1
|
Suponeva N, Grishina D. The use of vitamin B12 in cancer patients. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:31-35. [DOI: 10.17116/jnevro202212204131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Wang C, Huang L, Li R, Wang Y, Wu X, Shang D. Synergistic Therapy of Doxorubicin with Cationic Anticancer Peptide L-K6 Reverses Multidrug Resistance in MCF-7/ADR Cancer Cells In Vitro via P-glycoprotein Inhibition. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10253-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Hirota T, Tanaka T, Takesue H, Ieiri I. Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 2016; 13:19-30. [DOI: 10.1080/17425255.2017.1230199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Arias A, Rigalli JP, Villanueva SSM, Ruiz ML, Luquita MG, Perdomo VG, Vore M, Catania VA, Mottino AD. Regulation of expression and activity of multidrug resistance proteins MRP2 and MDR1 by estrogenic compounds in Caco-2 cells. Role in prevention of xenobiotic-induced cytotoxicity. Toxicology 2014; 320:46-55. [PMID: 24685904 DOI: 10.1016/j.tox.2014.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/10/2014] [Accepted: 03/20/2014] [Indexed: 11/28/2022]
Abstract
ABC transporters including MRP2, MDR1 and BCRP play a major role in tissue defense. Epidemiological and experimental studies suggest a cytoprotective role of estrogens in intestine, though the mechanism remains poorly understood. We evaluated whether pharmacologic concentrations of ethynylestradiol (EE, 0.05pM to 5nM), or concentrations of genistein (GNT) associated with soy ingestion (0.1-10μM), affect the expression and activity of multidrug resistance proteins MRP2, MDR1 and BCRP using Caco-2 cells, an in vitro model of intestinal epithelium. We found that incubation with 5pM EE and 1μM GNT for 48h increased expression and activity of both MRP2 and MDR1. Estrogens did not affect expression of BCRP protein at any concentration studied. Irrespective of the estrogen tested, up-regulation of MDR1 and MRP2 protein was accompanied by increased levels of MDR1 mRNA, whereas MRP2 mRNA remained unchanged. Cytotoxicity assays demonstrated association of MRP2 and MDR1 up-regulation with increased resistance to cell death induced by 1-chloro-2,4-dinitrobenzene, an MRP2 substrate precursor, and by paraquat, an MDR1 substrate. Experiments using an estrogen receptor (ER) antagonist implicate ER participation in MRP2 and MDR1 regulation. GNT but not EE increased the expression of ERβ, the most abundant form in human intestine and in Caco-2 cells, which could lead in turn to increased sensitivity to estrogens. We conclude that specific concentrations of estrogens can confer resistance against cytotoxicity in Caco-2 cells, due in part to positive modulation of ABC transporters involved in extrusion of their toxic substrates. Although extrapolation of these results to the in vivo situation must be cautiously done, the data could explain tentatively the cytoprotective role of estrogens against chemical injury in intestine.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/drug effects
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Caco-2 Cells
- Dinitrochlorobenzene/toxicity
- Dose-Response Relationship, Drug
- Estrogen Antagonists/pharmacology
- Estrogen Receptor beta/genetics
- Ethinyl Estradiol/administration & dosage
- Ethinyl Estradiol/pharmacology
- Gene Expression Regulation/drug effects
- Genistein/administration & dosage
- Genistein/pharmacology
- Humans
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/drug effects
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Paraquat/toxicity
- RNA, Messenger/metabolism
- Glycine max/chemistry
- Up-Regulation/drug effects
- Xenobiotics/toxicity
Collapse
Affiliation(s)
- Agostina Arias
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Juan Pablo Rigalli
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Silvina S M Villanueva
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - María L Ruiz
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Marcelo G Luquita
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Virginia G Perdomo
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Mary Vore
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA
| | - Viviana A Catania
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Aldo D Mottino
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina.
