1
|
Girelli A. A quasilinear hyperbolic one-dimensional model of the lymph flow through a lymphangion with valve dynamics and a contractile wall. Comput Methods Biomech Biomed Engin 2024:1-16. [PMID: 39262168 DOI: 10.1080/10255842.2024.2399769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
This paper presents a one-dimensional model that describes fluid flow in lymphangions, the segments of lymphatic vessels between valves, using quasilinear hyperbolic systems. The model incorporates a phenomenological pressure-cross-sectional area relationship based on existing literature. Numerical solutions of the differential equations align with known results, offering insights into lymphatic flow dynamics. This model enhances the understanding of lymph movement through the lymphatic system, driven by lymphangion contractions.
Collapse
Affiliation(s)
- Alberto Girelli
- Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore, Brescia, Italy
| |
Collapse
|
2
|
Bekisz S, Baudin L, Buntinx F, Noël A, Geris L. In Vitro, In Vivo, and In Silico Models of Lymphangiogenesis in Solid Malignancies. Cancers (Basel) 2022; 14:1525. [PMID: 35326676 PMCID: PMC8946816 DOI: 10.3390/cancers14061525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphangiogenesis (LA) is the formation of new lymphatic vessels by lymphatic endothelial cells (LECs) sprouting from pre-existing lymphatic vessels. It is increasingly recognized as being involved in many diseases, such as in cancer and secondary lymphedema, which most often results from cancer treatments. For some cancers, excessive LA is associated with cancer progression and metastatic dissemination to the lymph nodes (LNs) through lymphatic vessels. The study of LA through in vitro, in vivo, and, more recently, in silico models is of paramount importance in providing novel insights and identifying the key molecular actors in the biological dysregulation of this process under pathological conditions. In this review, the different biological (in vitro and in vivo) models of LA, especially in a cancer context, are explained and discussed, highlighting their principal modeled features as well as their advantages and drawbacks. Imaging techniques of the lymphatics, complementary or even essential to in vivo models, are also clarified and allow the establishment of the link with computational approaches. In silico models are introduced, theoretically described, and illustrated with examples specific to the lymphatic system and the LA. Together, these models constitute a toolbox allowing the LA research to be brought to the next level.
Collapse
Affiliation(s)
- Sophie Bekisz
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
| | - Louis Baudin
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Florence Buntinx
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Agnès Noël
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
- Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Elich H, Barrett A, Shankar V, Fogelson AL. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions. Biomech Model Mechanobiol 2021; 20:1941-1968. [PMID: 34275062 DOI: 10.1007/s10237-021-01486-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/26/2021] [Indexed: 11/25/2022]
Abstract
The transport of lymph through the lymphatic vasculature is the mechanism for returning excess interstitial fluid to the circulatory system, and it is essential for fluid homeostasis. Collecting lymphatic vessels comprise a significant portion of the lymphatic vasculature and are divided by valves into contractile segments known as lymphangions. Despite its importance, lymphatic transport in collecting vessels is not well understood. We present a computational model to study lymph flow through chains of valved, contracting lymphangions. We used the Navier-Stokes equations to model the fluid flow and the immersed boundary method to handle the two-way, fluid-structure interaction in 2D, non-axisymmetric simulations. We used our model to evaluate the effects of chain length, contraction style, and adverse axial pressure difference (AAPD) on cycle-mean flow rates (CMFRs). In the model, longer lymphangion chains generally yield larger CMFRs, and they fail to generate positive CMFRs at higher AAPDs than shorter chains. Simultaneously contracting pumps generate the largest CMFRs at nearly every AAPD and for every chain length. Due to the contraction timing and valve dynamics, non-simultaneous pumps generate lower CMFRs than the simultaneous pumps; the discrepancy diminishes as the AAPD increases. Valve dynamics vary with the contraction style and exhibit hysteretic opening and closing behaviors. Our model provides insight into how contraction propagation affects flow rates and transport through a lymphangion chain.
