TDP-43 stage 4-6) while in type-β cases deposition was predominantly limbic, located in amygdala, entorhinal cortex and subiculum of the hippocampus (84% TDP-43 stages 1-3) (p < 0.001). There was a difference in the frequency of TMEM106B protective (GG) and risk (CC) haplotypes (SNP rs3173615 encoding p.T185S) in type-α cases compared to type-β cases (GG/CG/CC: 8%/42%/50% vs. 24%/49%/27%; p = 0.01). Type-α cases had smaller amygdala (- 10.6% [- 17.6%, - 3.5%]; p = 0.003) and hippocampal (- 14.4% [- 21.6%, - 7.3%]; p < 0.001) volumes on MRI at death compared to type-β cases, although both types had smaller amygdala and hippocampal volumes compared to TDP-43 negative cases (- 7.77%, - 21.6%; p < 0.001). These findings demonstrate that there is distinct heterogeneity of TDP-43 deposition in non-FTLD brains.
Collapse
|
27
|
Kovacs GG, Lee VM, Trojanowski JQ. Protein astrogliopathies in human neurodegenerative diseases and aging. Brain Pathol 2018; 27:675-690. [PMID: 28805003 DOI: 10.1111/bpa.12536] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of neurons associated with depositions of pathologically altered proteins showing hierarchical involvement of brain regions. The role of astrocytes in the pathogenesis of neurodegenerative diseases is explored as contributors to neuronal degeneration or neuroprotection pathways, and also as potential mediators of the transcellular spreading of disease-associated proteins. Protein astrogliopathy (PAG), including deposition of amyloid-β, prion protein, tau, α-synuclein, and very rarely transactive response DNA-binding protein 43 (TDP-43) is not unprecedented or unusual in neurodegenerative diseases. Morphological characterization of PAG is considered, however, only for the neuropathological diagnosis and classification of tauopathies. Astrocytic tau pathology is seen in primary frontotemporal lobar degeneration (FTLD) associated with tau pathologies (FTLD-Tau), and also in the form of aging-related tau astrogliopathy (ARTAG). Importantly, ARTAG shares common features with primary FTLD-Tau as well as with the astroglial tau pathologies that are thought to be hallmarks of a brain injury-related tauopathy known as chronic traumatic encephalopathy (CTE). Supported by experimental observations, the morphological variability of PAG might reflect distinct pathogenic involvement of different astrocytic populations. PAG might indicate astrocytic contribution to spreading or clearance of disease-associated proteins, however, this might lead to astrocytic dysfunction and eventually contribute to the degeneration of neurons. Here, we review recent advances in understanding ARTAG and other related forms of PAG.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Virginia M Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
D'Ambrosi N, Cozzolino M, Carrì MT. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation. Antioxid Redox Signal 2018; 29:15-36. [PMID: 28895473 DOI: 10.1089/ars.2017.7271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Amyotrophic lateral sclerosis (ALS) is due to degeneration of upper and lower motor neurons in the anterior horn of the spinal cord and in the motor cortex. Mechanisms leading to motor neuron death are complex and currently the disease is untreatable. Recent Advances: Work in genetic models of ALS indicates that an imbalance in the cross talk that physiologically exists between motor neurons and the surrounding cells is eventually detrimental to motor neurons. In particular, the cascade of events collectively known as neuroinflammation and mainly characterized by a reactive phenotype of astrocytes and microglia, moderate infiltration of peripheral immune cells, and elevated levels of inflammatory mediators has been consistently observed in motor regions of the central nervous system (CNS) in sporadic and familial ALS, constituting a hallmark of the disease. Resident glial cells and infiltrated immune cells are considered among the major producers of reactive species of oxygen and nitrogen in pathological conditions of the CNS, including motor neuron diseases. CRITICAL ISSUES The timing and exact role of oxidative stress-mediated neuroinflammation and damage to motor neurons in ALS are still not fully elucidated. FUTURE DIRECTIONS It is clear that a major challenge in the next future will be to envisage effective strategies to modulate the neuroinflammatory response in the symptomatic stage of disease, to prevent progression of neurodegeneration through the propagation of oxidative damage. Antioxid. Redox Signal. 29, 15-36.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy
| | - Mauro Cozzolino
- 2 Institute of Translational Pharmacology , CNR, Rome, Italy
| | - Maria Teresa Carrì
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy .,3 Fondazione Santa Lucia , IRCCS, Rome, Italy
| |
Collapse
|
29
|
Grauffel C, Lim C. Factors governing when a metal-bound water is deprotonated in proteins. Phys Chem Chem Phys 2018; 20:29625-29636. [DOI: 10.1039/c8cp04776f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We evaluate the extent to which the pKw depends on the type, number, and metal-binding mode of the first-shell ligands, the metal–ligand bond distances, first-shell⋯second-shell H-bonding interactions, and the protein environment.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
- Department of Chemistry
| |
Collapse
|
30
|
Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 2017; 9:501-515. [PMID: 28905328 DOI: 10.1007/s12551-017-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
Collapse
|
31
|
Biology and Pathobiology of TDP-43 and Emergent Therapeutic Strategies. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024554. [PMID: 27920024 DOI: 10.1101/cshperspect.a024554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytoplasmic TDP-43 mislocalization and aggregation is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is an RNA-binding protein (RBP) with a prion-like domain (PrLD) that promotes TDP-43 misfolding. PrLDs possess compositional similarity to canonical prion domains of various yeast proteins, including Sup35. Strikingly, disease-causing TDP-43 mutations reside almost exclusively in the PrLD and can enhance TDP-43 misfolding and toxicity. Another ∼70 human RBPs harbor PrLDs, including FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2, which have surfaced in the etiology of neurodegenerative diseases. Importantly, PrLDs enable RBP function and mediate phase transitions that partition functional ribonucleoprotein compartments. This PrLD activity, however, renders RBPs prone to populating deleterious oligomers or self-templating fibrils that might spread disease, and disease-linked PrLD mutations can exacerbate this risk. Several strategies have emerged to counter TDP-43 proteinopathies, including engineering enhanced protein disaggregases based on Hsp104.
Collapse
|
32
|
Guedes ÁCB, Santin R, Costa ASR, Reiter KC, Hilbig A, Fernandez LL. Distinct Phospho-TDP-43 brain distribution in two cases of FTD, one associated with ALS. Dement Neuropsychol 2017; 11:249-254. [PMID: 29213521 PMCID: PMC5674668 DOI: 10.1590/1980-57642016dn11-030006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: TDP-43 is an intranuclear protein involved in many cellular processes. When altered, it shows a change in pattern of distribution, as well as in functioning, throughout the Central Nervous System structures. Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS) are examples of TDP-43 proteinopathy. These disorders form a clinical spectrum, with some patients having a pure cognitive disorder while others also exhibit motor features. METHODS: We studied two donated brains from patients with a diagnosis of Frontotemporal Dementia (FTD), one of which was associated with ALS (ALS-FTD). After fixation and macroscopic examinations, sample analyses were performed. Specific regions were chosen for the application of immunohistochemistry (IHC) with anti-Aβ, AT8, anti-α-synuclein and anti-phospho-TDP-43. RESULTS: Both brains presented anti-phospho-TDP-43 positivity, but this was not equally distributed throughout the encephalic zones. In the FTD case, the studied brain presented phosphorylated TDP-43- in the frontal cortex, hippocampus, entorhinal cortex and mesencephalon; in the ALS-FTD case, the abnormal protein was also seen in the pons and medulla oblongata. The brain in the ALS-FTD case presented Aβ and AT8 positivity in the hippocampus and entorhinal cortex (Braak I and II). DISCUSSION: The hypothesis supported by scientific literature that these neurodegenerative diseases can have the same etiology with distinct encephalic region involvement is corroborated by the present study.
