1
|
Switonski M, Szczerbal I, Nowacka-Woszuk J. From cytogenetics to cytogenomics: a new era in the diagnosis of chromosomal abnormalities in domestic animals. J Appl Genet 2025:10.1007/s13353-025-00943-x. [PMID: 39869248 DOI: 10.1007/s13353-025-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Identification of chromosomal abnormalities is an important issue in animal breeding and veterinary medicine. Routine cytogenetic diagnosis of domestic animals began in the 1960s with the aim of identifying carriers of centric fusion between chromosome 1 and 29 in cattle. In the 1970s, chromosome banding techniques were introduced, and in the 1980s, the first cytogenomic techniques, based on the development of locus- and chromosome-specific probes, were used. Since the beginning of the twenty-first century, molecular techniques (such as polymorphism of microsatellite markers, droplet digital PCR, SNP microarrays, and whole genome sequencing) have begun to be widely used in animal breeding. This review is focused on the cytogenomic diagnosis of chromosome abnormalities in cattle, horses, pigs, dogs, and cats. We show that these approaches are very useful in large-population screening studies of the prevalence of aneuploidies (mainly of sex chromosomes) and structural rearrangements (centric fusions and reciprocal translocations).
Collapse
Affiliation(s)
- M Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland.
| | - I Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - J Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
2
|
Molecular Cytogenetics in Domestic Bovids: A Review. Animals (Basel) 2023; 13:ani13050944. [PMID: 36899801 PMCID: PMC10000107 DOI: 10.3390/ani13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.
Collapse
|
3
|
Peres PHF, Luduvério DJ, Bernegossi AM, Galindo DJ, Nascimento GB, Oliveira ML, Sandoval EDP, Vozdova M, Kubickova S, Cernohorska H, Duarte JMB. Revalidation of Mazama rufa (Illiger 1815) (Artiodactyla: Cervidae) as a Distinct Species out of the Complex Mazama americana (Erxleben 1777). Front Genet 2022; 12:742870. [PMID: 34970296 PMCID: PMC8712859 DOI: 10.3389/fgene.2021.742870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The red brocket deer Mazama americana Erxleben, 1777 is considered a polyphyletic complex of cryptic species with wide chromosomal divergence. Evidence indicates that the observed chromosomal divergences result in reproductive isolation. The description of a neotype for M. americana allowed its genetic characterization and represented a comparative basis to resolve the taxonomic uncertainties of the group. Thus, we designated a neotype for the synonym Mazama rufa Illiger, 1815 and tested its recognition as a distinct species from the M. americana complex with the analysis of morphological, cytogenetic and molecular data. We also evaluated its distribution by sampling fecal DNA in the wild. Morphological data from craniometry and body biometry indicated an overlap of quantitative measurements between M. rufa and the entire M. americana complex. The phylogenetic hypothesis obtained through mtDNA confirmed the reciprocal monophyly relationship between M. americana and M. rufa, and both were identified as distinct molecular operational taxonomic units by the General Mixed Yule Coalescent species delimitation analysis. Finally, classic cytogenetic data and fluorescence in situ hybridization with whole chromosome painting probes showed M. rufa with a karyotype of 2n = 52, FN = 56. Comparative analysis indicate that at least fifteen rearrangements separate M. rufa and M. americana (sensu stricto) karyotypes, which confirmed their substantial chromosomal divergence. This divergence should represent an important reproductive barrier and allow its characterization as a distinct and valid species. Genetic analysis of fecal samples demonstrated a wide distribution of M. rufa in the South American continent through the Atlantic Forest, Cerrado and south region of Amazon. Thus, we conclude for the revalidation of M. rufa as a distinct species under the concept of biological isolation, with its karyotype as the main diagnostic character. The present work serves as a basis for the taxonomic review of the M. americana complex, which should be mainly based on cytogenetic characterization and directed towards a better sampling of the Amazon region, the evaluation of available names in the species synonymy and a multi-locus phylogenetic analysis.
Collapse
Affiliation(s)
- Pedro H F Peres
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Douglas J Luduvério
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - David J Galindo
- Faculty of Veterinary Medicine, National University of San Marcos (UNMSM), Lima, Peru
| | | | - Márcio L Oliveira
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
FISH and Chimps: Insights into Frequency and Distribution of Sperm Aneuploidy in Chimpanzees ( Pan troglodytes). Int J Mol Sci 2021; 22:ijms221910383. [PMID: 34638739 PMCID: PMC8509033 DOI: 10.3390/ijms221910383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Numerical chromosomal aberrations in sperm are considered to be a major factor in infertility, early pregnancy loss and syndromes with developmental and cognitive disabilities in mammals, including primates. Despite numerous studies in human and farm animals, the incidence and importance of sperm aneuploidies in non-human primate remains mostly undetermined. Here we investigated the incidence and distribution of sperm aneuploidy in chimpanzees (Pan troglodytes), the species closest to human. We identify evolutionary conserved DNA sequences in human and chimpanzee and selected homologous sub-telomeric regions for all chromosomes to build custom probes and perform sperm-FISH analysis on more than 10,000 sperm nuclei per chromosome. Chimpanzee mean autosomal disomy rate was 0.057 ± 0.02%, gonosomes disomy rate was 0.198% and the total disomy rate was 1.497%. The proportion of X or Y gametes was respectively 49.94% and 50.06% for a ratio of 1.002 and diploidy rate was 0.053%. Our data provide for the first time an overview of aneuploidy in non-human primate sperm and shed new insights into the issues of aneuploidy origins and mechanisms.