Collapse
Affiliation(s)
- Hallie Elich
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA.
| | - Aaron Barrett
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Varun Shankar
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | - Aaron L Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
In J, Ryu J, Yu H, Kang D, Kim T, Kim J. Microfluidic valvular chips and a numerical lymphatic vessel model for the study of lymph transport characteristics. LAB ON A CHIP 2021; 21:2283-2293. [PMID: 33942040 DOI: 10.1039/d1lc00022e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lymph transport inside lymphatic vessels is highly complex and not yet fully understood. So far, a consensus has not been reached among existing analytical models on how spatiotemporal coordination of contracting adjacent lymphangions affects lymph transport. To understand complex lymph transport, we created a novel microfluidic valvular chip with flexible bicuspid valves and segmental pneumatic pumps based on a microfluidic device with an inside 3D structure made of hydrogels. Inside the chip, water moved unidirectionally when the microfluidic channel was locally compressed, with its velocity profile closely resembling the waveform of lymph observed in vivo. Furthermore, for a systematic and mechanistic study, we constructed a numerical model based on fluid-structure interaction and validated the model via demonstration of similarities in water transport characteristics between the model and the chip. Using this model, we examined various mechanical and time-dependent parameters, such as period, phase delay, sequence, and strength of contractions, valve compliance, fluid viscosity, and pressure differences, for their effects on water transport. Although our model is simplified, it enabled a parametric study that helped clarify the mechano-temporal correlations between compressions of adjacent chambers via transmissions of hydrodynamic forces, which regulate complex lymph transport. Moreover, our chip demonstrated technical advances that enable unidirectional discrete movement of fluid in the picoliter range by phenumatic pumping. The velocity profile is also similar to the pulse waveform of arteries under pathological conditions such as increased aortic stiffness, allowing our chip to be used for in vitro mechanobiology studies of endothelial cells.
Collapse
Affiliation(s)
- Jaemin In
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.
| | - Jihye Ryu
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.
| | - Hyeonji Yu
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.
| | - Dongwon Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.
| | - Taeyoung Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea.
| |
Collapse
|
5
|
Mathematical Modelling of the Structure and Function of the Lymphatic System. MATHEMATICS 2020. [DOI: 10.3390/math8091467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This paper presents current knowledge about the structure and function of the lymphatic system. Mathematical models of lymph flow in the single lymphangion, the series of lymphangions, the lymph nodes, and the whole lymphatic system are considered. The main results and further perspectives are discussed.
Collapse
|
6
|
Bertram CD. Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function. Biomech Model Mechanobiol 2020; 19:2081-2098. [PMID: 32303880 DOI: 10.1007/s10237-020-01325-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
A three-dimensional finite-element fluid/structure interaction model of an intravascular lymphatic valve was constructed, and its properties were investigated under both favourable and adverse pressure differences, simulating valve opening and valve closure, respectively. The shear modulus of the neo-Hookean material of both vascular wall and valve leaflet was varied, as was the degree of valve opening at rest. Also investigated was how the valve characteristics were affected by prior application of pressure inflating the whole valve. The characteristics were parameterised by the volume flow rate through the valve, the hydraulic resistance to flow, and the maximum sinus radius and inter-leaflet-tip gap on the plane of symmetry bisecting the leaflet, all as functions of the applied pressure difference. Maximum sinus radius on the leaflet-bisection plane increased with increasing pressure applied to either end of the valve segment, but also reflected the non-circular deformation of the sinus cross section caused by the leaflet, such that it passed through a minimum at small favourable pressure differences. When the wall was stiff, the inter-leaflet gap increased sigmoidally during valve opening; when it was as flexible as the leaflet, the gap increased more linearly. Less pressure difference was required both to open and to close the valve when either the wall or the leaflet material was more flexible. The degree of bias of the valve characteristics to the open position increased with the inter-leaflet gap in the resting position and with valve inflation pressure. The characteristics of the simulated valve were compared with those specified in an existing lumped-parameter model of one or more collecting lymphangions and used to estimate a revised value for the constant in that model which controls the rate of valve opening/closure with variation in applied pressure difference. The effects of the revised value on the lymph pumping efficacy predicted by the lumped-parameter model were evaluated.