Collapse
Affiliation(s)
- Álvaro C B Guedes
- Students at the Medical School of Federal University of Health Sciences of Porto Alegre. Scientific initiation scholars
| | - Ricardo Santin
- Students at the Medical School of Federal University of Health Sciences of Porto Alegre. Scientific initiation scholars
| | - André S R Costa
- Students at the Medical School of Federal University of Health Sciences of Porto Alegre. Scientific initiation scholars
| | - Keli C Reiter
- Biologist, PhD, Federal University of Health Science of Porto Alegre's Laboratory of Pathology
| | - Arlete Hilbig
- Neurologists. MD, PhD, Professors at the Federal University of Health Science of Porto Alegre
| | - Liana L Fernandez
- Neurologists. MD, PhD, Professors at the Federal University of Health Science of Porto Alegre
| |
Collapse
|
33
|
Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 2017; 13:e1006805. [PMID: 28531192 PMCID: PMC5460882 DOI: 10.1371/journal.pgen.1006805] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/06/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. Many neurodegenerative diseases are associated with aggregation of specific proteins. Thus we are interested in factors that influence the aggregation and how the aggregated proteins are associated with pathology. Here, we study a protein called TDP-43 that is frequently aggregated in the neurons of patients with amyotrophic lateral sclerosis (ALS). TDP-43 aggregates and is toxic when expressed in yeast, providing a useful model for ALS. Remarkably, a protein that modified TDP-43 toxicity in yeast successfully predicted a new ALS susceptibility gene in humans. We now report a new modifier of TDP-43 toxicity, Sis1. We show that expression of TDP-43 in yeast inhibits degradation of damaged protein, while overexpression of Sis1 restores degradation. Thus suggests a link between protein degradation and TDP-43 toxicity. Furthermore we show that a mammalian protein similar to Sis1 reduces TDP-43 toxicity in primary rodent neurons. This identifies the mammalian Sis1-like gene as a new ALS therapeutic target and possible susceptibility gene.
Collapse
|
34
|
|
35
|
Rodrigues Neto E, Fonseca MK, Guedes ÁCB, Oliveira FH, Hilbig A, Fernandez LL. Neuropathological findings in entorhinal cortex of subjects aged 50 years or older and their correlation with dementia in a sample from Southern Brazil. Dement Neuropsychol 2017; 11:24-31. [PMID: 29213490 PMCID: PMC5619211 DOI: 10.1590/1980-57642016dn11-010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction The aims of this study were to survey neurodegenerative changes detected by
abnormal protein deposits in the Entorhinal Cortex (EC) of subjects aged 50
years or older and to correlate these findings with suspected dementia, as
detected by the IQCODE (Informant Questionnaire on Cognitive Decline in the
Elderly). Methods Fourteen brains were submitted to the immunohistochemistry technique for
different proteins (beta-amyloid, tau, α-synuclein and
phospho-TDP-43) and data obtained compared with IQCODE scores. Results Fifty-seven percent of the individuals exhibited IQCODE results compatible
with dementia, being classified into the demented group (DG): 87.5% of
patients had neuropathological findings corresponding to Alzheimer's-like
brain pathology (ALBP). Of the patients in the non-demented group (NDG),
16.7% met neuropathological criteria for ALBP. All individuals in the DG
showed deposits of more than one kind of protein in the EC. The most common
association was hyperphosphorylated tau and beta-amyloid protein
(87.5%). Discussion Most individuals with dementia had neuropathological findings of ALBP, as did
one individual with no signs of dementia, characterizing a preclinical
stage. The results of this study suggest that deposits of a single type of
anomalous protein are normal findings in an aging brain, while more than one
kind of protein or the combined presence of anomalous protein deposits
indicate the presence of dementia.