Collapse
|
5
|
Meiotic Silencing in Pigs: A Case Study in a Translocated Azoospermic Boar. Genes (Basel) 2021; 12:genes12081137. [PMID: 34440311 PMCID: PMC8394674 DOI: 10.3390/genes12081137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Carriers of balanced constitutional reciprocal translocations usually present a normal phenotype, but often show reproductive disorders. For the first time in pigs, we analyzed the meiotic process of an autosome-autosome translocation associated with azoospermia. Meiotic process analysis revealed the presence of unpaired autosomal segments with histone γH2AX accumulation sometimes associated with the XY body. Additionally, γH2AX signals were observed on apparently synapsed autosomes other than the SSC1 or SSC15, as previously observed in Ataxia with oculomotor apraxia type 2 patients or knock-out mice for the Senataxin gene. Gene expression showed a downregulation of genes selected on chromosomes 1 and 15, but no upregulation of SSCX genes. We hypothesized that the total meiotic arrest observed in this boar might be due to the silencing of crucial autosomal genes by the mechanism referred to as meiotic silencing of unsynapsed chromatin (MSUC).
Collapse
|
6
|
Pirosanto Y, Laseca N, Valera M, Molina A, Moreno-Millán M, Bugno-Poniewierska M, Ross P, Azor P, Demyda-Peyrás S. Screening and detection of chromosomal copy number alterations in the domestic horse using SNP-array genotyping data. Anim Genet 2021; 52:431-439. [PMID: 34013628 DOI: 10.1111/age.13077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Chromosomal abnormalities are a common cause of infertility in horses. However, they are difficult to detect using automated methods. Here, we propose a simple methodology based on single nucleotide polymorphism (SNP)-array data that allows us to detect the main chromosomal abnormalities in horses in a single procedure. As proof of concept, we were able to detect chromosomal abnormalities in 33 out of 268 individuals, including monosomies, chimerisms, and male and female sex-reversions, by analyzing the raw signal intensity produced by an SNP array-based genotyping platform. We also demonstrated that the procedure is not affected by the SNP density of the array employed or by the inbreeding level of the individuals. Finally, the methodology proposed in this study could be performed in an open bioinformatic environment, thus permitting its integration as a flexible screening tool in diagnostic laboratories and genomic breeding programs.
Collapse
Affiliation(s)
- Y Pirosanto
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, 1900, Argentina.,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 s/n, La Plata, 1900, Argentina
| | - N Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. de Utrera km 1, Sevilla, 41013, España
| | - A Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Moreno-Millán
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Bugno-Poniewierska
- Katedra Rozrodu, Anatomii i Genomiki Zwierząt Wydział Hodowli i Biologii Zwierząt, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - P Ross
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - P Azor
- Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Edif. Indotorre · Avda. del Reino Unido 11, pl. 3ª 2, Sevilla, 41012, España
| | - S Demyda-Peyrás
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, 1900, Argentina.,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 s/n, La Plata, 1900, Argentina
| |
Collapse
|
7
|
Donaldson B, Villagomez DAF, King WA. Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective. Animals (Basel) 2021; 11:1257. [PMID: 33925534 PMCID: PMC8146943 DOI: 10.3390/ani11051257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
The chromosomes of the domestic pig (Sus scrofa domesticus) are known to be prone to reciprocal chromosome translocations and other balanced chromosome rearrangements with concomitant fertility impairment of carriers. In response to the remarkable prevalence of chromosome rearrangements in swine herds, clinical cytogenetics laboratories have been established in several countries in order to screen young boars for chromosome rearrangements prior to service. At present, clinical cytogenetics laboratories typically apply classical cytogenetics techniques such as giemsa-trypsin (GTG)-banding to produce high-quality karyotypes and reveal large-scale chromosome ectopic exchanges. Further refinements to clinical cytogenetics practices have led to the implementation of molecular cytogenetics techniques such as fluorescent in-situ hybridization (FISH), allowing for rearrangements to be visualized and breakpoints refined using fluorescently labelled painting probes. The next-generation of clinical cytogenetics include the implementation of DNA microarrays, and next-generation sequencing (NGS) technologies such as DNA sequencing to better explore tentative genome architecture changes. The implementation of these cytogenomics techniques allow the genomes of rearrangement carriers to be deciphered at the highest resolution, allowing rearrangements to be detected; breakpoints to be delineated; and, most importantly, potential gene implications of those chromosome rearrangements to be interrogated. Clinical cytogenetics has become an integral tool in the livestock industry, identifying rearrangements and allowing breeders to make informed breeding decisions.
Collapse
Affiliation(s)
- Brendan Donaldson
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | | | - W. Allan King
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Karyotekk Inc., Box 363 OVC, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals (Basel) 2021; 11:ani11030831. [PMID: 33809432 PMCID: PMC8001954 DOI: 10.3390/ani11030831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical cytogenetic studies in horses have been ongoing for over half a century and clearly demonstrate that chromosomal disorders are among the most common non-infectious causes of decreased fertility, infertility, and congenital defects. Large-scale cytogenetic surveys show that almost 30% of horses with reproductive or developmental problems have chromosome aberrations, whereas abnormal karyotypes are found in only 2-5% of the general population. Among the many chromosome abnormalities reported in the horse, most are unique or rare. However, all surveys agree that there are two recurrent conditions: X-monosomy and SRY-negative XY male-to-female sex reversal, making up approximately 35% and 11% of all chromosome abnormalities, respectively. The two are signature conditions for the horse and rare or absent in other domestic species. The progress in equine genomics and the development of molecular tools, have qualitatively improved clinical cytogenetics today, allowing for refined characterization of aberrations and understanding the underlying molecular mechanisms. While cutting-edge genomics tools promise further improvements in chromosome analysis, they will not entirely replace traditional cytogenetics, which still is the most straightforward, cost-effective, and fastest approach for the initial evaluation of potential breeding animals and horses with reproductive or developmental disorders.
