1
|
Chang Z, Liu Q, Fan P, Xu W, Xie Y, Gong K, Zhang C, Zhao Z, Sun K, Shao G. Hypoxia preconditioning increases Notch1 activity by regulating DNA methylation in vitro and in vivo. Mol Biol Rep 2024; 51:507. [PMID: 38622406 DOI: 10.1007/s11033-024-09308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.
Collapse
Affiliation(s)
- Zhehan Chang
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Radiology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Peijia Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenqiang Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabin Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zhijun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | - Kai Sun
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China.
| | - Guo Shao
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
- Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third People's Hospital of Longgang District, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Zhang S, Fu W, Jia X, Bade R, Liu X, Xie Y, Xie W, Jiang S, Shao G. Hypoxic Preconditioning Modulates BDNF and Its Signaling through DNA Methylation to Promote Learning and Memory in Mice. ACS Chem Neurosci 2023; 14:2320-2332. [PMID: 37289948 PMCID: PMC10289091 DOI: 10.1021/acschemneuro.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Hypoxic preconditioning (HPC) as an endogenous mechanism can resist hypoxia/ischemia injury and exhibit protective effects on neurological function including learning and memory. Although underlying molecular mechanisms remain unclear, HPC probably regulates the expression of protective molecules by modulating DNA methylation. Brain-derived neurotrophic factor (BDNF) activates its signaling upon binding to the tropomyosin-related kinase B (TrkB) receptor, which is involved in neuronal growth, differentiation, and synaptic plasticity. Therefore, this study focused on the mechanism by which HPC regulates BDNF and BDNF/TrkB signaling through DNA methylation to influence learning and memory. Initially, the HPC model was established by hypoxia stimulations on ICR mice. We found that HPC downregulated the expression of DNA methyltransferase (DNMT) 3A and DNMT3B. Then, the upregulation of BDNF expression in HPC mice was generated from a decrease in DNA methylation of the BDNF gene promoter detected by pyrophosphate sequencing. Subsequently, upregulation of BDNF activated BDNF/TrkB signaling and ultimately improved learning and spatial memory in HPC mice. Moreover, after mice were intracerebroventricularly injected with the DNMT inhibitor, the restraint of DNA methylation accompanied by an increase of BDNF and BDNF/TrkB signaling was also discovered. Finally, we observed that the inhibitor of BDNF/TrkB signaling prevented HPC from ameliorating learning and memory in mice. However, the DNMT inhibitor promoted spatial cognition in mice. Thus, we suggest that HPC may upregulate BDNF by inhibiting DNMTs and decreasing DNA methylation of the BDNF gene and then activate BDNF/TrkB signaling to improve learning and memory in mice. This may provide theoretical guidance for the clinical treatment of cognitive dysfunction caused by ischemia/hypoxia disease.
Collapse
Affiliation(s)
- Shiji Zhang
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
| | - Weng Fu
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
| | - Xiaoe Jia
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- School
of Basic Medicine and Forensic Sciences, Baotou Medical College, Baotou 014060, China
| | - Rengui Bade
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- School
of Medical Technology and Anesthesia, Baotou Medical College of Neuroscience
Institute, Baotou Medical College, Baotou 014060, China
| | - Xiaolei Liu
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
| | - Yabin Xie
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- School
of Medical Technology and Anesthesia, Baotou Medical College of Neuroscience
Institute, Baotou Medical College, Baotou 014060, China
| | - Wei Xie
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- School
of Medical Technology and Anesthesia, Baotou Medical College of Neuroscience
Institute, Baotou Medical College, Baotou 014060, China
| | - Shuyuan Jiang
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
| | - Guo Shao
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Center
for Translational Medicine and Department of Laboratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China
| |
Collapse
|
3
|
Fei‐Sun Y, Huang M, Qin H, Campos de SouzaHan S, Xue H, Wang Y, Wang Y. Protective effect of isoflurane preconditioning on neurological function in rats with HIE. IBRAIN 2022; 8:500-515. [PMID: 37786586 PMCID: PMC10528772 DOI: 10.1002/ibra.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 10/04/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of neonatal death and disability, which can lead to long-term neurological and motor dysfunction. Currently, inhalation anesthetics are widely used in surgery, and some studies have found that isoflurane (ISO) may have a positive effect on neuroprotection. In this paper, we investigated whether ISO pretreatment has a neuroprotective effect on the neurological function of HIE rats. Here, 7-day-old neonatal rats were randomly divided into a sham group, a hypoxic-ischemic (HI) group, and an ISO pretreatment (pretreatment) group. The pretreatment group was pretreated with 2% ISO for 1 h, followed by the HI group to establish an HI animal model. The HI‑induced neurological injury was evaluated by Zea‑Longa scores and triphenyltetrazolium (TTC) staining. Neuronal number and histomorphological changes were observed with Nissl staining and Hematoxylin-eosin (HE) staining. In addition, motor learning memory function was evaluated by the Morris water maze (MWM), the Y-maze, and the rotarod tests. HI induced severe neurological dysfunction, brain infarction, and cell apoptosis as well as obvious neuron loss in neonatal rats. In the MWM, the rats in the pretreatment group showed a decrease in escape latency (p = 0.042), indicating that pretreatment with ISO could improve the learning ability of HI rats. The results of Nissl staining showed that in the HI group, there was an irregular arrangement of neurons and nuclear fixation; however, the cell damage was significantly reduced and the total number of neurons was increased after ISO pretreatment (p < 0.001). In conclusion, ISO pretreatment improved cognitive function and attenuated HI-induced reduction of Nissl-positive cells and spatial memory impairment, suggesting that pretreatment with ISO before HI modeling could reduce neuronal cell death in the hippocampus after HI.