Collapse
Affiliation(s)
- Edson Rodrigues Neto
- Medical Student at the Federal University of Health Sciences of Porto Alegre (UFCSPA). Scientific initiation scholars of the Foundation for Research of Rio Grande do Sul
| | - Mariana K Fonseca
- Medical Student at the Federal University of Health Sciences of Porto Alegre (UFCSPA). Scientific initiation scholars of the Foundation for Research of Rio Grande do Sul
| | - Álvaro C B Guedes
- Medical Student at the Federal University of Health Sciences of Porto Alegre (UFCSPA). Scientific initiation scholars of the Foundation for Research of Rio Grande do Sul
| | - Francine H Oliveira
- Pathologist. Specialist in Neuropathology at the Institute of Neuropathology of the University Hospital of Zurich. MSc in Pathology at the Federal University of Health Sciences of Porto Alegre, Porto Alegre RS, Brazil
| | - Arlete Hilbig
- Neurologist. PhD in Internal Medicine at the Federal University of Rio Grande do Sul, Porto Alegre RS, Brazil. Associate Professor at the Federal University of Health Sciences of Porto Alegre, Porto Alegre RS, Brazil
| | - Liana Lisboa Fernandez
- Neurologist. PhD in Cellular and Molecular Biology at the Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil and the University of Barcelona, and Adjunct Professor at the Federal University of Health Sciences of Porto Alegre, Porto Alegre RS, Brazil
| |
Collapse
|
36
|
Alfieri JA, Silva PR, Igaz LM. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice. Front Aging Neurosci 2016; 8:310. [PMID: 28066234 PMCID: PMC5167738 DOI: 10.3389/fnagi.2016.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Julio A Alfieri
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET Buenos Aires, Argentina
| | - Pablo R Silva
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET Buenos Aires, Argentina
| |
Collapse
|
37
|
Modulation of the cytoplasmic functions of mammalian post-transcriptional regulatory proteins by methylation and acetylation: a key layer of regulation waiting to be uncovered? Biochem Soc Trans 2016; 43:1285-95. [PMID: 26614674 DOI: 10.1042/bst20150172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-transcriptional control of gene expression is critical for normal cellular function and viability and many of the proteins that mediate post-transcriptional control are themselves subject to regulation by post-translational modification (PTM), e.g. phosphorylation. However, proteome-wide studies are revealing new complexities in the PTM status of mammalian proteins, in particular large numbers of novel methylated and acetylated residues are being identified. Here we review studied examples of methylation/acetylation-dependent regulation of post-transcriptional regulatory protein (PTRP) function and present collated PTM data that points to the huge potential for regulation of mRNA fate by these PTMs.
Collapse
|
38
|
Eftekharzadeh B, Hyman BT, Wegmann S. Structural studies on the mechanism of protein aggregation in age related neurodegenerative diseases. Mech Ageing Dev 2016; 156:1-13. [PMID: 27005270 DOI: 10.1016/j.mad.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/12/2016] [Accepted: 03/03/2016] [Indexed: 01/09/2023]
Abstract
The progression of many neurodegenerative diseases is assumed to be caused by misfolding of specific characteristic diseases related proteins, resulting in aggregation and fibril formation of these proteins. Protein misfolding associated age related diseases, although different in disease manifestations, share striking similarities. In all cases, one disease protein aggregates and loses its function or additionally shows a toxic gain of function. However, the clear link between these individual amyloid-like protein aggregates and cellular toxicity is often still uncertain. The similar features of protein misfolding and aggregation in this group of proteins, all involved in age related neurodegenerative diseases, results in high interest in characterization of their structural properties. We review here recent findings on structural properties of some age related disease proteins, in the context of their biological importance in disease.
Collapse
Affiliation(s)
- Bahareh Eftekharzadeh
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA.
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
Serrano GE, Sabbagh MN, Sue LI, Hidalgo JA, Schneider JA, Bedell BJ, Van Deerlin VM, Suh E, Akiyama H, Joshi AD, Pontecorvo MJ, Mintun MA, Beach TG. Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis 2015; 42:813-21. [PMID: 24927705 DOI: 10.3233/jad-140162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal neuronal accumulation and modification of TAR DNA binding protein 43 (TDP-43) have recently been discovered to be defining histopathological features of particular subtypes of frontotemporal dementia and amyotrophic lateral sclerosis, and are also common in aging, particularly coexisting with hippocampal sclerosis and Alzheimer's disease pathology. This case report describes a 72 year old Hispanic male with no family history of neurological disease, who presented at age 59 with obsessive behavior, anxiety, agitation, and dysphasia. Positron emission tomography imaging using the amyloid ligand 18F florbetapir (Amyvid) was positive. Postmortem examination revealed frequent diffuse and neuritic amyloid plaques throughout the cerebral cortex, thalamus, and striatum, Braak stage II neurofibrillary degeneration, and frequent frontal and temporal cortex TDP-43-positive neurites with rare nuclear inclusions. The case is unusual and instructive because of the co-existence of frequent cortical and diencephalic amyloid plaques with extensive TDP-43-positive histopathology in the setting of early-onset dementia and because it demonstrates that a positive cortical amyloid imaging signal in a subject with dementia does not necessarily establish that Alzheimer's disease is the sole cause.