| |
Collapse
|
5
|
Myelin damage due to local quantitative abnormalities in normal prion levels: evidence from subacute combined degeneration and multiple sclerosis. J Neurol 2013; 261:1451-60. [DOI: 10.1007/s00415-013-7152-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
6
|
Pellanda H. Betaine homocysteine methyltransferase (BHMT)-dependent remethylation pathway in human healthy and tumoral liver. Clin Chem Lab Med 2013; 51:617-21. [PMID: 23449526 DOI: 10.1515/cclm-2012-0689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/30/2012] [Indexed: 11/15/2022]
Abstract
Carcinogenesis is a multi-step and multifactorial process. It includes genetic, epigenetic, nutritional and environmental factors, which are closely interconnected. Human hepatocellular carcinoma (HCC) is among the most frequent and lethal cancers. Imbalance in the S-adenosylmethionine (SAM) concentration, the main methyl group donor, strongly influences the development of HCC. Key enzymes of carbon metabolism are greatly reduced in patients with cirrhosis and HCC. These alterations play a role in genetic instability and epigenetic modifications (DNA methylation, and histone modifications), however, the molecular underlying mechanisms are still poorly understood. We aimed to investigate betaine homocysteine methyltransferase (BHMT) expression in HepG2 cells and human hepatocarcinoma tissues. Tumor and surrounding healthy tissue were compared. HepG2 cells and tumor samples showed a strong decrease in BHMT transcripts resulting from the transcription of a splicing variant that contained a frameshift mutation generating a premature termination codon and gene loss of function. This splicing variant, not detected in normal adult and fetal liver, cannot be explained by any mechanism involving the known splicing consensus sequences. BHMT activity was abolished in HepG2 cells and protein expression was detected neither in HepG2 cells nor in five of the six tumor samples investigated. Further investigation is needed to elucidate whether this abnormal BHMT transcription is part of cause or consequence of liver carcinogenesis.
Collapse
Affiliation(s)
- Hélène Pellanda
- INSERM U 954, Faculté de Médecine – BP 184, 54511 Vandoeuvre les Nancy, France
| |
Collapse
|
7
|
Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase. Biochimie 2013; 95:1033-40. [PMID: 23415654 DOI: 10.1016/j.biochi.2013.01.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/30/2013] [Indexed: 12/16/2022]
Abstract
Vitamin B12 (cobalamin, cbl) is a cofactor of methionine synthase (MTR) in the synthesis of methionine, the precursor of the universal methyl donor S-Adenosylmethionine (SAM), which is involved in epigenomic regulatory mechanisms. We have established a neuronal cell model with stable expression of a transcobalamin-oleosin chimer and subsequent decreased cellular availability of vitamin B12, which produces reduced proliferation, increased apoptosis and accelerated differentiation through PP2A, NGF and TACE pathways. Anti-transcobalamin antibody or impaired transcobalamin receptor expression produce also impaired proliferation in other cells. Consistently, the transcription, protein expression and activity of MTR are increased in proliferating cells of skin and intestinal epitheliums, in rat intestine crypts and in proliferating CaCo2 cells, while MTR activity correlates with DNA methylation in rat intestine villi. Exposure to nitrous oxide in animal models identified impairment of MTR reaction as the most important metabolic cause of neurological manifestations of B12 deficiency. Early vitamin B12 and folate deprivation during gestation and lactation of a 'dam-progeny' rat model developed in our laboratory is associated with long-lasting disabilities of behavior and memory capacities, with persisting hallmarks related to increased apoptosis, impaired neurogenesis and altered plasticity. We found also an epigenomic deregulation of energy metabolism and fatty acids beta-oxidation in myocardium and liver, through imbalanced methylation/acetylation of PGC-1alpha and decreased expression of SIRT1. These nutrigenomic effects display similarities with the molecular mechanisms of fetal programming. Beside deficiency, B12 loading increases the expression of MTR through internal ribosome entry sites (IRES) and down-regulates MDR-1 gene expression. In conclusion, vitamin B12 influences cell proliferation, differentiation and apoptosis in brain. Vitamin B12 and folate combined deficiency impairs fatty acid oxidation and energy metabolism in liver and heart through epigenomic mechanisms related to imbalanced acetylation/methylation. Some but not all of these effects reflect the upstream role of vitamin B12 in SAM synthesis.