Collapse
Affiliation(s)
- Yi Fei‐Sun
- Institute of Neurological Disease, National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduSichuanChina
- Center for Epigenetics and Induced Pluripotent Stem Cells, Kennedy Krieger InstituteJohns Hopkins UniversityBaltimoreUSA
| | - Miao Huang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Hao‐Yue Qin
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Senio Campos de SouzaHan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Han Xue
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yu‐Ying Wang
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yi‐Bo Wang
- School of Basic Medical SciencesJinzhou Medical UniversityJinzhouLiaoningChina
| |
Collapse
|
4
|
Correia SC, Alves MG, Oliveira PF, Casadesus G, LaManna J, Perry G, Moreira PI. Hypoxic Preconditioning Averts Sporadic Alzheimer's Disease-Like Phenotype in Rats: A Focus on Mitochondria. Antioxid Redox Signal 2022; 37:739-757. [PMID: 35316086 DOI: 10.1089/ars.2019.8007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Brief episodes of sublethal hypoxia reprogram brain response to face possible subsequent lethal stimuli by triggering adaptive and prosurvival events-a phenomenon denominated hypoxic preconditioning (HP). To date, the potential therapeutic implications of HP to forestall sporadic Alzheimer's disease (sAD) pathology remain unexplored. Using a well-established protocol of HP and focusing on hippocampus as a first brain region affected in AD, this study was undertaken to investigate the potential protective effects of HP in a sAD rat model induced by the intracerebroventricular (icv) administration of streptozotocin (STZ) and to uncover the mitochondrial adaptations underlying this nonpharmacological strategy. Results: HP prevented the memory and learning deficits as well as tau pathology in the icvSTZ rat model. HP also attenuated icvSTZ-related reactive astrogliosis, as noted by increased glial fibrillary acidic protein immunoreactivity and myo-inositol levels. Notably, HP abrogated the icvSTZ-related impaired energy metabolism and oxidative damage. Particularly, HP averted increased lactate, glutamate, and succinate levels, and decreased mitochondrial respiratory chain function and mitochondrial DNA content. Concerning mitochondrial adaptations underlying HP-triggered tolerance to icvSTZ, preconditioned hippocampal mitochondria displayed an enhanced complex II-energized mitochondrial respiration, which resulted from a coordinated interaction between mitochondrial biogenesis and fusion-fission. Mitochondrial biogenesis was stimulated immediately after HP, whereas in a latter phase mitochondrial fusion-fission events are modulated favoring the generation of elongated mitochondria. Innovation and Conclusion: Overall, these results demonstrate for the first time that HP prevents the sAD-like phenotype, in part, by targeting mitochondria emerging as a preventive strategy in the context of AD. Antioxid. Redox Signal. 37, 739-757.
Collapse
Affiliation(s)
- Sónia C Correia
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, and University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Joseph LaManna
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, and University of Coimbra, Coimbra, Portugal.,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Possible Involvement of DNA Methylation in TSC1 Gene Expression in Neuroprotection Induced by Hypoxic Preconditioning. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9306097. [PMID: 36120601 PMCID: PMC9481362 DOI: 10.1155/2022/9306097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
Background. It has been reported that ischemia and ischemic preconditioning (IPC) have different effects on the expression of tuberous sclerosis complex 1 (TSC1), which may contribute to the tolerance to ischemia/hypoxia with the increase of autophagy. The mechanisms of TSC1 differential expression are still unclear under ischemia/IPC conditions in hippocampal Cornu Ammon 1 (CA1) and Cornu Ammon 3 (CA3) area neuronal cells. While we have shown that 5-Aza-CdR, a DNA methyltransferase inhibitor, can upregulate TSC1 and increase hypoxic tolerance by autophagy in vivo and in vitro, in this study, we examined whether DNA methylation was involved in the differential expression of TSC1 in the CA1 and CA3 regions induced by hypoxic preconditioning (HPC). Methods. Level of rapamycin (mTOR) autophagy, a downstream molecular pathway of TSC1/TSC2 complex, was detected in HPC mouse hippocampal CA1 and CA3 areas as well as in the HPC model of mouse hippocampal HT22 cells. DNA methylation level of TSC1 promoter (-720 bp~ -360 bp) was determined in CA1 and CA3 areas by bisulfite-modified DNA sequencing (BMDS). At the same time, autophagy was detected in HT22 cells transfected with GFP-LC3 plasmid. The role of TSC1 in neuroprotection was measured by cell viability and apoptosis, and the role of TSC1 in metabolism was checked by ATP assay and ROS assay in HT22 cells that overexpressed/knocked down TSC1. Results. HPC upregulated the expression of TSC1, downregulated the level of P-mTOR (Ser2448) and P-p70S6K (Thr389), and enhanced the activity of autophagy in both in vivo and in vitro. The increased expression of TSC1 in HPC may depend on its DNA hypomethylation in the promoter region in vivo. HPC also could reduce energy consumption in HT22 cells. Overexpression and knockdown of TSC1 can affect cell viability, cell apoptosis, and metabolism in HT22 cells exposed to hypoxia. Conclusion. TSC1 expression induced by HPC may relate to the downregulation of its DNA methylation level with the increase of autophagy and the decrease of energy demand.