Collapse
|
9
|
Danielak-Czech B, Kozubska-Sobocińska A, Smołucha G, Babicz M. Breeding and Economic Aspects of Cytogenetic Screening Studies of Pigs Qualified for Reproduction. Animals (Basel) 2020; 10:E1200. [PMID: 32679919 PMCID: PMC7401512 DOI: 10.3390/ani10071200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Cytogenetic monitoring allows the identification and early removal of pigs affected by inherited karyotype defects from breeding herds. These abnormalities cause developmental anomalies, considerably reducing the fertility (by several dozen to 100%) and performance parameters of breeding herds, resulting in substantial financial losses. This mainly concerns reciprocal translocations, typical of pigs, which are highly prevalent (about 0.46%), generally occur de novo, and normally result in low breeding soundness of the carriers. Due to the potential spontaneous occurrence of chromosomal aberrations and the rapid spread of these genetic defects in the population, especially under artificial insemination conditions, it is necessary to perform routine karyotype screening of animals qualified for reproduction. The cytogenetic screening program for young boars, carried out using continually refined diagnostic techniques, permits a precise and reliable karyotype assessment, identification of chromosomal abnormalities, and formulation of specific selection guidelines.
Collapse
Affiliation(s)
- Barbara Danielak-Czech
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice n. Kraków, Poland; (B.D.-C.); (A.K.-S.)
| | - Anna Kozubska-Sobocińska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice n. Kraków, Poland; (B.D.-C.); (A.K.-S.)
| | - Grzegorz Smołucha
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice n. Kraków, Poland; (B.D.-C.); (A.K.-S.)
| | - Marek Babicz
- Institute of Animal Breeding and Biodiversity Conservation, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|
10
|
Abstract
Reproductive disorders are genetically heterogeneous and complex; available genetic tests are limited to chromosome analysis and 1 susceptibility gene. Cytogenetic analysis should be the first test to confirm or rule out chromosomal aberrations. No causative genes/mutations are known. The only available genetic test for stallion subfertility is based on a susceptibility gene FKBP6. The ongoing progress in equine genomics will improve the status of genetic testing. However, because subfertile phenotypes do not facilitate collection of large numbers of samples or pedigrees, and clinical causes of many cases remain unknown, further progress requires constructive cross-talk between geneticists, clinicians, breeders, and owners.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Veterinary Research Building Room 306, 588 Raymond Stotzer Parkway, College Station, TX 77843-4458, USA.
| |
Collapse
|
11
|
Rezaei S, Donaldson B, Villagomez DAF, Revay T, Mary N, Grossi DA, King WA. Routine Karyotyping Reveals Frequent Mosaic Reciprocal Chromosome Translocations in Swine: Prevalence, Pedigree, and Litter Size. Sci Rep 2020; 10:7471. [PMID: 32366875 PMCID: PMC7198520 DOI: 10.1038/s41598-020-64134-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 11/09/2022] Open
Abstract
In the routine commercial karyotype analysis on 5,481 boars, we identified 32 carriers of mosaic reciprocal translocations, half of which were carrying a specific recurrent translocation, mos t(7;9). An additional 7 mosaic translocations were identified through lymphocyte karyotype analysis from parents and relatives of mosaic carriers (n = 45), a control group of non-carrier boars (n = 73), and a mitogen assessment study (n = 20), bringing the total number of mosaic carriers to 39 cases. Mosaic translocations in all carriers were recognized to be confined to hematopoietic cells as no translocations were identified in fibroblasts cells of the carriers. In addition, negative impact on reproduction was not observed as the fertility of the carriers and their relatives were comparable to breed averages, and cryptic mosaicism was not detected in the family tree. This paper presents the first study of mosaic reciprocal translocations identified in swine through routine screening practices on reproductively unproven breeding boars while presenting evidence that these type of chromosome abnormalities are not associated with any affected phenotype on the carrier animals. In addition, the detection of recurrent mosaic translocations in this study may emphasize the non-random nature of mosaic rearrangements in swine and the potential role of genomic elements in their formation.
Collapse
Affiliation(s)
- Samira Rezaei
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brendan Donaldson
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Daniel A F Villagomez
- Departamento de Produccion Animal, Universidad de Guadalajara, Zapopan, 44100, Mexico
| | - Tamas Revay
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Nicolas Mary
- UMR INRA-ENVT 444 Génétique Cellulaire, École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles - BP 87614, 31076, Toulouse, Cedex 3, France
| | - Daniela A Grossi
- Fast Genetics, 8,4001 Millar Avenue, Saskatoon, SK, S7K 2K6, Canada
| | - W Allan King
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Karyotekk Inc. Box 363 OVC, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Genualdo V, Rossetti C, Pauciullo A, Musilova P, Incarnato D, Perucatti A. A de novo reciprocal chromosomal translocation t(3;6)(p14;q26) in the black Lucano pig. Reprod Domest Anim 2020; 55:677-682. [PMID: 32125727 DOI: 10.1111/rda.13664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023]
Abstract
In the past two decades, several cytogenetic screening programmes identified different chromosome rearrangements in pig, most of which represented by reciprocal translocation (rcp). This chromosome abnormality does not involve the variation in the number of chromosomes, but only the rearrangement of genetic material, resulting in phenotypically normal carriers with fertility problems. During an occasional cytogenetic screening, a new reciprocal translocation was detected in the black Lucano pig native breed. We analysed 15 animals reared by a family-run piggery in Basilicata region (Southern Italy). After karyotyping, four pigs (two boars and two sows) revealed two unpaired chromosomes. Analysis of the RBA karyotype and the dual-colour FISH technique confirmed that these pigs showed the same reciprocal translocation involving the chromosomes SSC3 and SSC6. The precise location of breakpoints was identified by RBH-FISH t(3;6)(p14;q26), whereas the analysis of the pedigree showed a case of Mendelian inheritance within a family, after the de novo occurrence of the new rcp. Considering the consequences of the rcp on the fertility, this study points out the importance of the cytogenetic screening in the native breeds for the safeguard of the genetic biodiversity and the sustainability of the rural areas.