Collapse
Affiliation(s)
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | - Barry J Bedell
- Biospective Inc. and Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Eunran Suh
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Smethurst P, Sidle KCL, Hardy J. Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol Appl Neurobiol 2015; 41:578-97. [PMID: 25487060 DOI: 10.1111/nan.12206] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder which predominantly affects the motor neurons in the brain and spinal cord. The death of the motor neurons in ALS causes subsequent muscle atrophy, paralysis and eventual death. Clinical and biological evidence now demonstrates that ALS has many similarities to prion disease in terms of disease onset, phenotype variability and progressive spread. The pathognomonic ubiquitinated inclusions deposited in the neurons and glial cells in brains and spinal cords of patients with ALS and fronto-temporal lobar degeneration with ubiquitinated inclusions contain aggregated transactive response DNA binding protein of 43 kDa (TDP-43), and evidence now suggests that TDP-43 has cellular prion-like properties. The cellular mechanisms of prion protein misfolding and aggregation are thought to be responsible for the characteristics of prion disease. Therefore, there is a strong mechanistic basis for a prion-like behaviour of the TDP-43 protein being responsible for some characteristics of ALS. In this review, we compare the prion-like mechanisms of TDP-43 to the clinical and biological nature of ALS in order to investigate how this protein could be responsible for some of the characteristic properties of the disease.
Collapse
Affiliation(s)
- Phillip Smethurst
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, London, UK
| | | | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, London, UK
| |
Collapse
|
41
|
An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun 2015; 6:5845. [PMID: 25556531 DOI: 10.1038/ncomms6845] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022] Open
Abstract
TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here, we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signalling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies.
Collapse
|
42
|
Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R, Kuo PH, Wu CC, Liao JY, Chou SC, Lin V, Jin LW, Yuan HS, Cheng IH, Tu PH, Chen YR. Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 2014; 5:4824. [PMID: 25215604 DOI: 10.1038/ncomms5824] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/25/2014] [Indexed: 12/12/2022] Open
Abstract
Proteinaceous inclusions are common hallmarks of many neurodegenerative diseases. TDP-43 proteinopathies, consisting of several neurodegenerative diseases, including frontotemporal lobar dementia (FTLD) and amyotrophic lateral sclerosis (ALS), are characterized by inclusion bodies formed by polyubiquitinated and hyperphosphorylated full-length and truncated TDP-43. The structural properties of TDP-43 aggregates and their relationship to pathogenesis are still ambiguous. Here we demonstrate that the recombinant full-length human TDP-43 forms structurally stable, spherical oligomers that share common epitopes with an anti-amyloid oligomer-specific antibody. The TDP-43 oligomers are stable, have exposed hydrophobic surfaces, exhibit reduced DNA binding capability and are neurotoxic in vitro and in vivo. Moreover, TDP-43 oligomers are capable of cross-seeding Alzheimer's amyloid-β to form amyloid oligomers, demonstrating interconvertibility between the amyloid species. Such oligomers are present in the forebrain of transgenic TDP-43 mice and FTLD-TDP patients. Our results suggest that aside from filamentous aggregates, TDP-43 oligomers may play a role in TDP-43 pathogenesis.