Collapse
|
8
|
Scalabrino G, Veber D. Cobalamin and normal prions: a new horizon for cobalamin neurotrophism. Biochimie 2013; 95:1041-6. [PMID: 23328344 DOI: 10.1016/j.biochi.2013.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/04/2013] [Indexed: 01/29/2023]
Abstract
It is known that cobalamin (Cbl) deficiency damages myelin by increasing tumor necrosis factor (TNF)-α and decreasing epidermal growth factor (EGF) levels in rat central nervous system (CNS), and affects the peripheral nervous system (PNS) morphologically and functionally. It is also known that some polyneuropathies not due to Cbl deficiency are connected with increased TNF-α levels, and that various cytokines (including TNF-α) and growth factors regulate the in vitro synthesis of normal prions (PrP(C)s). Given that there is extensive evidence that PrP(C)s play a key role in the maintenance of CNS and PNS myelin, we investigated whether the PrP(C) octapeptide repeat (OR) region is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy. After intracerebroventricularly administering antibodies (Abs) against the OR region (OR-Abs) to Cbl-D rats to prevent myelin damage and maximum nerve conduction velocity (MNCV) abnormalities, and PrP(C)s to otherwise normal rats to reproduce PNS Cbl-D-like lesions, we measured PrP(C) levels and MNCV of the sciatic and tibial nerves. PrP(C) and TNF-α levels were increased in sciatic and tibial nerves of Cbl-D and saline-treated rats, and the OR-Abs normalized the myelin ultrastructure, TNF-α levels, and MNCV values of the sciatic and tibial nerves of Cbl-D rats. The same peripheral nerves of the otherwise normal PrP(C)-treated rats showed typical Cbl-D myelin lesions, significantly increased TNF-α levels, and significantly decreased MNCV values. These findings demonstrate that Cbl deficiency induces excess PrP(C)s and thereby excess OR regions, which seem to be responsible for the PNS myelin damage, as has recently been found in the case of CNS myelin damage [66]. Furthermore, excess TNF-α is also involved in the pathogenesis of Cbl-D polyneuropathy. In conclusion, we have extended the list of prion diseases by adding one caused by excess PrP(C)s and the polyneuropathies related to excess TNF-α.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Città Studi Department, Laboratory of Neuropathology, University of Milan, via Mangiagalli 31, 20133 Milan, Italy.
| | | |
Collapse
|
9
|
Rigalli JP, Perdomo VG, Luquita MG, Villanueva SSM, Arias A, Theile D, Weiss J, Mottino AD, Ruiz ML, Catania VA. Regulation of biotransformation systems and ABC transporters by benznidazole in HepG2 cells: involvement of pregnane X-receptor. PLoS Negl Trop Dis 2012; 6:e1951. [PMID: 23272261 PMCID: PMC3521711 DOI: 10.1371/journal.pntd.0001951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 10/26/2012] [Indexed: 12/21/2022] Open
Abstract
Background Benznidazole (BZL) is the only antichagasic drug available in most endemic countries. Its effect on the expression and activity of drug-metabolizing and transporter proteins has not been studied yet. Methodology/Principal Findings Expression and activity of P-glycoprotein (P-gp), Multidrug resistance-associated protein 2 (MRP2), Cytochrome P450 3A4 (CYP3A4), and Glutathione S-transferase (GST) were evaluated in HepG2 cells after treatment with BZL. Expression was estimated by immunoblotting and real time PCR. P-gp and MRP2 activities were estimated using model substrates rhodamine 123 and dinitrophenyl-S-glutathione (DNP-SG), respectively. CYP3A4 and GST activities were evaluated through their abilities to convert proluciferin into luciferin and 1-chloro-2,4-dinitrobenzene into DNP-SG, respectively. BZL (200 µM) increased the expression (protein and mRNA) of P-gp, MRP2, CYP3A4, and GSTπ class. A concomitant enhancement of activity was observed for all these proteins, except for CYP3A4, which exhibited a decreased activity. To elucidate if pregnane X receptor (PXR) mediates BZL response, its expression was knocked down with a specific siRNA. In this condition, the effect of BZL on P-gp, MRP2, CYP3A4, and GSTπ protein up-regulation was completely abolished. Consistent with this, BZL was able to activate PXR, as detected by reporter gene assay. Additional studies, using transporter inhibitors and P-gp-knock down cells, demonstrated that P-gp is involved in BZL extrusion. Pre-treatment of HepG2 cells with BZL increased its own efflux, as a consequence of P-gp up-regulation. Conclusions/Significance Modifications in the activity of biotransformation and transport systems by BZL may alter the pharmacokinetics and efficiency of drugs that are substrates of these systems, including BZL itself. Chagas disease is an endemic infection caused by Trypanosoma cruzi. Benznidazole (BZL) is the only antichagasic drug available in most endemic countries. The liver plays a major role in disposition of endogenous and exogenous compounds and their excretion is mainly mediated by transporter proteins (such as P-gp and MRP2) that act coordinately with biotransformation enzymes (such as CYP3A4 and GST). At present there is no information on whether BZL may modulate major biotransformation systems and transporters, with potential impact on its disposition or on disposition of other therapeutic agents co-administered with BZL. BZL (200 µM) altered the expression (protein and mRNA) and activity of P-gp, MRP2, CYP3A4, and GSTπ in HepG2 cells (a cell model that retains many biochemical, morphological and functional properties of the human hepatocytes), being the nuclear receptor PXR a key mediator. Additional studies demonstrated that P-gp is involved in BZL extrusion. Alterations in the pharmacokinetics and efficiency of drugs that are substrates of these systems, including BZL itself, would be expected.