Collapse
Affiliation(s)
- Viviana Genualdo
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Cristina Rossetti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Alfredo Pauciullo
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy.,Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Domenico Incarnato
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| | - Angela Perucatti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, Naples, Italy
| |
Collapse
|
13
|
Barasc H, Mouney-Bonnet N, Peigney C, Calgaro A, Revel C, Mary N, Ducos A, Pinton A. Analysis of Meiotic Segregation Pattern and Interchromosomal Effects in a Bull Heterozygous for a 3/16 Robertsonian Translocation. Cytogenet Genome Res 2018; 156:197-203. [DOI: 10.1159/000494289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Robertsonian translocations are the most frequent chromosomal rearrangements detected in cattle. Here, we report on the detection of a new Robertsonian translocation between chromosomes BTA3 and BTA16. This rob(3;16) was dicentric, suggesting that its occurrence was recent. FISH analysis of decondensed sperm nuclei revealed a relatively low rate of unbalanced gametes produced by adjacent segregation (5.87%). In addition, and for the first time in bovines, a significant interchromosomal effect (ICE) was detected for 2 different autosomes: BTA17 (global disomy + nullisomy rate of 9%) and BTA20 (1.8%). These results suggest that ICE should be taken into consideration when assessing the putative effect of Robertsonian translocations on reproduction.
Collapse
|
14
|
Qiu Q, Shao T, He Y, Muhammad AUR, Cao B, Su H. Applying real-time quantitative PCR to diagnosis of freemartin in Holstein cattle by quantifying SRY gene: a comparison experiment. PeerJ 2018; 6:e4616. [PMID: 29719732 PMCID: PMC5926548 DOI: 10.7717/peerj.4616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/22/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Freemartinism generally occurs in female offspring of dizygotic twins in a mixed-sex pregnancy. Most bovine heterosexual twin females are freemartins. However, about 10% of bovine heterosexual twin females are fertile. Farmers mostly cull bovine fertile heterosexual twin females due to the lack of a practical diagnostic approach. Culling of such animals results in economic and genetic-material losses both for dairy and beef industry. METHODS In this study, a comparative test, including qualitative detection of SRY gene by polymerase chain reaction (PCR), quantitative detection of relative content of SRY by real-time quantitative polymerase chain reaction (qPCR), and quantitative detection of H-Y antigen, was performed to establish the most accurate diagnosis for freemartin. Twelve Holstein heterosexual twin females were used in this study, while three normal Holstein bulls and three normal Holstein cows were used as a positive and negative control, respectively. RESULTS Polymerase chain reaction results revealed that SRY gene were absent in three heterosexual twin females and only two of them were verified as fertile in later age. The qPCR results showed that relative content of SRY was more than 14.2% in freemartins and below 0.41% in fertile heterosexual twin females. The H-Y antigen test showed no significant numerical difference between freemartin and fertile heterosexual twin female. DISCUSSION Our results show that relative content of SRY quantified by qPCR is a better detection method for diagnosis of freemartin in Holstein cattle as compare to qualitative detection of SRY gene by PCR or quantitative detection of H-Y antigen. To the authors' knowledge, this is the first time we applied qPCR to diagnosing freemartin by quantifying SRY gene and got relative SRY content of each freemartin and fertile heterosexual twin female. We concluded that low-level of SRY would not influence fertility of bovine heterosexual twin female.
Collapse
Affiliation(s)
- Qinghua Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Taoqi Shao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aziz-Ur-Rahman Muhammad
- University of Agriculture Faisalabad, Institute of Animal and Dairy Sciences, Faisalabad, Pakistan
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Abstract
The association between chromosomal abnormalities and reduced fertility in domestic animals is well recorded and has been studied for decades. Chromosome aberrations directly affect meiosis, gametogenesis, and the viability of zygotes and embryos. In some instances, balanced structural rearrangements can be transmitted, causing fertility problems in subsequent generations. Here, we aim to give a comprehensive overview of the current status and future prospects of clinical cytogenetics of animal reproduction by focusing on the advances in molecular cytogenetics during the genomics era. We describe how advancing knowledge about animal genomes has improved our understanding of connections between gross structural or molecular chromosome variations and reproductive disorders. Further, we expand on a key area of reproduction genetics: cytogenetics of animal gametes and embryos. Finally, we describe how traditional cytogenetics is interfacing with advanced genomics approaches, such as array technologies and next-generation sequencing, and speculate about the future prospects.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458;
| | | |
Collapse
|
16
|
Barasc H, Congras A, Mary N, Trouilh L, Marquet V, Ferchaud S, Raymond-Letron I, Calgaro A, Loustau-Dudez AM, Mouney-Bonnet N, Acloque H, Ducos A, Pinton A. Meiotic pairing and gene expression disturbance in germ cells from an infertile boar with a balanced reciprocal autosome-autosome translocation. Chromosome Res 2016; 24:511-527. [PMID: 27484982 PMCID: PMC5167775 DOI: 10.1007/s10577-016-9533-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/07/2022]
Abstract
Individuals carrying balanced constitutional reciprocal translocations generally have a normal phenotype, but often present reproductive disorders. The aim of our research was to analyze the meiotic process in an oligoasthenoteratospermic boar carrying an asymmetric reciprocal translocation involving chromosomes 1 and 14. Different multivalent structures (quadrivalent and trivalent plus univalent) were identified during chromosome pairing analysis. Some of these multivalents were characterized by the presence of unpaired autosomal segments with histone γH2AX accumulation sometimes associated with the XY body. Gene expression in spermatocytes was studied by RNA-DNA-FISH and microarray-based testis transcriptome analysis. Our results revealed a decrease in gene expression for chromosomes 1 and 14 and an up-regulated expression of X-chromosome genes for the translocated boar compared with normal individuals. We hypothesized that the observed meiotic arrest and reproductive failure in this boar might be due to silencing of crucial autosomal genes (MSUC) and disturbance of meiotic sex chromosome inactivation (MSCI). Further analysis revealed abnormal meiotic recombination (frequency and distribution) and the production of a high rate of unbalanced spermatozoa.