Collapse
|
6
|
Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 2021; 27:869-882. [PMID: 34237192 PMCID: PMC8265941 DOI: 10.1111/cns.13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and development of various central nervous system (CNS) diseases, sublethal insult may induce strong protection against subsequent fatal injuries by improving tolerance. Searching for potential measures to improve brain ischemic/hypoxic is of great significance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic preconditioning (I/HPC) refers to the approach to give the body a short period of mild ischemic/hypoxic stimulus which can significantly improve the body's tolerance to subsequent more severe ischemia/hypoxia event. It has been extensively studied and been considered as an effective therapeutic strategy in CNS diseases. Its protective mechanisms involved multiple processes, such as activation of hypoxia signaling pathways, anti-inflammation, antioxidant stress, and autophagy induction, etc. As a strategy to induce endogenous neuroprotection, I/HPC has attracted extensive attention and become one of the research frontiers and hotspots in the field of neurotherapy. In this review, we discuss the basic and clinical research progress of I/HPC on CNS diseases, and summarize its mechanisms. Furthermore, we highlight the limitations and challenges of their translation from basic research to clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Ren C, Han R, Hu J, Li H, Li S, Liu Y, Cheng Z, Ji X, Ding Y. Hypoxia post-conditioning promoted glycolysis in mice cerebral ischemic model. Brain Res 2020; 1748:147044. [DOI: 10.1016/j.brainres.2020.147044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/10/2023]
|
8
|
Liu N, Zhang XL, Jiang SY, Shi JH, Cui JH, Liu XL, Han LH, Gong KR, Yan SC, Xie W, Zhang CY, Shao G. Neuroprotective mechanisms of DNA methyltransferase in a mouse hippocampal neuronal cell line after hypoxic preconditioning. Neural Regen Res 2020; 15:2362-2368. [PMID: 32594061 PMCID: PMC7749487 DOI: 10.4103/1673-5374.285003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hypoxic preconditioning has been shown to improve hypoxic tolerance in mice, accompanied by the downregulation of DNA methyltransferases (DNMTs) in the brain. However, the roles played by DNMTs in the multiple neuroprotective mechanisms associated with hypoxic preconditioning remain poorly understood. This study aimed to establish an in vitro model of hypoxic preconditioning, using a cultured mouse hippocampal neuronal cell line (HT22 cells), to examine the effects of DNMTs on the endogenous neuroprotective mechanisms that occur during hypoxic preconditioning. HT22 cells were divided into a control group, which received no exposure to hypoxia, a hypoxia group, which was exposed to hypoxia once, and a hypoxic preconditioning group, which was exposed to four cycles of hypoxia. To test the ability of hypoxic preadaptation to induce hypoxic tolerance, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay. Cell viability improved in the hypoxic preconditioning group compared with that in the hypoxia group. The effects of hypoxic preconditioning on the cell cycle and apoptosis in HT22 cells were examined by western blot assay and flow cytometry. Compared with the hypoxia group, the expression levels of caspase-3 and spectrin, which are markers of early apoptosis and S-phase arrest, respectively, noticeably reduced in the hypoxic preconditioning group. Finally, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot assay were used to investigate the changes in DNMT expression and activity during hypoxic preconditioning. The results showed that compared with the control group, hypoxic preconditioning downregulated the expression levels of DNMT3A and DNMT3B mRNA and protein in HT22 cells and decreased the activities of total DNMTs and DNMT3B. In conclusion, hypoxic preconditioning may exert anti-hypoxic neuroprotective effects, maintaining HT22 cell viability and inhibiting cell apoptosis. These neuroprotective mechanisms may be associated with the inhibition of DNMT3A and DNMT3B.