Collapse
Affiliation(s)
- Juan P. Rigalli
- Institute of Experimental Physiology (CONICET), School of Biochemical and Pharmaceutical Sciences (UNR), Rosario, Argentina
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Virginia G. Perdomo
- Institute of Experimental Physiology (CONICET), School of Biochemical and Pharmaceutical Sciences (UNR), Rosario, Argentina
| | - Marcelo G. Luquita
- Institute of Experimental Physiology (CONICET), School of Biochemical and Pharmaceutical Sciences (UNR), Rosario, Argentina
| | - Silvina S. M. Villanueva
- Institute of Experimental Physiology (CONICET), School of Biochemical and Pharmaceutical Sciences (UNR), Rosario, Argentina
| | - Agostina Arias
- Institute of Experimental Physiology (CONICET), School of Biochemical and Pharmaceutical Sciences (UNR), Rosario, Argentina
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Aldo D. Mottino
- Institute of Experimental Physiology (CONICET), School of Biochemical and Pharmaceutical Sciences (UNR), Rosario, Argentina
| | - María L. Ruiz
- Institute of Experimental Physiology (CONICET), School of Biochemical and Pharmaceutical Sciences (UNR), Rosario, Argentina
| | - Viviana A. Catania
- Institute of Experimental Physiology (CONICET), School of Biochemical and Pharmaceutical Sciences (UNR), Rosario, Argentina
- * E-mail:
| |
Collapse
|
10
|
Marguerite V, Gkikopoulou E, Alberto JM, Guéant JL, Merten M. Phospholipase D activation mediates cobalamin-induced downregulation of Multidrug Resistance-1 gene and increase in sensitivity to vinblastine in HepG2 cells. Int J Biochem Cell Biol 2012; 45:213-20. [PMID: 23032700 DOI: 10.1016/j.biocel.2012.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/15/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022]
Abstract
Failure of cancer chemotherapy due to multidrug resistance is often associated with altered Multidrug Resistance-1 gene expression. Cobalamin is the cofactor of methionine synthase, a key enzyme of the methionine cycle which synthesizes methionine, the precursor of cell S-adenosyl-methionine synthesis. We previously showed that cobalamin was able to down-regulate Multidrug Resistance-1 gene expression. Herein we report that this effect occurs through cobalamin-activation of phospholipase D activity in HepG2 cells. Cobalamin-induced down-regulation of Multidrug Resistance-1 gene expression was similar to that induced by the phospholipase D activator oleic acid and was negatively modulated by the phospholipase D inhibitor n-butanol. Cobalamin increased cell S-adenosyl-methionine content, which is the substrate for phosphatidylethanolamine-methyltransferase-dependent phosphatidylcholine production. We showed that cobalamin-induced increase in cell phosphatidylcholine production was phosphatidylethanolamine-methyltransferase-dependent. Oleic acid-dependent activation of phospholipase D was accompanied by an increased sensitivity to vinblastine of HepG2 cells while n-butanol enhanced the resistance of the cells to vinblastine. These data indicate that cobalamin mediates down-regulation of Multidrug Resistance-1 gene expression through increased S-adenosyl-methionine and phosphatidylcholine productions and phospholipase D activation. This points out phospholipase D as a potential target to down-regulate Multidrug Resistance-1 gene expression for improving chemotherapy efficacy.