Collapse
Affiliation(s)
- C D Bertram
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
Sloas DC, Stewart SA, Sweat RS, Doggett TM, Alves NG, Breslin JW, Gaver DP, Murfee WL. Estimation of the Pressure Drop Required for Lymph Flow through Initial Lymphatic Networks. Lymphat Res Biol 2016; 14:62-9. [PMID: 27267167 DOI: 10.1089/lrb.2015.0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lymphatic function is critical for maintaining interstitial fluid balance and is linked to multiple pathological conditions. While smooth muscle contractile mechanisms responsible for fluid flow through collecting lymphatic vessels are well studied, how fluid flows into and through initial lymphatic networks remains poorly understood. The objective of this study was to estimate the pressure difference needed for flow through an intact initial lymphatic network. METHODS AND RESULTS Pressure drops were computed for real and theoretical networks with varying branch orders using a segmental Poiseuille flow model. Vessel geometries per branch order were based on measurements from adult Wistar rat mesenteric initial lymphatic networks. For computational predications based on real network geometries and combinations of low or high output velocities (2 mm/s, 4 mm/s) and viscosities (1 cp, 1.5 cp), pressure drops were estimated to range 0.31-2.57 mmHg. The anatomical data for the real networks were also used to create a set of theoretical networks in order to identify possible minimum and maximum pressure drops. The pressure difference range for the theoretical networks was 0.16-3.16 mmHg. CONCLUSIONS The results support the possibility for suction pressures generated from cyclic smooth muscle contractions of upstream collecting lymphatics being sufficient for fluid flow through an initial lymphatic network.
Collapse
Affiliation(s)
- David C Sloas
- 1 Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Scott A Stewart
- 1 Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Richard S Sweat
- 1 Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Travis M Doggett
- 2 Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Natascha G Alves
- 2 Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Jerome W Breslin
- 2 Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Donald P Gaver
- 1 Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Walter L Murfee
- 1 Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| |
Collapse
|
8
|
Caulk AW, Nepiyushchikh ZV, Shaw R, Dixon JB, Gleason RL. Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts. J R Soc Interface 2016; 12:20150280. [PMID: 26040600 DOI: 10.1098/rsif.2015.0280] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mechanical loading conditions are likely to play a key role in passive and active (contractile) behaviour of lymphatic vessels. The development of a microstructurally motivated model of lymphatic tissue is necessary for quantification of mechanically mediated maladaptive remodelling in the lymphatic vasculature. Towards this end, we performed cylindrical biaxial testing of Sprague-Dawley rat thoracic ducts (n = 6) and constitutive modelling to characterize their mechanical behaviour. Spontaneous contraction was quantified at transmural pressures of 3, 6 and 9 cmH2O. Cyclic inflation in calcium-free saline was performed at fixed axial stretches between 1.30 and 1.60, while recording pressure, outer diameter and axial force. A microstructurally motivated four-fibre family constitutive model originally proposed by Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1-48. (doi:10.1023/A:1010835316564)) was used to quantify the passive mechanical response, and the model of Rachev and Hayashi was used to quantify the active (contractile) mechanical response. The average error between data and theory was 8.9 ± 0.8% for passive data and 6.6 ± 2.6% and 6.8 ± 3.4% for the systolic and basal conditions, respectively, for active data. Multi-photon microscopy was performed to quantify vessel wall thickness (32.2 ± 1.60 µm) and elastin and collagen organization for three loading conditions. Elastin exhibited structural 'fibre families' oriented nearly circumferentially and axially. Sample-to-sample variation was observed in collagen fibre distributions, which were often non-axisymmetric, suggesting material asymmetry. In closure, this paper presents a microstructurally motivated model that accurately captures the biaxial active and passive mechanical behaviour in lymphatics and offers potential for future research to identify parameters contributing to mechanically mediated disease development.
Collapse
Affiliation(s)
- Alexander W Caulk
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhanna V Nepiyushchikh
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ryan Shaw
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J Brandon Dixon
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rudolph L Gleason
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
9
|
Bertram CD, Macaskill C, Davis MJ, Moore JE. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model. Am J Physiol Heart Circ Physiol 2016; 310:H847-60. [PMID: 26747501 DOI: 10.1152/ajpheart.00669.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022]
Abstract
The observed properties of valves in collecting lymphatic vessels include transmural pressure-dependent bias to the open state and hysteresis. The bias may reduce resistance to flow when the vessel is functioning as a conduit. However, lymphatic pumping implies a streamwise increase in mean pressure across each valve, suggesting that the bias is then potentially unhelpful. Lymph pumping by a model of several collecting lymphatic vessel segments (lymphangions) in series, which incorporated these properties, was investigated under conditions of adverse pressure difference while varying the refractory period between active muscular contractions and the inter-lymphangion contraction delay. It was found that many combinations of the timing parameters and the adverse pressure difference led to one or more intermediate valves remaining open instead of switching between open and closed states during repetitive contraction cycles. Cyclic valve switching was reliably indicated if the mean pressure in a lymphangion over a cycle was higher than that in the lymphangion upstream, but either lack of or very brief valve closure could cause mean pressure to be lower downstream. Widely separated combinations of refractory period and delay time were found to produce the greatest flow-rate for a given pressure difference. The efficiency of pumping was always maximized by a long refractory period and lymphangion contraction starting when the contraction of the lymphangion immediately upstream was peaking. By means of an ex vivo experiment, it was verified that intermediate valves in a chain of pumping lymphangions can remain open, while the lymphangions on either side of the open valve continue to execute contractions.