Collapse
Affiliation(s)
- Na Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiao-Lu Zhang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Yuan Jiang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jing-Hua Shi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jun-He Cui
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Xiao-Lei Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Li-Hong Han
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Ke-Rui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francsico, San Francisco, CA, USA
| | - Shao-Chun Yan
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Wei Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chun-Yang Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing; Department of Neurosurgery, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region,, China
| |
Collapse
|
9
|
Qi R, Zhang X, Xie Y, Jiang S, Liu Y, Liu X, Xie W, Jia X, Bade R, Shi R, Li S, Ren C, Gong K, Zhang C, Shao G. 5-Aza-2'-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway. Biomed Pharmacother 2019; 118:109219. [PMID: 31325707 DOI: 10.1016/j.biopha.2019.109219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our previous study found that 5-Aza-2'-deoxycytidine (5-Aza-CdR) can repress the expression and activity of protein serine/threonine phosphatase-1γ (PP1γ) in mouse hippocampus. It is well known that PP1γ regulates cell metabolism, which is related to hypoxia/ischaemia tolerance. It has been reported that it can also induce autophagy in cancer cells. Autophagy is important for maintaining cellular homeostasis associated with metabolism. In this study, we examined whether 5-Aza-CdR increases hypoxia tolerance-dependent autophagy by initiating the TSC1/mTOR/autophagy signalling pathway in neuronal cells. METHODS 5-Aza-CdR was either administered to mice via intracerebroventricular injection (i.c.v) or added to cultured hippocampal-derived neuronal cell line (HT22 cell) in the medium for cell culture. The hypoxia tolerance of mice was measured by hypoxia tolerance time and Perl's iron stain. The mRNA and protein expression levels of tuberous sclerosis complex 1 (TSC1), mammalian target of rapamycin (mTOR) and autophagy marker light chain 3 (LC3) were measured by real-time PCR and western blot. The p-mTOR and p-p70S6k proteins were used as markers for mTOR activity. In addition, the role of autophagy was determined by correlating its intensity with hypoxia tolerance in a time-dependent manner. At the same time, the involvement of the TSC1/mTOR pathway in autophagy was also examined through transfection with TSC1 (hamartin) plasmid. RESULTS 5-Aza-CdR was revealed to increase hypoxia tolerance and induce autophagy, accompanied by an increase in mRNA and protein expression levels of TSC1, reduction in p-mTOR (Ser2448) and p-p70S6k (Thr389) protein levels, and an increase in the ratio of LC3-II/LC3-I in both mouse hippocampus and hippocampal-derived neuronal cell line (HT22). The fluorescence intensity of hamartin was enhanced in the hippocampus of mice exposed to 5-Aza-CdR. Moreover, HT22 cells that over-expressed TSC1 showed more autophagy. CONCLUSIONS 5-Aza-CdR can increase hypoxia tolerance by inducing autophagy by initiating the TSC1/mTOR pathway.
Collapse
Affiliation(s)
- Ruifang Qi
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Zhang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabin Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyuan Jiang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - You Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolei Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoe Jia
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rengui Bade
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ruili Shi
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Chunyang Zhang
- Department of neurosurgery, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China
| | - Guo Shao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Topological remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. Matrix Biol 2018; 74:121-132. [PMID: 30092283 DOI: 10.1016/j.matbio.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
Despite the crucial role of perineuronal nets (PNNs) in neural plasticity and neurological disorders, their ultrastructural organization remains largely unresolved. We have developed a novel approach combining superresolution structured illumination microscopy (SR-SIM) and mathematical reconstruction that allows for quantitative analysis of PNN topology. Since perineuronal matrix is capable to restrict neural plasticity but at the same time is necessary to maintain synapses, we hypothesized that a beneficial post stroke recovery requires a reversible loosening of PNNs. Our results indicated that focal cerebral ischemia induces partial depletion of PNNs and that mild hypoperfusion not associated with ischemic injury can induce ultra-structural rearrangements in visually intact meshworks. In line with the activation of neural plasticity under mild stress stimuli, we provide evidence that topological conversion of PNNs can support post stroke neural rewiring.
Collapse
|
11
|
Ren C, Li S, Rajah G, Shao G, Lu G, Han R, Huang Q, Li H, Ding Y, Jin K, Ji X. Hypoxia, hibernation and Neuroprotection: An Experimental Study in Mice. Aging Dis 2018; 9:761-768. [PMID: 30090664 PMCID: PMC6065299 DOI: 10.14336/ad.2018.0702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 11/01/2022] Open
Abstract
Hibernation is a unique physiological state that evolved to survive periods of food shortages. It is characterized by profound decreases in metabolic rate, body temperature and physiological functions. Studies have shown that animals in hibernation can resist neurological damage. Here, we aimed to study whether hypoxia can induce a hibernation-like state in a traditionally non-hibernating animal and whether it is neuroprotective. All procedures were conducted according to international guidelines on laboratory animal safety. Mice C57BL/6 (19-21g) were placed into a 125 mL jar with fresh air and the jar was sealed with a rubber plug. For each run, the tolerance limit was judged by the animals' appearance for "air hunger". The animal was removed from the jar as soon as its first gasping breath appeared and was moved to another fresh-air-containing jar of similar volume. This procedure was performed in four runs. The hypoxia exposure significantly decreased oxygen (O2) consumption, carbon dioxide (CO2) production, respiratory rate and heart rate. Meanwhile, rectal temperature reached a minimum of 12.7±2.56°C, which is lower than a wide range of ambient temperatures. The mimicked hibernation decreased the infarct size in a focal cerebral ischemia mouse model. Our findings suggest the possibility of inducing suspended animation-like hibernation states for medical applications post injury.