Collapse
Affiliation(s)
- Harmonie Barasc
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France.
| | - Annabelle Congras
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Nicolas Mary
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Lidwine Trouilh
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Valentine Marquet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Stéphane Ferchaud
- GenESI Génétique, Expérimentation et Système Innovants, 17700, Saint-Pierre-d'Amilly, France
| | - Isabelle Raymond-Letron
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, ENVT, Inserm U1031, UPS, Toulouse, France
| | - Anne Calgaro
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | | | | | - Hervé Acloque
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Alain Ducos
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - Alain Pinton
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| |
Collapse
|
17
|
Protein markers of synaptic behavior and chromatin remodeling of the neo-XY body in phyllostomid bats. Chromosoma 2015; 125:701-8. [PMID: 26661581 DOI: 10.1007/s00412-015-0566-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/22/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
The XX/XY system is the rule among mammals. However, many exceptions from this general pattern have been discovered since the last decades. One of these non-conventional sex chromosome mechanisms is the multiple sex chromosome system, which is evolutionary fixed among many bat species of the family Phyllostomidae, and has arisen by a translocation between one original gonosome (X or Y chromosome), and an autosome, giving rise to a "neo-XY body." The aim of this work is to study the synaptic behavior and the chromatin remodeling of multiple sex chromosomes in different species of phyllostomid bats using electron microscopy and molecular markers. Testicular tissues from adult males of the species Artibeus lituratus, Artibeus planirostris, Uroderma bilobatum, and Vampyrodes caraccioli from the eastern Amazonia were analyzed by optical/electron microscopy and immunofluorescence of meiotic proteins involved in synapsis (SYCP3 and SYCE3), sister-chromatid cohesion (SMC3), and chromatin silencing (BRCA1, γ-H2AX, and RNApol 2). The presence of asynaptic axes-labeled by BRCA1 and γ-H2AX-at meiotic prophase in testes that have a normal development of spermatogenesis, suggests that the basic mechanism that arrests spreading of transcriptional silencing (meiotic sex chromosome inactivation (MSCI)) to the autosomal segments may be per se the formation of a functional synaptonemal complex between homologous or non-homologous regions, and thus, this SC barrier might be probably related to the preservation of fertility in these systems.
Collapse
|
18
|
Ghosh S, Das PJ, Avila F, Thwaits BK, Chowdhary BP, Raudsepp T. A Non-Reciprocal Autosomal Translocation 64,XX, t(4;10)(q21;p15) in an Arabian Mare with Repeated Early Embryonic Loss. Reprod Domest Anim 2015; 51:171-4. [PMID: 26547799 DOI: 10.1111/rda.12636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022]
Abstract
Balanced autosomal translocations are a known cause for repeated early embryonic loss (REEL) in horses. In most cases, carriers of such translocations are phenotypically normal, but the chromosomal aberration negatively affects gametogenesis giving rise to both genetically balanced and unbalanced gametes. The latter, if involved in fertilization, result in REEL, whereas gametes with the balanced form of translocation will pass the defect into next generation. Therefore, in order to reduce the incidence of REEL, identification of translocation carriers is critical. Here, we report about a phenotypically normal 3-year-old Arabian mare that had repeated resorption of conceptuses prior to day 45 of gestation and was diagnosed with REEL. Conventional and molecular cytogenetic analyses revealed that the mare had normal chromosome number 64,XX but carried a non-mosaic and non-reciprocal autosomal translocation t(4;10)(q21;p15). This is a novel translocation described in horses with REEL and the first such report in Arabians. Previous cases of REEL due to autosomal translocations have exclusively involved Thoroughbreds. The findings underscore the importance of routine cytogenetic screening of breeding animals.
Collapse
Affiliation(s)
- S Ghosh
- Texas A&M University, College Station, TX, USA
| | - P J Das
- National Research Centre on Yak, Dirang, Arunachal Pradesh, India
| | - F Avila
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | - T Raudsepp
- Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
Iannuzzi A, Genualdo V, Perucatti A, Pauciullo A, Varricchio G, Incarnato D, Matassino D, Iannuzzi L. Fatal Outcome in a Newborn Calf Associated with Partial Trisomy 25q and Partial Monosomy 11q, 60,XX,der(11)t(11;25)(q11;q14∼21). Cytogenet Genome Res 2015; 146:222-9. [PMID: 26337016 DOI: 10.1159/000438973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 11/19/2022] Open
Abstract
A newborn calf of the Agerolese cattle breed underwent clinical cytogenetic investigation because of hyperflexion of the forelimbs, red eyes and the inability to stand. Anamnesis revealed that the mother, phenotypically normal, carried a chromosomal aberration. The newborn died after 2 weeks, and no remarkable alterations were found by the veterinarian on postmortem examination. The mother was a carrier of a reciprocal balanced translocation rcp(11;25)(q11,q14∼21) detected after a cytogenetic investigation in 2011; however, the analysis of the newborn revealed a different chromosomal aberration with partial trisomy of chromosome 25 and partial monosomy of chromosome 11. In fact, the results showed both chromosomes 25, one chromosome 11 and only one long derivative chromosome (der11). FISH analysis, performed using BAC clones, confirmed the chromosomes and their regions involved. Finally, both the localization of the breakpoints on band q11 (centromere) of chromosome 11 and band q14-21 of chromosome 25, and the complete loss of the der25 identified the aberration as an unbalanced translocation 60,XX,der(11)t(11;25)(q11;q14∼21). A comparison with human chromosomes was also performed to search for similarities and possible genes involved in order to study their effects, thus extending the knowledge of these aberrations by case reports.
