1
|
Hernández-Ochoa B, Ortega-Cuellar D, González-Valdez A, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG, Contreras-García IJ, Pichardo-Macías LA, Bandala C, Gómez-Manzo S. COVID-19 in G6PD-deficient patients, oxidative stress, and neuropathology. Curr Top Med Chem 2022; 22:1307-1325. [PMID: 35578850 DOI: 10.2174/1568026622666220516111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that regulates energy metabolism mainly through the pentose phosphate pathway (PPP). It is well known that this enzyme participates in the antioxidant/oxidant balance via the synthesis of energy-rich molecules: nicotinamide adenine dinucleotide phosphate reduced (NADPH), the reduced form of flavin adenine dinucleotide (FADH) and glutathione (GSH), controlling reactive oxygen species generation. Coronavirus disease 19 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is considered a public health problem which has caused approximately 4.5 million deaths since December 2019. In relation to the role of G6PD in COVID-19 development, it is known from the existing literature that G6PD-deficient patients infected with SARS-CoV-2 are more susceptible to thrombosis and hemolysis, suggesting that G6PD deficiency facilitates infection by SARS-CoV-2. In relation to G6PD and neuropathology, it has been observed that deficiency of this enzyme is also present with an increase in oxidative markers. In relation to the role of G6PD and the neurological manifestations of COVID-19, it has been reported that the enzymatic deficiency in patients infected with SARS-CoV-2 exacerbates the disease, and, in some clinical reports, an increase in hemolysis and thrombosis was observed when patients were treated with hydroxychloroquine (OH-CQ), a drug with oxidative properties. In the present work, we summarize the evidence of the role of G6PD in COVID-19 and its possible role in the generation of oxidative stress and glucose metabolism deficits and inflammation present in this respiratory disease and its progression including neurological manifestations.
Collapse
Affiliation(s)
- Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, 06720, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| | | | | | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, 07738, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| |
Collapse
|
2
|
Tiwari M. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities. Genes Dis 2017; 4:196-203. [PMID: 30258923 PMCID: PMC6150112 DOI: 10.1016/j.gendis.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Glucose 6 phosphate dehydrogenase (G6PD) is a key and rate limiting enzyme in the pentose phosphate pathway (PPP). The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH). There are preponderance research findings that demonstrate the enzyme (G6PD) role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted from G6PD deficiency. The X-linked genetic deficiency of G6PD and associated non-immune hemolytic anemia have been studied widely across the globe. Recent advancement in biology, more precisely neuroscience has revealed that G6PD is centrally involved in many neurological and neurodegenerative disorders. The neuroprotective role of the enzyme (G6PD) has also been established, as well as the potential of G6PD in oxidative damage and the Reactive Oxygen Species (ROS) produced in cerebral ischemia. Though G6PD deficiency remains a global health issue, however, a paradigm shift in research focusing the potential of the enzyme in neurological and neurodegenerative disorders will surely open a new avenue in diagnostics and enzyme therapeutics. Here, in this study, more emphasis was made on exploring the role of G6PD in neurological and inflammatory disorders as well as non-immune hemolytic anemia, thus providing diagnostic and therapeutic opportunities.
Collapse
Key Words
- ALS, Amyotrophic lateral sclerosis
- DOPA, L-3, 4-dihydroxyphenylalanine
- EC, enzyme commission
- G6 PD, glucose 6 phosphatase dehydrogenase
- Glucose 6 phosphate dehydrogenase
- Hemolytic anemia
- MND, motor neuron disease
- MS, multiples sclerosis
- Metabolic disorders
- Neurodegenerative disorders
- PPP, pentose phosphate pathway
- RBCs, red blood cells
- ROS, reactive oxygen species
- pQ, poly-glutamine
Collapse
Affiliation(s)
- Manju Tiwari
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Sotgiu S, Pugliatti M, Fois ML, Arru G, Sanna A, Sotgiu MA, Rosati G. Genes, environment, and susceptibility to multiple sclerosis. Neurobiol Dis 2004; 17:131-43. [PMID: 15474351 DOI: 10.1016/j.nbd.2004.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 07/01/2004] [Accepted: 07/20/2004] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system affecting young adults and thus representing a major burden also for their families and communities. The etiology of MS is obscure and its pathogenesis is yet incompletely depicted. Increased evidences indicate a strong genetic contribution to MS susceptibility, although others support the view that it is also influenced by environmental factors, possibly related to still unidentified pathogens. MS appears to be more heterogeneous than previously believed at the immunological level, and new pathological studies indicate a series of subset of conditions under the common denominator MS. The use of genetically homogeneous and geographically isolated populations at high MS risk, such as that of Sardinia, insular Italy, becomes in principle a vital requirement to reduce biological variables and the intrinsic complexity of the disease. This review will focus on recent findings on the peculiarity of Sardinian MS concerning epidemiological, genetic, and environmental aspects. Epidemiological studies reveal a clear heterogeneous distribution of MS cases in the Northern province of Sassari which may not be uniquely assigned to genetic variations. Furthermore, a different immunogenetic profile, including the association with other immunomediated diseases, and a progressive change in clinical phenotype, including age at onset, are present in this island which gives us unexpected variations at the level of patients' cohort and territorial distribution, especially when the northern province is compared to the southern one. This renders MS etiopathogenesis more complex than formerly thought even in this selected and genetically stable population.
Collapse
Affiliation(s)
- Stefano Sotgiu
- Institute of Clinical Neurology, University of Sassari, 07100 Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
4
|
Sotgiu S, Pugliatti M, Sanna A, Sotgiu A, Castiglia P, Solinas G, Dolei A, Serra C, Bonetti B, Rosati G. Multiple sclerosis complexity in selected populations: the challenge of Sardinia, insular Italy. Eur J Neurol 2002; 9:329-41. [PMID: 12099914 DOI: 10.1046/j.1468-1331.2002.00412.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several lines of evidence indicate a genetic contribution to multiple sclerosis (MS) both in terms of predisposition to the disease and of immunological mechanisms which are known to play crucial roles in MS pathogenesis. The presence of high- and low-risk areas for MS in neighbouring regions supports the theory that MS predisposition is influenced by a complex interaction of genetic and environmental factors. Therefore, the use of genetically homogeneous and geographically isolated populations becomes an increasing requirement to reduce biasing biological variables. Sardinians fulfil these conditions well because of their different phylogeny from Europeans and the unique selective pressures which shaped their genome. Sardinians display amongst the highest MS prevalence rates world-wide and increasing MS incidence rates over time. Also, MS in Sardinia is linked to distinct human leucocyte antigen (HLA) alleles and associated to different patterns of cytokine production from lymphoid cells of different HLA subtypes. In this context, recent findings and future perspectives on the peculiarities of Sardinian MS concerning genetic, immunological and epidemiological aspects are presented. So far, our results indicate that variations at the level of territorial distribution and HLA-association are present which render MS heterogeneous even in this ethnically homogeneous population.
Collapse
Affiliation(s)
- S Sotgiu
- Institute of Clinical Neurology, University of Sassari, Viale San Pietro, Sassari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|