Collapse
Affiliation(s)
- Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guo Shao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Guowei Lu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Rongrong Han
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Qingjian Huang
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Yuchuan Ding
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kunlin Jin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| |
Collapse
|
12
|
Yang Y, Cai H, Yuan X, Xu H, Hu Y, Rui X, Wu J, Chen J, Li J, Gao X, Yin D. Efficient Targeting Drug Delivery System for Lewis Lung Carcinoma, Leading to Histomorphological Abnormalities Restoration, Physiological and Psychological Statuses Improvement, and Metastasis Inhibition. Mol Pharm 2018; 15:2007-2016. [DOI: 10.1021/acs.molpharmaceut.8b00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230012, P. R. China
| | - Hanxu Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Xiuyan Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Huihui Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Yingying Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Xue Rui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jingjing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Jing Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei 230012, P. R. China
| |
Collapse
|
13
|
Deng Q, Chang Y, Cheng X, Luo X, Zhang J, Tang X. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function. Brain Res Bull 2018; 139:31-37. [PMID: 29425795 DOI: 10.1016/j.brainresbull.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/06/2018] [Accepted: 02/02/2018] [Indexed: 12/09/2022]
Abstract
RATIONALE Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. OBJECTIVE To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. METHODS AND RESULTS Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. CONCLUSIONS Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD.
Collapse
Affiliation(s)
- Qingqing Deng
- Department of Pediatrics, Hangzhou Children's Hospital, 195 Wenhui Road, Hangzhou 310014, Zhejiang, PR China
| | - Yanqun Chang
- Department of Pediatrics, Guangdong Women and Children Hospital, 521 Xingnan Road, Guangzhou 511400, Guangdong, PR China.
| | - Xiaomao Cheng
- Department of Finance Section, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou 310003, Zhejiang, PR China
| | - Xingang Luo
- Department of Pediatrics, Guangdong Women and Children Hospital, 521 Xingnan Road, Guangzhou 511400, Guangdong, PR China
| | - Jing Zhang
- Department of Pediatrics, Guangdong Women and Children Hospital, 521 Xingnan Road, Guangzhou 511400, Guangdong, PR China
| | - Xiaoyuan Tang
- Department of Respiratory, The First affiliated Hospitial of Gannan Medical University, 23 Young Road, Ganzhou 341000, Jiangxi, PR China
| |
Collapse
|
14
|
Hypoxic postconditioning improves behavioural deficits at 6 weeks following hypoxic-ischemic brain injury in neonatal rats. Behav Brain Res 2017. [PMID: 28647597 DOI: 10.1016/j.bbr.2017.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic (HI) brain injury in newborns is associated with high morbidity and mortality, with many babies suffering neurological deficits. Recently, we showed that hypoxic postconditioning (PostC) immediately post injury can protect against HI up to one week in neonatal rats. Here, we aimed to examine whether long term functional deficits were also improved by PostC. Sprague-Dawley rats were assigned to control (C) or HI group on postnatal day 7 (P7). The HI group underwent unilateral carotid artery occlusion followed by hypoxia (7% oxygen, 3h). Half of each group were randomly assigned to the PostC group (8% oxygen, 1h/day for 5days post-injury), or normoxic group, where animals were kept under ambient conditions. Righting reflex and negative geotaxis tests were performed on P8 and P14. On P42, rats underwent further behavioural tests of motor function and memory (forelimb grip strength, grid walking and novel object recognition tasks). Brain injury was assessed using histological scoring of brain sections. At P14, PostC reduced the righting reflex deficit compared to HI alone. Long-term (6 weeks) behavioural deficits were observed in grid walking and novel object recognition tests after HI alone, with both functions improved following PostC. Following HI, there was an increase in brain injury assessed by histological scoring compared to control, and this damage was reduced by PostC. This novel finding of long-term histological neuroprotection accompanied by functional improvements by PostC further demonstrates the clinical potential of mild hypoxia for the treatment of HI brain injury.