Collapse
Affiliation(s)
- Alessandra Iannuzzi
- Laboratory of Animal Cytogenetics and Gene Mapping, ISPAAM, National Research Council CNR, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Demyda-Peyrás S, Anaya G, Bugno-Poniewierska M, Pawlina K, Membrillo A, Valera M, Moreno-Millán M. The use of a novel combination of diagnostic molecular and cytogenetic approaches in horses with sexual karyotype abnormalities: A rare case with an abnormal cellular chimerism. Theriogenology 2014; 81:1116-22. [DOI: 10.1016/j.theriogenology.2014.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 01/01/2023]
|
21
|
Cursino MS, Salviano MB, Abril VV, Zanetti EDS, Duarte JMB. The role of chromosome variation in the speciation of the red brocket deer complex: the study of reproductive isolation in females. BMC Evol Biol 2014; 14:40. [PMID: 24593190 PMCID: PMC3946183 DOI: 10.1186/1471-2148-14-40] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The red brocket deer, Mazama americana, has at least six distinct karyotypes in different regions of South America that suggest the existence of various species that are today all referred to as M. americana. From an evolutionary perspective, the red brockets are a relatively recent clade that has gone through intense diversification. This study sought to prove the existence of post-zygotic reproductive isolation in deer offspring between distinct chromosome lineages. To achieve this, inter-cytotype and intra-cytotype crosses were performed, which resulted in both F1 hybrid (n = 5) and pure offspring (n = 3) in captivity. RESULTS F1 females were analyzed in terms of their karyotypes, ovarian histology, estrous cycles and in vitro embryo production. Pure females presented parameters that were similar to those previously reported for M. Americana; however, the parameters for hybrid females were different. Two hybrids were determined to be sterile, while the remaining hybrids presented characteristics of subfertility. CONCLUSIONS The results support the existence of well-established reproductive isolation among the most distant karyotype lineages and elucidates the need to define all karyotype variants and their geographical ranges in order to define the number of species of red brocket.
Collapse
Affiliation(s)
- Marina Suzuki Cursino
- NUPECCE - Núcleo de Pesquisa e Conservação de Cervídeos, Departamento de Zootecnia, FCAV -Faculdade de Ciências Agrárias e Veterinárias, UNESP– Universidade Estadual Paulista, CEP 14884-900, Jaboticabal, SP, Brazil
- Programa de Pós-graduação em Medicina Veterinária, Reprodução Animal, FCAV, UNESP, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Maurício Barbosa Salviano
- Laboratory of Embryology and Biotechniques of Reproduction, Faculty of Veterinary Medicine, Postal 15004, 91501-970 Porto Alegre, RS, Brazil
| | - Vanessa Veltrini Abril
- NUPECCE - Núcleo de Pesquisa e Conservação de Cervídeos, Departamento de Zootecnia, FCAV -Faculdade de Ciências Agrárias e Veterinárias, UNESP– Universidade Estadual Paulista, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Eveline dos Santos Zanetti
- NUPECCE - Núcleo de Pesquisa e Conservação de Cervídeos, Departamento de Zootecnia, FCAV -Faculdade de Ciências Agrárias e Veterinárias, UNESP– Universidade Estadual Paulista, CEP 14884-900, Jaboticabal, SP, Brazil
| | - José Maurício Barbanti Duarte
- NUPECCE - Núcleo de Pesquisa e Conservação de Cervídeos, Departamento de Zootecnia, FCAV -Faculdade de Ciências Agrárias e Veterinárias, UNESP– Universidade Estadual Paulista, CEP 14884-900, Jaboticabal, SP, Brazil
- Programa de Pós-graduação em Medicina Veterinária, Reprodução Animal, FCAV, UNESP, CEP 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
22
|
Pan-African genetic structure in the African buffalo (Syncerus caffer): investigating intraspecific divergence. PLoS One 2013; 8:e56235. [PMID: 23437100 PMCID: PMC3578844 DOI: 10.1371/journal.pone.0056235] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today.
Collapse
|
23
|
Avila F, Das PJ, Kutzler M, Owens E, Perelman P, Rubes J, Hornak M, Johnson WE, Raudsepp T. Development and application of camelid molecular cytogenetic tools. J Hered 2012; 105:858-69. [PMID: 23109720 DOI: 10.1093/jhered/ess067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human-camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly.
Collapse
Affiliation(s)
- Felipe Avila
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Pranab J Das
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Michelle Kutzler
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Elaine Owens
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Polina Perelman
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Jiri Rubes
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Miroslav Hornak
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Warren E Johnson
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Terje Raudsepp
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak).
| |
Collapse
|
24
|
Fellows E, Kutzler M, Avila F, Das PJ, Raudsepp T. Ovarian dysgenesis in an alpaca with a minute chromosome 36. J Hered 2012; 105:870-4. [PMID: 23008444 DOI: 10.1093/jhered/ess069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A 4-year-old female alpaca (Lama pacos [LPA]) was presented to the Oregon State Veterinary Teaching Hospital for failure to display receptive behavior to males. Although no abnormalities were found on physical examination, transrectal ultrasonographic examination of the reproductive tract revealed uterine hypoplasia and ovarian dysgenesis. Cytogenetic analysis demonstrated a normal female 74,XX karyotype with 1 exceptionally small (minute) homologue of autosome LPA36. Chromosome analysis by Giemsa staining and DAPI- and C-banding revealed that the minute LPA36 was submetacentric, AT-rich, and largely heterochromatic. Because of the small size and lack of molecular markers, it was not possible to identify the origin of the minute. There is a need to improve molecular cytogenetic tools to further study the phenomenon of this minute chromosome and its relation to female reproduction in alpacas and llamas.