Collapse
Affiliation(s)
- Yu-Sheng Fang
- 1] Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang District, Taipei 115, Taiwan [2] Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang fu Road, Section 2, Hsinchu 30013, Taiwan
| | - Kuen-Jer Tsai
- 1] Institute of Clinical Medicine, National Cheng Kung University, 1, University Road, Tainan 701, Taiwan [2] Institute of Basic Medical Science, National Cheng Kung University, 1, University Road, Tainan 701, Taiwan
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang District, Taipei 115, Taiwan
| | - Patricia Kao
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, University of California Davis Medical Center, 2805 50th Street, Sacramento, California 95817, USA
| | - Rima Woods
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, University of California Davis Medical Center, 2805 50th Street, Sacramento, California 95817, USA
| | - Pan-Hsien Kuo
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang District, Taipei 115, Taiwan
| | - Cheng-Chun Wu
- 1] Institute of Clinical Medicine, National Cheng Kung University, 1, University Road, Tainan 701, Taiwan [2] Institute of Basic Medical Science, National Cheng Kung University, 1, University Road, Tainan 701, Taiwan
| | - Jhih-Ying Liao
- Institute of Brain Science, School of Medicine, National Yang Ming University, 155, Linong Street, Section 2, Taipei 112, Taiwan
| | - Shih-Chieh Chou
- 1] Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang District, Taipei 115, Taiwan [2] Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming University, 155, Linong Street, Section 2, Taipei 112, Taiwan
| | - Vinson Lin
- Department of Chemistry, National Taiwan University, 1, Roosevelt Road, Section 4, Taipei 106, Taiwan
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, University of California Davis Medical Center, 2805 50th Street, Sacramento, California 95817, USA
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang District, Taipei 115, Taiwan
| | - Irene H Cheng
- Institute of Brain Science, School of Medicine, National Yang Ming University, 155, Linong Street, Section 2, Taipei 112, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang District, Taipei 115, Taiwan
| | - Yun-Ru Chen
- 1] Genomics Research Center, Academia Sinica, 128, Academia Road, Section 2, Nankang District, Taipei 115, Taiwan [2] Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang fu Road, Section 2, Hsinchu 30013, Taiwan
| |
Collapse
|
43
|
Arai T. Significance and limitation of the pathological classification of TDP-43 proteinopathy. Neuropathology 2014; 34:578-88. [PMID: 25196969 DOI: 10.1111/neup.12138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022]
Abstract
Based on the cerebral tans-activation response DNA protein 43 (TDP-43) immunohistochemistry, frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) is classified into four subtypes: type A has numerous neuronal cytoplasmic inclusions (NCIs) and dystrophic neurites (DNs); type B has numerous NCIs with few DNs; type C is characterized by DNs which are often longer and thicker than DNs in type A, with few NCIs; and type D has numerous neuronal intranuclear inclusions and DNs with few NCIs. The relevance of this classification system is supported by clinical, biochemical and genetic correlations, although there is still significant heterogeneity, especially in cases with type A pathology. The subtypes of TDP-43 pathology should be determined in cases with other neurodegenerative disorders, including Alzheimer's disease and dementia with Lewy bodies, to evaluate the pathological significance of TDP-43 abnormality in them. The results of the biochemical analyses of the diseased brains and the cellular models suggest that different strains of TDP-43 with different conformations may determine the clinicopathological phenotypes of TDP-43 proteinopathy, like prion disease. Clarifying the mechanism of the conformational changes of TDP-43 leading to the formation of multiple abnormal strains may be important for differential diagnosis and developing disease-modifying therapy for TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Tetsuaki Arai
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
44
|
Huang C, Huang B, Bi F, Yan LH, Tong J, Huang J, Xia XG, Zhou H. Profiling the genes affected by pathogenic TDP-43 in astrocytes. J Neurochem 2014; 129:932-9. [PMID: 24447103 DOI: 10.1111/jnc.12660] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 12/19/2013] [Accepted: 01/14/2014] [Indexed: 12/12/2022]
Abstract
Mutation in TAR DNA binding protein 43 (TDP-43) is a causative factor of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurodegeneration may not require the presence of pathogenic TDP-43 in all types of relevant cells. Rather, expression of pathogenic TDP-43 in neurons or astrocytes alone is sufficient to cause cell-autonomous or non-cell-autonomous neuron death in transgenic rats. How pathogenic TDP-43 in astrocytes causes non-cell-autonomous neuron death, however, is not clear. Here, we examined the effect of pathogenic TDP-43 on gene expression in astrocytes. Microarray assay revealed that pathogenic TDP-43 in astrocytes preferentially altered expression of the genes encoding secretory proteins. Whereas neurotrophic genes were down-regulated, neurotoxic genes were up-regulated. Representative genes Lcn2 and chitinase-3-like protein 1 were markedly up-regulated in astrocytes from primary culture and intact transgenic rats. Furthermore, synthetic chitinase-3-like protein 1 induced neuron death in a dose-dependent manner. Our results suggest that TDP-43 pathogenesis is associated with the simultaneous induction of multiple neurotoxic genes in astrocytes, which may synergistically produce adverse effects on neuronal survival and contribute to non-cell-autonomous neuron death. Restricted expression of pathogenic TDP-43 in astrocytes causes non-cell-autonomous motor neuron death in transgenic rats. As revealed by microarray assay, pathogenic TDP-43 in astrocytes preferentially altered expression of the genes encoding secretory proteins. Whereas neurotrophic genes were down-regulated, neurotoxic genes were up-regulated. Therefore, TDP-43 pathogenesis is associated with simultaneous induction of neurotoxic genes and repression of neurotrophic genes in astrocytes.