Collapse
|
15
|
Zhang Z, Yang J, Liu X, Jia X, Xu S, Gong K, Yan S, Zhang C, Shao G. Effects of 5-Aza-2′-deoxycytidine on expression of PP1γ in learning and memory. Biomed Pharmacother 2016; 84:277-283. [DOI: 10.1016/j.biopha.2016.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
|
16
|
Zhang S, Zhang Y, Jiang S, Liu Y, Huang L, Zhang T, Lu G, Gong K, Ji X, Shao G. The effect of hypoxia preconditioning on DNA methyltransferase and PP1γ in hippocampus of hypoxia preconditioned mice. High Alt Med Biol 2014; 15:483-90. [PMID: 25531462 DOI: 10.1089/ham.2014.1042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is well known that hypoxia preconditioning can increase hypoxic tolerance by changing the expressions of some genes in the brain. DNA methylation is important for regulating gene expression and is catalyzed by DNA methyltransferase (DNMT), an enzyme that is abundant in the brain. However, the impact of hypoxia preconditioning on DNA methylation remains unknown. In the current study, mice were randomly divided into three groups: blank control group with no exposure to hypoxia (H0), the hypoxia control group exposed to hypoxia once (H1), and the hypoxia preconditioning group exposed to 4 runs of hypoxia (H4). The mRNA and protein levels of three kinds of DNMTs and the activity of total DMNT were measured. Protein phosphatase 1(PP1)γ, which critically regulates neuroprotective pathways in brain, was measured in mRNA and protein activity and promoter methylation. DNMT1 was unchanged in H1 and H4, while DNMT3A and DNMT3B were decreased in H4. The mRNA and protein levels of PP1γ were decreased in H4. However, there was no detectable change in the level of DNA methylation of the promoter of PP1γ (-321 bp to 95 bp). These findings suggest that DNA methylation may have a role in hypoxia neuroprotection, and the change of PP1γ, which did not depend on the change of its promoter (-321 bp to 95bp) DNA methylation, may be involved in neuroprotection.
Collapse
Affiliation(s)
- Shu Zhang
- 1 Biomedicine Research Center and Basic Medical College, The First Affiliated Hospital of BaoTou Medical College , Inner Mongolia, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dale EA, Ben Mabrouk F, Mitchell GS. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology (Bethesda) 2014; 29:39-48. [PMID: 24382870 DOI: 10.1152/physiol.00012.2013] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intermittent hypoxia (IH) is most often thought of for its role in morbidity associated with sleep-disordered breathing, including central nervous system pathology. However, recent evidence suggests that the nervous system fights back in an attempt to minimize pathology by increasing the expression of growth/trophic factors that confer neuroprotection and neuroplasticity. For example, even modest ("low dose") IH elicits respiratory motor plasticity, increasing the strength of respiratory contractions and breathing. These low IH doses upregulate hypoxia-sensitive growth/trophic factors within respiratory motoneurons but do not elicit detectable pathologies such as hippocampal cell death, neuroinflammation, or systemic hypertension. Recent advances have been made toward understanding cellular mechanisms giving rise to IH-induced respiratory plasticity, and attempts have been made to harness the benefits of low-dose IH to treat respiratory insufficiency after cervical spinal injury. Our recent realization that IH also upregulates growth/trophic factors in nonrespiratory motoneurons and improves limb (or leg) function after incomplete chronic spinal injuries suggests that IH-induced plasticity is a general feature of motor systems. Collectively, available evidence suggests that low-dose IH may represent a safe and effective treatment to restore lost motor function in diverse clinical disorders that impair motor function.
Collapse
Affiliation(s)
- E A Dale
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | | | | |
Collapse
|
18
|
Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1181-97. [PMID: 25231353 DOI: 10.1152/ajpregu.00208.2014] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia (IH) has been the subject of considerable research in recent years, and triggers a bewildering array of both detrimental and beneficial effects in multiple physiological systems. Here, we review the extensive literature concerning IH and its impact on the respiratory, cardiovascular, immune, metabolic, bone, and nervous systems. One major goal is to define relevant IH characteristics leading to safe, protective, and/or therapeutic effects vs. pathogenesis. To understand the impact of IH, it is essential to define critical characteristics of the IH protocol under investigation, including potentially the severity of hypoxia within episodes, the duration of hypoxic episodes, the number of hypoxic episodes per day, the pattern of presentation across time (e.g., within vs. consecutive vs. alternating days), and the cumulative time of exposure. Not surprisingly, severe/chronic IH protocols tend to be pathogenic, whereas any beneficial effects are more likely to arise from modest/acute IH exposures. Features of the IH protocol most highly associated with beneficial vs. pathogenic outcomes include the level of hypoxemia within episodes and the number of episodes per day. Modest hypoxia (9-16% inspired O2) and low cycle numbers (3-15 episodes per day) most often lead to beneficial effects without pathology, whereas severe hypoxia (2-8% inspired O2) and more episodes per day (48-2,400 episodes/day) elicit progressively greater pathology. Accumulating evidence suggests that "low dose" IH (modest hypoxia, few episodes) may be a simple, safe, and effective treatment with considerable therapeutic potential for multiple clinical disorders.