Collapse
Affiliation(s)
- Elizabeth Fellows
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp).
| | - Michelle Kutzler
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp)
| | - Felipe Avila
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp)
| | - Pranab J Das
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp)
| | - Terje Raudsepp
- From the Department of Animal and Rangeland Science, Oregon State University, 315 Withycombe Hall, Corvallis, OR 97331 (Fellows and Kutzler); and the Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College Station, TX (Avila, Das, and Raudsepp)
| |
Collapse
|
25
|
Das PJ, Lyle SK, Beehan D, Chowdhary BP, Raudsepp T. Cytogenetic and molecular characterization of Y isochromosome in a 63XO/64Xi(Yq) mosaic karyotype of an intersex horse. Sex Dev 2011; 6:117-27. [PMID: 22005008 DOI: 10.1159/000332212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sex chromosome aberrations commonly lead to abnormal sexual development. Here we cytogenetically and molecularly characterized Y isochromosome in an intersex horse. Blood lymphocyte analysis showed a mosaic karyotype with 96% 63,XO and 4% 64,Xi(Y) cells. Molecular analysis of the isochromosome was carried out by fluorescence in situ hybridization and polymerase chain reaction with male-specific and pseudoautosomal markers from the horse Y chromosome. We found that the isochromosome was monocentric, composed of 2 long arms, carrying 2 sets of genes of the pseudoautosomal region (PAR) and the male-specific region of the Y (MSY), including the SRY - thus being genetically equivalent to Y disomy. Sequence analysis of a 1,955-bp region including the SRY exon, the promoter and the UTRs, revealed no mutations in the aberrant Y. The presence of an intact SRY in a small proportion of cells is the proposed cause for the intersex phenotype. Given that the i(Yq) was present in a mosaic form, both post-zygotic and meiotic mechanisms of its origin were proposed. We speculated that nonmosaic 64,Xi(Yq) karyotypes might be rare or absent because of the likely instability of the i(Yq) during cell division. Genetic and phenotypic implications of Y isochromosome formation in other mammals are discussed in the light of the diversity of Y chromosome organization between species.
Collapse
Affiliation(s)
- P J Das
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
26
|
Raudsepp T, Das PJ, Avila F, Chowdhary BP. The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex Dev 2011; 6:72-83. [PMID: 21876343 DOI: 10.1159/000330627] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pseudoautosomal region (PAR) is a unique and specialized segment on the mammalian sex chromosomes with known functions in male meiosis and fertility. Detailed molecular studies of the region in human and mouse show dramatic differences between the 2 PARs. Recent mapping efforts in horse, dog/cat, cattle/ruminants, pig and alpaca indicate that the PAR also varies in size and gene content between other species. Given that PAR genes escape X inactivation, these differences might critically affect the genetic consequences, such as embryonic survival and postnatal phenotypes of sex chromosome aneuploidies. The aim of this review is to combine the available information about the organization of the PAR in domestic species with the cytogenetic data on sex chromosome aneuploidies. We show that viable XO individuals are relatively frequently found in species with small PARs, such as horses, humans and mice but are rare or absent in species in which the PAR is substantially larger, like in cattle/ruminants, dogs, pigs, and alpacas. No similar correlation can be detected between the PAR size and the X chromosome trisomy in different species. Recent evidence about the likely involvement of PAR genes in placenta formation, early embryonic development and genomic imprinting are presented.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
27
|
García-Vázquez FA, Hernández-Caravaca I, Martín M, Gómez E, Rodríguez A, Sánchez-Sánchez R, Gadea J. Two cases of reciprocal chromosomal translocation (4; 7)(p+; q-) (2; 8)(q-; q+) in piglets produced by ICSI. Reprod Domest Anim 2011; 46:728-30. [PMID: 21736633 DOI: 10.1111/j.1439-0531.2010.01707.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the karyotypes of 14 piglets from four different litters produced by intracytoplasmic sperm injection (ICSI) and embryo transfer were analysed. The chromosome analysis was based on a classical cytogenetic examination following the standard protocols of lymphocyte cultures. Two cases of reciprocal translocation [(4; 7)(p+; q-) and (2; 8)(q-; q+)] were detected in two female transgenic piglets. These animals showed neither anatomical nor physiological alterations and had normal growth. To our knowledge, this is the first karyotype study of piglets produced by ICSI.
Collapse
Affiliation(s)
- F A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hultén MA. On the origin of crossover interference: A chromosome oscillatory movement (COM) model. Mol Cytogenet 2011; 4:10. [PMID: 21477316 PMCID: PMC3103480 DOI: 10.1186/1755-8166-4-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/08/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It is now nearly a century since it was first discovered that crossovers between homologous parental chromosomes, originating at the Prophase stage of Meiosis I, are not randomly placed. In fact, the number and distribution of crossovers are strictly regulated with crossovers/chiasmata formed in optimal positions along the length of individual chromosomes, facilitating regular chromosome segregation at the first meiotic division. In spite of much research addressing this question, the underlying mechanism(s) for the phenomenon called crossover/chiasma interference is/are still unknown; and this constitutes an outstanding biological enigma. RESULTS The Chromosome Oscillatory Movement (COM) model for crossover/chiasma interference implies that, during Prophase of Meiosis I, oscillatory movements of the telomeres (attached to the nuclear membrane) and the kinetochores (within the centromeres) create waves along the length of chromosome pairs (bivalents) so that crossing-over and chiasma formation is facilitated by the proximity of parental homologs induced at the nodal regions of the waves thus created. This model adequately explains the salient features of crossover/chiasma interference, where (1) there is normally at least one crossover/chiasma per bivalent, (2) the number is correlated to bivalent length, (3) the positions are dependent on the number per bivalent, (4) interference distances are on average longer over the centromere than along chromosome arms, and (5) there are significant changes in carriers of structural chromosome rearrangements. CONCLUSIONS The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model. Further studies are underway to analyze mechanical/mathematical aspects of this model for the origin of crossover/chiasma interference, using string replicas of the homologous chromosomes at the Prophase stage of Meiosis I. The parameters to vary in this type of experiment will include: (1) the mitotic karyotype, i.e. ranked length and centromere index of the chromosomes involved, (2) the specific bivalent/multivalent length and flexibility, dependent on the way this structure is positioned within the nucleus and the size of the respective meiocyte nuclei, (3) the frequency characteristics of the oscillatory movements at respectively the telomeres and the kinetochores.