Collapse
Affiliation(s)
- Christopher D Bertram
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia;
| | - Charlie Macaskill
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - James E Moore
- Department of Bioengineering, Imperial College, London, United Kingdom
| |
Collapse
|
10
|
LI SUJIAO, ZHANG ZHENGXIANG, WANG JUE. A NEW CUSTOM-CONTOURED CUSHION SYSTEM BASED ON FINITE ELEMENT MODELING PREDICTION. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413500516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High internal stress in the deep tissues adjacent to bony prominences can cause deep tissue injuries. Therefore, internal stress in the soft tissue should be considered when the performance of anti-decubitus cushions is evaluated during cushion design. This paper reports on a custom-contoured cushion (CCC) system incorporated with a three-dimensional (3D) slice subject-specific finite element (FE) model to investigate the internal stress distribution in the soft tissues. This stress distribution was used to transform the interface pressure into the carving depth of the fabricated cushions based on the biomechanical characteristics of the cushion materials. The internal stress in the soft tissues was investigated using an FE model of buttocks and cushion made from three cushion materials. The cushion design was optimized according to the properties of the material. The simulated interface stress between the buttocks and the cushion (18 kPa) was consistent with the measured interface pressure of the CCC (17.1 kPa). The 3D FE model predicted the internal stress and displacement of the soft tissues and cushion. Additionally, it efficiently optimized the selection of cushion material. Fifty subjects (25 subjects with spinal cord injuries (SCI) and 25 healthy subjects) were recruited to investigate the interface pressure and perform subjective comfort evaluation. The CCC decreased the interface pressure under the buttocks and simultaneously increased the subjective comfort and stability. The effectiveness of the cushion materials was predicted by the CCC system, which also validated the clinical performance of decreasing interface pressure.
Collapse
Affiliation(s)
- SUJIAO LI
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | | | - JUE WANG
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
11
|
Margaris KN, Black RA. Modelling the lymphatic system: challenges and opportunities. J R Soc Interface 2012; 9:601-12. [PMID: 22237677 PMCID: PMC3284143 DOI: 10.1098/rsif.2011.0751] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/12/2011] [Indexed: 11/12/2022] Open
Abstract
The lymphatic system is a vital part of the circulatory and immune systems, and plays an important role in homeostasis by controlling extracellular fluid volume and in combating infection. Nevertheless, there is a notable disparity in terms of research effort expended in relation to the treatment of lymphatic diseases in contrast to the cardiovascular system. While similarities to the cardiovascular system exist, there are considerable differences in their anatomy and physiology. This review outlines some of the challenges and opportunities for those engaged in modelling biological systems. The study of the lymphatic system is still in its infancy, the vast majority of the models presented in the literature to date having been developed since 2003. The number of distinct models and their variants are few in number, and only one effort has been made thus far to study the entire lymphatic network; elements of the lymphatic system such as the nodes, which act as pumps and reservoirs, have not been addressed by mathematical models. Clearly, more work will be necessary in combination with experimental verification in order to progress and update the knowledge on the function of the lymphatic system. As our knowledge and understanding of its function increase, new and more effective treatments of lymphatic diseases are bound to emerge.
Collapse
Affiliation(s)
- K N Margaris
- Department of Bioengineering, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW, UK.