Collapse
Affiliation(s)
- Angela Navarrete-Opazo
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
19
|
Zhang YB, Wang X, Meister EA, Gong KR, Yan SC, Lu GW, Ji XM, Shao G. The effects of CoCl2 on HIF-1α protein under experimental conditions of autoprogressive hypoxia using mouse models. Int J Mol Sci 2014; 15:10999-1012. [PMID: 24945310 PMCID: PMC4100194 DOI: 10.3390/ijms150610999] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022] Open
Abstract
It is well known that cobalt chloride (CoCl2) can enhance the stability of hypoxia-inducible factor (HIF)-1α. The aim of this study is to detect the effect of CoCl2 on the hypoxia tolerance of mice which were repeatedly exposed to autoprogressive hypoxia. Balb/c mice were randomly divided into groups of chemical pretreatment and normal saline (NS), respectively injected with CoCl2 and NS 3 h before exposure to hypoxia for 0 run (H0), 1 run (H1), and 4 runs (H4). Western Blot, electrophoretic mobility shift assay (EMSA), extracellular recordings population spikes in area cornus ammonis I (CA 1) of mouse hippocampal slices and real-time were used in this study. Our results demonstrated that the tolerance of mice to hypoxia, the changes of HIF-1α protein level and HIF-1 DNA binding activity in mice hippocampus, the mRNA level of erythropoietin (EPO) and vascular endothelial growth factor (VEGF), and the disappearance time of population spikes of hippocampal slices were substantially different between the control group and the CoCl2 group. Over-induction of HIF-1α by pretreatment with CoCl2 before hypoxia did not increase the hypoxia tolerance.
Collapse
Affiliation(s)
- Yan-Bo Zhang
- Department of Neurology, Affiliated Hospital of Tai Shan Medical University, Taishan 271000, China.
| | - Xiulian Wang
- Department of Intensive Care Unit , 2nd Affiliated Hospital of Baotou Medical College, Baotou 014030, China.
| | - Edward A Meister
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Ke-Rui Gong
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Baotou 014060, China.
| | - Shao-Chun Yan
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Baotou 014060, China.
| | - Guo-Wei Lu
- Institute for Hypoxia Medicine, Xuanwu Hospital of Capital Medical University, Beijing 10054, China.
| | - Xun-Ming Ji
- Institute for Hypoxia Medicine, Xuanwu Hospital of Capital Medical University, Beijing 10054, China.
| | - Guo Shao
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Baotou 014060, China.
| |
Collapse
|
20
|
Menicucci D, Artoni F, Bedini R, Pingitore A, Passera M, Landi A, L'Abbate A, Sebastiani L, Gemignani A. Brain responses to emotional stimuli during breath holding and hypoxia: an approach based on the independent component analysis. Brain Topogr 2013; 27:771-85. [PMID: 24375284 DOI: 10.1007/s10548-013-0349-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Voluntary breath holding represents a physiological model of hypoxia. It consists of two phases of oxygen saturation dynamics: an initial slow decrease (normoxic phase) followed by a rapid drop (hypoxic phase) during which transitory neurological symptoms as well as slight impairment of integrated cerebral functions, such as emotional processing, can occur. This study investigated how breath holding affects emotional processing. To this aim we characterized the modulation of event-related potentials (ERPs) evoked by emotional-laden pictures as a function of breath holding time course. We recorded ERPs during free breathing and breath holding performed in air by elite apnea divers. We modeled brain responses during free breathing with four independent components distributed over different brain areas derived by an approach based on the independent component analysis (ICASSO). We described ERP changes during breath holding by estimating amplitude scaling and time shifting of the same components (component adaptation analysis). Component 1 included the main EEG features of emotional processing, had a posterior localization and did not change during breath holding; component 2, localized over temporo-frontal regions, was present only in unpleasant stimuli responses and decreased during breath holding, with no differences between breath holding phases; component 3, localized on the fronto-central midline regions, showed phase-independent breath holding decreases; component 4, quite widespread but with frontal prevalence, decreased in parallel with the hypoxic trend. The spatial localization of these components was compatible with a set of processing modules that affects the automatic and intentional controls of attention. The reduction of unpleasant-related ERP components suggests that the evaluation of aversive and/or possibly dangerous situations might be altered during breath holding.
Collapse
Affiliation(s)
- Danilo Menicucci
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shao G, Lu GW. Hypoxic preconditioning in an autohypoxic animal model. Neurosci Bull 2012; 28:316-20. [PMID: 22622832 PMCID: PMC5560319 DOI: 10.1007/s12264-012-1222-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/30/2011] [Indexed: 11/26/2022] Open
Abstract
Hypoxic preconditioning refers to the exposure of organisms, systems, organs, tissues or cells to moderate hypoxia/ischemia that results in increased resistance to a subsequent episode of severe hypoxia/ischemia. In this article, we review recent research based on a mouse model of repeated exposure to autohypoxia. Pre-exposure markedly increases the tolerance to or protection against hypoxic insult, and preserves the cellular structure of the brain. Furthermore, the hippocampal activity amplitude and frequency of electroencephalogram, latency of cortical somatosensory-evoked potential and spinal somatosensory-evoked potential progressively decrease, while spatial learning and memory improve. In the brain, detrimental neurochemicals such as free radicals are down-regulated, while beneficial ones such as adenosine are up-regulated. Also, antihypoxia factor(s) and gene(s) are activated. We propose that the tolerance and protective effects depend on energy conservation and plasticity triggered by exposure to hypoxia via oxygen-sensing transduction pathways and hypoxia-inducible factor-initiated cascades. A potential path for further research is the development of devices and pharmaceuticals acting on antihypoxia factor(s) and gene(s) for the prevention and treatment of hypoxia and related syndromes.