Collapse
Affiliation(s)
- Cao Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Capitini C, Conti S, Perni M, Guidi F, Cascella R, De Poli A, Penco A, Relini A, Cecchi C, Chiti F. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells. PLoS One 2014; 9:e86720. [PMID: 24497973 PMCID: PMC3907574 DOI: 10.1371/journal.pone.0086720] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/13/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.
Collapse
Affiliation(s)
- Claudia Capitini
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Simona Conti
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Michele Perni
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Francesca Guidi
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Roberta Cascella
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Angela De Poli
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | | | - Cristina Cecchi
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
46
|
Di Liegro CM, Schiera G, Di Liegro I. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review). Int J Mol Med 2014; 33:747-62. [PMID: 24452120 PMCID: PMC3976132 DOI: 10.3892/ijmm.2014.1629] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5′ or 3′ to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3′-untranslated (3′-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, I-90127 Palermo, Italy
| |
Collapse
|
47
|
Janssens J, Van Broeckhoven C. Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders. Hum Mol Genet 2013; 22:R77-87. [PMID: 23900071 PMCID: PMC3782069 DOI: 10.1093/hmg/ddt349] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 07/07/2013] [Accepted: 07/21/2013] [Indexed: 01/09/2023] Open
Abstract
Aggregation of misfolded TAR DNA-binding protein 43 (TDP-43) is a striking hallmark of neurodegenerative processes that are observed in several neurological disorders, and in particular in most patients diagnosed with frontotemporal lobar degeneration (FTLD) or amyotrophic lateral sclerosis (ALS). A direct causal link with TDP-43 brain proteinopathy was provided by the identification of pathogenic mutations in TARDBP, the gene encoding TDP-43, in ALS families. However, TDP-43 proteinopathy has also been observed in carriers of mutations in several other genes associated with both ALS and FTLD demonstrating a key role for TDP-43 in neurodegeneration. To date, and despite substantial research into the biology of TDP-43, its functioning in normal brain and in neurodegeneration processes remains largely elusive. Nonetheless, breakthroughs using cellular and animal models have provided valuable insights into ALS and FTLD pathogenesis. Accumulating evidence has redirected the research focus towards a major role for impaired RNA metabolism and protein homeostasis. At the same time, the concept that toxic TDP-43 protein aggregates promote neurodegeneration is losing its credibility. This review aims at highlighting and discussing the current knowledge on TDP-43 driven pathomechanisms leading to neurodegeneration as observed in TDP-43 proteinopathies. Based on the complexity of the associated neurological diseases, a clear understanding of the essential pathological modifications will be crucial for further therapeutic interventions.