Collapse
Affiliation(s)
- Véronique Marguerite
- Laboratory of Nutrition, Genetics and Exposition to Environmental Risks, Faculty of Medicine, Vandoeuvre-lès-Nancy F-54505, France
| | | | | | | | | |
Collapse
|
11
|
Abstract
A nutritional characteristic of trypanosomatid protozoa is that they need a heme compound as a growth factor. Because of the cytotoxic activity of heme and its structural similarity to cobalamins, we have investigated the in vitro and in vivo effect of vitamin B(12) (or cyanocobalamin) on the different forms of Trypanosoma cruzi. Cyanocobalamin showed a marked antiparasitic activity against epimastigotes (50% inhibitory concentration [IC(50)], 2.42 μM), amastigotes (IC(50), 10.69 μM), and trypomastigotes (IC(50), 9.46 μM). Anti-epimastigote and -trypomastigote values were 1.7 to 4 times lower than those obtained with the reference drug benznidazole (Bnz). We also found that B(12) and hemin do not interact with each other in their modes of action. Our results show that B(12) increases intracellular oxidative activity and stimulates both superoxide dismutase (50%) and ascorbate peroxidase (20%) activities, while the activity of trypanothione reductase was not modified. In addition, we found that the antioxidants dithiothreitol and ascorbic acid increase the susceptibility of the parasite to the cytotoxic action of B(12). We propose that vitamin B(12) exerts its growth-inhibitory effect through the generation of reactive oxygen species. In an in vivo assay, a significant reduction in the number of circulating parasites was found in T. cruzi-infected mice treated with cyanocobalamin and ascorbic acid. The reduction of parasitemia in benznidazole-treated mice was improved by the addition of these vitamins. According to our results, a combination of B(12) and Bnz should be further investigated due to its potential as a new therapeutic modality for the treatment of Chagas' disease.
Collapse
|
12
|
Pellanda H, Namour F, Fofou-Caillierez M, Bressenot A, Alberto JM, Chéry C, Ayav A, Bronowicki JP, Guéant JL, Forges T. A splicing variant leads to complete loss of function of betaine-homocysteine methyltransferase (BHMT) gene in hepatocellular carcinoma. Int J Biochem Cell Biol 2011; 44:385-92. [PMID: 22138536 DOI: 10.1016/j.biocel.2011.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 11/07/2011] [Accepted: 11/17/2011] [Indexed: 02/01/2023]
Abstract
The remethylation of homocyteine into methionine is catalyzed either by methionine synthase (MTR) or by betaine-homocysteine methyltransferase (BHMT), in the liver. Choline/betaine deficiency and impaired BHMT pathway have been associated with hepatocellular carcinogenesis, in animal models. The molecular mechanisms that impair the BHMT pathway are unknown. We aimed to investigate BHMT, BHMT2, and MTR expression in HepG2 cells and human hepatocarcinoma tissues. Transcripts were quantified by RT-qPCR and splicing was assessed by analysis of exon junctions and sequencing of variants. Protein expression was studied by Western Blot, immunohistochemistry and enzyme activity. Tumor tissue was compared with surrounding healthy tissue. RT-qPCR of HepG2 cells and of tumor samples showed a strong decrease of transcripts of BHMT and BHMT2, compared to normal. MTR transcript levels were not different. The decreased BHMT expression resulted from the transcription of a splicing variant that produced a frameshift in exon 4, with a premature termination codon in exon 5 and a loss of function of the gene. This splicing variant did not fit with any mechanism resulting from known splicing consensus sequences and was not detected in normal adult and fetal liver. Consistently, BHMT activity was abolished in HepG2 and protein expression was not detectable in HepG2 and in 5 of the 6 tumor samples, compared to normal tissues. In conclusion, a transcription variant of exon 4 produces a loss of function of BHMT in human hepatocarcinoma. Whether this abnormal transcription of BHMT is part or consequence of liver carcinogenesis should deserve further investigations.