Collapse
Affiliation(s)
- Maj A Hultén
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, CMM L8:02, Karolinska Institutet, Karolinska University Hospital, Solna, S-17 1 76 Stockholm, Sweden.
| |
Collapse
|
29
|
Perucatti A, Genualdo V, Iannuzzi A, De Lorenzi L, Matassino D, Parma P, Di Berardino D, Iannuzzi L, Di Meo GP. A new and unusual reciprocal translocation in cattle: rcp(11;25)(q11;q14-21). Cytogenet Genome Res 2011; 134:96-100. [PMID: 21389692 DOI: 10.1159/000324696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2011] [Indexed: 11/19/2022] Open
Abstract
A new and unusual reciprocal translocation was detected in a heifer of the Agerolese cattle breed during a routine cytogenetic screening carried out on 13 animals (2 males and 11 females) kept at the ConSDABI Conservation Center in Benevento (Southern Italy). The 13 animals investigated had a normal karyotype except for a 1-year-old female, which carried one autosome smaller than the smallest normal bovine autosomes. This small autosome showed very little C-banding in comparison to the other autosomes, while another medium-sized autosome showed 2 distinct and prominent C-bands. RBA-banding and karyotype analysis revealed that these 2 chromosomes were the result of a reciprocal translocation between chromosomes 11 and 25. FISH analysis with BAC142G06 mapping to the proximal (subcentromeric) region of both BTA25 and der11, BAC513H08 (ELN) mapping to BTA25q22dist and der25, and BAC533C11 mapping to the proximal region of BTA11 and der11 confirmed the localization of the breakpoints on band q11 (centromere) of chromosome 11 and q14-21 of chromosome 25. Ag-NOR and sequential RBA/Ag-NOR techniques detected the presence of NORs on both BTA11 and BTA25 and both der11 and der25. To our knowledge, this is the first report of a reciprocal translocation event in cattle with the breakpoint located in the centromeric region.
Collapse
Affiliation(s)
- A Perucatti
- Laboratory of Animal Cytogenetics and Gene Mapping, National Research Council (CNR), ISPAAM, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Di Meo GP, Goldammer T, Perucatti A, Genualdo V, Iannuzzi A, Incarnato D, Rebl A, Di Berardino D, Iannuzzi L. Extended cytogenetic maps of sheep chromosome 1 and their cattle and river buffalo homoeologues: comparison with the OAR1 RH map and human chromosomes 2, 3, 21 and 1q. Cytogenet Genome Res 2011; 133:16-24. [PMID: 21282943 DOI: 10.1159/000323796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2010] [Indexed: 11/19/2022] Open
Abstract
Cytogenetic maps are useful tools for several applications, such as the physical anchoring of linkage and RH maps or genome sequence contigs to specific chromosome regions or the analysis of chromosome rearrangements. Recently, a detailed RH map was reported in OAR1. In the present study, we selected 38 markers equally distributed in this RH map for identification of ovine genomic DNA clones within the ovine BAC library CHORI-243 using the virtual sheep genome browser and performed FISH mapping for both comparison of OAR1 and homoeologous chromosomes BBU1q-BBU6 and BTA1-BTA3 and considerably extending the cytogenetic maps of the involved species-specific chromosomes. Comparison of the resulting maps with human-identified homology with HSA2q, HSA3, HSA21 and HSA1q reveals complex chromosome rearrangements differentiating human and bovid chromosomes. In addition, we identified 2 new small human segments from HSA2q and HSA3q conserved in the telomeric regions of OAR1p and homoeologous chromosome regions of BTA3 and BBU6, and OAR1q, respectively. Evaluation of the present OAR1 cytogenetic map and the OAR1 RH map supports previous RH assignments with 2 main exceptions. The 2 loci BMS4011 and CL638002 occupy inverted positions in these 2 maps.
Collapse
Affiliation(s)
- G P Di Meo
- National Research Council of Italy, ISPAAM, Laboratory of Animal Cytogenetics and Gene Mapping, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reproductive consequences of a reciprocal chromosomal translocation in two Duroc boars used to provide semen for artificial insemination. Theriogenology 2010; 74:67-74. [PMID: 20171726 DOI: 10.1016/j.theriogenology.2009.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/07/2009] [Accepted: 12/13/2009] [Indexed: 11/21/2022]
Abstract
Cytogenetic analysis of 58 boars at an artificial insemination (AI) centre revealed the presence of a reciprocal chromosome translocation, rcp(1;11)(q-;p+), in two Duroc boars. Pedigree analysis of these two boars suggested familial transmission of the chromosome rearrangement. The reproductive consequences of this translocation were determined in a herd of sows that had received semen doses from these and other boars. All sows underwent multiple AI, with different groups established retrospectively depending on the percentage of semen doses provided by the carrier boars ([number of carrier boar doses/total number doses provided] x 100): 0%, 25%, 50%, 75%, 100%. The fertility rates (percentage of successful multiple AIs/total multiple AIs) recorded for multiple AI including semen doses from the carrier boars were not significantly different from those recorded when all semen doses were supplied by normal-karyotype boars. A reduction in litter size of 29.38% was observed, however, in litters sired by one of the carrier boars when its participation in multiple AI was 100%. The number of live-born piglets per litter gradually decreased (P<0.05) as the percentage participation in multiple AI (25, 50, or 75%) of the carrier boar increased. In addition, both carrier boars sired some piglets with signs of cleft palate and complex malformations of the front legs; these died soon after birth. In conclusion, the boars carrying the translocation rcp(1;11)(q-;p+) showed reduced reproductive performance.
Collapse
|
32
|
Influence of sex on the meiotic segregation of a t(13;17) Robertsonian translocation: a case study in the pig. Hum Reprod 2009; 24:2034-43. [DOI: 10.1093/humrep/dep118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|