Collapse
Affiliation(s)
- Jonathan Janssens
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
48
|
Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C, Siller R, Burr K, Haghi G, Story D, Nishimura AL, Carrasco MA, Phatnani HP, Shum C, Wilmut I, Maniatis T, Shaw CE, Finkbeiner S, Chandran S. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci U S A 2013; 110:4697-702. [PMID: 23401527 PMCID: PMC3607024 DOI: 10.1073/pnas.1300398110] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glial proliferation and activation are associated with disease progression in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia. In this study, we describe a unique platform to address the question of cell autonomy in transactive response DNA-binding protein (TDP-43) proteinopathies. We generated functional astroglia from human induced pluripotent stem cells carrying an ALS-causing TDP-43 mutation and show that mutant astrocytes exhibit increased levels of TDP-43, subcellular mislocalization of TDP-43, and decreased cell survival. We then performed coculture experiments to evaluate the effects of M337V astrocytes on the survival of wild-type and M337V TDP-43 motor neurons, showing that mutant TDP-43 astrocytes do not adversely affect survival of cocultured neurons. These observations reveal a significant and previously unrecognized glial cell-autonomous pathological phenotype associated with a pathogenic mutation in TDP-43 and show that TDP-43 proteinopathies do not display an astrocyte non-cell-autonomous component in cell culture, as previously described for SOD1 ALS. This study highlights the utility of induced pluripotent stem cell-based in vitro disease models to investigate mechanisms of disease in ALS and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Andrea Serio
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Bilada Bilican
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Sami J. Barmada
- Taube-Koret Center, Hellman Program, and Rodenberry Stem Cell Program, Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94143
| | - Dale Michael Ando
- Taube-Koret Center, Hellman Program, and Rodenberry Stem Cell Program, Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Chen Zhao
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Rick Siller
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Karen Burr
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Ghazal Haghi
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - David Story
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Agnes Lumi Nishimura
- Institute of Psychiatry, Medical Research Council Centre for Neurodegeneration Research, King’s College London, London SE5 8AF, United Kingdom; and
| | - Monica A. Carrasco
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Hemali P. Phatnani
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Carole Shum
- Institute of Psychiatry, Medical Research Council Centre for Neurodegeneration Research, King’s College London, London SE5 8AF, United Kingdom; and
| | - Ian Wilmut
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Christopher E. Shaw
- Institute of Psychiatry, Medical Research Council Centre for Neurodegeneration Research, King’s College London, London SE5 8AF, United Kingdom; and
| | - Steven Finkbeiner
- Taube-Koret Center, Hellman Program, and Rodenberry Stem Cell Program, Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94143
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neurone Disease Research, Centre for Neuroregeneration, and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| |
Collapse
|
49
|
Sieben A, Van Langenhove T, Engelborghs S, Martin JJ, Boon P, Cras P, De Deyn PP, Santens P, Van Broeckhoven C, Cruts M. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 2012; 124:353-72. [PMID: 22890575 PMCID: PMC3422616 DOI: 10.1007/s00401-012-1029-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/21/2012] [Accepted: 07/27/2012] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of disorders characterized by disturbances of behavior and personality and different types of language impairment with or without concomitant features of motor neuron disease or parkinsonism. FTLD is characterized by atrophy of the frontal and anterior temporal brain lobes. Detailed neuropathological studies have elicited proteinopathies defined by inclusions of hyperphosphorylated microtubule-associated protein tau, TAR DNA-binding protein TDP-43, fused-in-sarcoma or yet unidentified proteins in affected brain regions. Rather than the type of proteinopathy, the site of neurodegeneration correlates relatively well with the clinical presentation of FTLD. Molecular genetic studies identified five disease genes, of which the gene encoding the tau protein (MAPT), the growth factor precursor gene granulin (GRN), and C9orf72 with unknown function are most frequently mutated. Rare mutations were also identified in the genes encoding valosin-containing protein (VCP) and charged multivesicular body protein 2B (CHMP2B). These genes are good markers to distinguish underlying neuropathological phenotypes. Due to the complex landscape of FTLD diseases, combined characterization of clinical, imaging, biological and genetic biomarkers is essential to establish a detailed diagnosis. Although major progress has been made in FTLD research in recent years, further studies are needed to completely map out and correlate the clinical, pathological and genetic entities, and to understand the underlying disease mechanisms. In this review, we summarize the current state of the rapidly progressing field of genetic, neuropathological and clinical research of this intriguing condition.
Collapse
Affiliation(s)
- Anne Sieben
- Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerpen, Belgium
- Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Tim Van Langenhove
- Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerpen, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerpen, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerpen, Belgium
| | | | - Paul Boon
- Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Patrick Cras
- Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerpen, Belgium
| | - Peter-Paul De Deyn
- Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerpen, Belgium
- Alzheimer Research Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick Santens
- Department of Neurology, University Hospital Ghent and University of Ghent, Ghent, Belgium
| | - Christine Van Broeckhoven
- Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Marc Cruts
- Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerpen, Belgium
| |
Collapse
|
50
|
Youmans KL, Wolozin B. TDP-43: a new player on the AD field? Exp Neurol 2012; 237:90-5. [PMID: 22691390 DOI: 10.1016/j.expneurol.2012.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/17/2012] [Accepted: 05/27/2012] [Indexed: 12/20/2022]
|