Collapse
Affiliation(s)
- Hélène Pellanda
- INSERM U954 Nutrition, Genetics, and Environmental Risk Exposure, Faculté de Médecine, Nancy Université, 9 Avenue de Forêt de Haye, 54500 Vandoeuvre Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rigalli JP, Ruiz ML, Perdomo VG, Villanueva SSM, Mottino AD, Catania VA. Pregnane X receptor mediates the induction of P-glycoprotein by spironolactone in HepG2 cells. Toxicology 2011; 285:18-24. [DOI: 10.1016/j.tox.2011.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 02/05/2023]
|
14
|
|
15
|
Sun LR, Zhong JL, Cui SX, Li X, Ward SG, Shi YQ, Zhang XF, Cheng YN, Gao JJ, Qu XJ. Modulation of P-glycoprotein activity by the substituted quinoxalinone compound QA3 in adriamycin-resistant K562/A02 cells. Pharmacol Rep 2010; 62:333-42. [PMID: 20508289 DOI: 10.1016/s1734-1140(10)70273-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 10/21/2009] [Indexed: 10/25/2022]
Abstract
QA3 is a derivative of the substituted 1,3-dimethyl-1H-quinoxalin-2-ones, which are compounds that may selectively antagonize P-glycoprotein (P-gp) in multidrug resistance (MDR) cancer cells. Our previous work identified QA3 as a candidate compound for reversing MDR in cancer cells. In the present study, we found that QA3 significantly decreases the intracellular level of ATP, stimulates ATPase activity in membrane microsomes and decreases protein kinase C (PKC) activity. These results indicated that QA3 inhibits P-gp activity by blocking ATP hydrolysis and ATP regeneration. Furthermore, QA3 triggered and increased adriamycin-induced K562/A02 cell apoptosis as evidenced by Annexin V-FITC plus PI staining.Western blot analysis showed that the levels of cleaved caspase-9 and cleaved caspase-3 proteins increased, and similarly, the levels of procaspase-9 and procaspase-3 decreased after QA3 treatment. Consequently, poly ADP-ribose polymerase (PARP) activity increased as evidenced by the presence of the PARP cleavage product in K562/A02 cells. QA3 also enhanced the potency of adriamycin against K562/A02 cells as demonstrated by increased apoptosis and activation of caspase-9,-3 and PARP. These data support the observation that P-gp activity is inhibited after QA3 treatment. Moreover, these results indicate that QA3 is a novel MDR reversal agent with potent inhibitory action against P-gp MDR cancer cells.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
There is a growing awareness that natural vitamins (with the only exception of pantothenic acid) positively or negatively modulate the synthesis of some cytokines and growth factors in the CNS, and various mammalian cells and organs. As natural vitamins are micronutrients in the human diet, studying their effects can be considered a part of nutritional genomics or nutrigenomics. A given vitamin selectively modifies the synthesis of only a few cytokines and/or growth factors, although the same cytokine and/or growth factor may be regulated by more than one vitamin. These effects seem to be independent of the effects of vitamins as coenzymes and/or reducing agents, and seem to occur mainly at genomic and/or epigenetic level, and/or by modulating NF-kappaB activity. Although most of the studies reviewed here have been based on cultured cell lines, but their findings have been confirmed by some key in vivo studies. The CNS seems to be particularly involved and is severely affected by most avitaminoses, especially in the case of vitamin B(12). However, the vitamin-induced changes in cytokine and growth factor synthesis may initiate a cascade of events that can affect the function, differentiation, and morphology of the cells and/or structures not only in the CNS, but also elsewhere because most natural vitamins, cytokines, and growth factors cross the blood-brain barrier. As cytokines are essential to CNS-immune and CNS-hormone system communications, natural vitamins also interact with these circuits. Further studies of such vitamin-mediated effects could lead to vitamins being used for the treatment of diseases which, although not true avitaminoses, involve an imbalance in cytokine and/or growth factor synthesis.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Laboratory of Neuropathology, 'Città Studi' Department, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Scalabrino G. The multi-faceted basis of vitamin B12 (cobalamin) neurotrophism in adult central nervous system: Lessons learned from its deficiency. Prog Neurobiol 2009; 88:203-20. [DOI: 10.1016/j.pneurobio.2009.04.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/03/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
18
|
Scalabrino G, Veber D, Mutti E. Experimental and clinical evidence of the role of cytokines and growth factors in the pathogenesis of acquired cobalamin-deficient leukoneuropathy. ACTA ACUST UNITED AC 2008; 59:42-54. [DOI: 10.1016/j.brainresrev.2008.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 01/08/2023]
|
19
|
Effect of all-trans retinoic acid on drug sensitivity and expression of survivin in LoVo cells. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200802020-00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|