Collapse
Affiliation(s)
- Guo Shao
- Medical School, Lishui University, Lishui, 323000 China
- Institute for Hypoxia Medicine, Capital Medical University, Beijing, 100069 China
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Baotou, 014030 China
| | - Guo-Wei Lu
- Institute for Hypoxia Medicine, Capital Medical University, Beijing, 100069 China
- School of Basic Medical Sciences, Department of Neurobiology, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
22
|
Leconte C, Léger M, Boulouard M, Tixier E, Fréret T, Bernaudin M, Schumann-Bard P. Repeated mild hypoxic exposures decrease anxiety-like behavior in the adult mouse together with an increased brain adrenomedullin gene expression. Behav Brain Res 2012; 230:78-84. [DOI: 10.1016/j.bbr.2012.01.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/23/2012] [Accepted: 01/27/2012] [Indexed: 01/17/2023]
|
23
|
Tsai YW, Yang YR, Wang PS, Wang RY. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS One 2011; 6:e24001. [PMID: 21887361 PMCID: PMC3161088 DOI: 10.1371/journal.pone.0024001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Memory impairment is a frequent complication of brain ischemia. Neurogenesis is implicated in learning and memory and is regulated by the transcription factor c-Fos. Preconditioning intermittent hypoxia (IH) attenuates ischemia-related memory impairments, but it is not known whether post-ischemia IH intervention has a similar effect. We investigated the effects of post-ischemia IH on hippocampal neurogenesis and c-Fos expression as well as spatial learning and memory in rats. METHODOLOGY/PRINCIPAL FINDINGS Focal cerebral ischemia was induced in some rats by middle cerebral artery occlusion (MCAO), while other rats received sham MCAO surgery. Beginning a week later, half of the rats of each group received IH interventions (12% oxygen concentration, 4 hrs/d, for 7 d) and half received sham IH sessions. An additional group of rats received MCAO, IH, and injections of the neurogenesis-impairing agent 3'-AZT. Spatial learning and memory was measured in the Morris water maze, and hippocampal neurogenesis and c-Fos expression were examined. Hypoxia-inducible factor 1α (HIF-1α) and phosphorylated mitogen-activated protein kinase (pMAPK) were considered as possible mediators of IH-induced changes in neurogenesis and c-Fos expression. IH intervention following MCAO resulted in recovered spatial memory, increased hippocampal neurogenesis, and increased expression of c-Fos in newborn hippocampal cells. These effects were blocked by 3'-AZT. IH intervention following MCAO also was associated with increased hippocampal pMAPK and HIF-1α expression. CONCLUSIONS/SIGNIFICANCE IH intervention following MCAO rescued ischemia-induced spatial learning and memory impairments, likely by inducing hippocampal neurogenesis and c-Fos expression through mediators including pMAPK and HIF-1α.
Collapse
Affiliation(s)
- Yi-Wei Tsai
- Department and Institute of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Yea-Ru Yang
- Department and Institute of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Paulus S. Wang
- Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Ray-Yau Wang
- Department and Institute of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Raber J, Villasana L, Rosenberg J, Zou Y, Huang TT, Fike JR. Irradiation enhances hippocampus-dependent cognition in mice deficient in extracellular superoxide dismutase. Hippocampus 2011; 21:72-80. [PMID: 20020436 PMCID: PMC2891276 DOI: 10.1002/hipo.20724] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of ionizing irradiation on the brain are associated with oxidative stress. While oxidative stress following irradiation is generally viewed as detrimental for hippocampal function, it might have beneficial effects as part of an adaptive or preconditioning response to a subsequent challenge. Here we show that in contrast to what is seen in wild-type mice, irradiation enhances hippocampus- dependent cognitive measures in mice lacking extracellular superoxide dismutase. These outcomes were associated with genotype-dependent effects on measures of oxidative stress. When cortices and hippocampi were analyzed for nitrotyrosine formation as an index of oxidative stress, the levels were chronically elevated in mice lacking extracellular superoxide dismutase. However, irradiation caused a greater increase in nitrotyrosine levels in wild-type mice than mice lacking extracellular superoxide dismutase. These paradoxical genotype-dependent effects of irradiation on measures of oxidative stress and cognitive function underscore potential beneficial effects associated with chronic oxidative stress if it exists prior to a secondary insult such as irradiation.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|