| | | |
Collapse
|
12
|
Rahbar E, Moore JE. A model of a radially expanding and contracting lymphangion. J Biomech 2011; 44:1001-7. [PMID: 21377158 DOI: 10.1016/j.jbiomech.2011.02.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
The lymphatic system is an extensive vascular network featuring valves and contractile walls that pump interstitial fluid and plasma proteins back to the main circulation. Immune function also relies on the lymphatic system's ability to transport white blood cells. Failure to drain and pump this excess fluid results in edema characterized by fluid retention and swelling of limbs. It is, therefore, important to understand the mechanisms of fluid transport and pumping of lymphatic vessels. Unfortunately, there are very few studies in this area, most of which assume Poiseuille flow conditions. In vivo observations reveal that these vessels contract strongly, with diameter changes of the order of magnitude of the diameter itself over a cycle that lasts typically 2-3s. The radial velocity of the contracting vessel is on the order of the axial fluid velocity, suggesting that modeling flow in these vessels with a Poiseuille model is inappropriate. In this paper, we describe a model of a radially expanding and contracting lymphatic vessel and investigate the validity of assuming Poiseuille flow to estimate wall shear stress, which is presumably important for lymphatic endothelial cell mechanotransduction. Three different wall motions, periodic sinusoidal, skewed sinusoidal and physiologic wall motions, were investigated with steady and unsteady parabolic inlet velocities. Despite high radial velocities resulting from the wall motion, wall shear stress values were within 4% of quasi-static Poiseuille values. Therefore, Poiseuille flow is valid for the estimation of wall shear stress for the majority of the lymphangion contractile cycle.
Collapse
Affiliation(s)
- Elaheh Rahbar
- Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, Mail Stop 3120, College Station, TX 77843-3120, USA
| | | |
Collapse
|
13
|
Venugopal AM, Stewart RH, Laine GA, Quick CM. Nonlinear lymphangion pressure-volume relationship minimizes edema. Am J Physiol Heart Circ Physiol 2010; 299:H876-82. [PMID: 20601461 DOI: 10.1152/ajpheart.00239.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lymphangions, the segments of lymphatic vessel between two valves, contract cyclically and actively pump, analogous to cardiac ventricles. Besides having a discernable systole and diastole, lymphangions have a relatively linear end-systolic pressure-volume relationship (with slope E(max)) and a nonlinear end-diastolic pressure-volume relationship (with slope E(min)). To counter increased microvascular filtration (causing increased lymphatic inlet pressure), lymphangions must respond to modest increases in transmural pressure by increasing pumping. To counter venous hypertension (causing increased lymphatic inlet and outlet pressures), lymphangions must respond to potentially large increases in transmural pressure by maintaining lymph flow. We therefore hypothesized that the nonlinear lymphangion pressure-volume relationship allows transition from a transmural pressure-dependent stroke volume to a transmural pressure-independent stroke volume as transmural pressure increases. To test this hypothesis, we applied a mathematical model based on the time-varying elastance concept typically applied to ventricles (the ratio of pressure to volume cycles periodically from a minimum, E(min), to a maximum, E(max)). This model predicted that lymphangions increase stroke volume and stroke work with transmural pressure if E(min) < E(max) at low transmural pressures, but maintain stroke volume and stroke work if E(min)= E(max) at higher transmural pressures. Furthermore, at higher transmural pressures, stroke work is evenly distributed among a chain of lymphangions. Model predictions were tested by comparison to previously reported data. Model predictions were consistent with reported lymphangion properties and pressure-flow relationships of entire lymphatic systems. The nonlinear lymphangion pressure-volume relationship therefore minimizes edema resulting from both increased microvascular filtration and venous hypertension.
Collapse
Affiliation(s)
- Arun M Venugopal
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
14
|
Macdonald AJ, Arkill KP, Tabor GR, McHale NG, Winlove CP. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am J Physiol Heart Circ Physiol 2008; 295:H305-13. [DOI: 10.1152/ajpheart.00004.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lymphatic system comprises a series of elements, lymphangions, separated by valves and possessed of active, contractile walls to pump interstitial fluid from its collection in the terminal lymphatics back to the main circulation. Despite its importance, there is a dearth of information on the fluid dynamics of the lymphatic system. In this article, we describe linked experimental and computational work aimed at elucidating the biomechanical properties of the individual lymphangions. We measure the static and dynamic mechanical properties of excised bovine collecting lymphatics and develop a one-dimensional computational model of the coupled fluid flow/wall motion. The computational model is able to reproduce the pumping behavior of the real vessel using a simple contraction function producing fast contraction pulses traveling in the retrograde direction to the flow.
Collapse
|
15
|
Makhsous M, Rowles DM, Rymer WZ, Bankard J, Nam EK, Chen D, Lin F. Periodically relieving ischial sitting load to decrease the risk of pressure ulcers. Arch Phys Med Rehabil 2007; 88:862-70. [PMID: 17601466 PMCID: PMC2861140 DOI: 10.1016/j.apmr.2007.03.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the relieving effect on interface pressure of an alternate sitting protocol involving a sitting posture that reduces ischial support. DESIGN Repeated measures in 2 protocols on 3 groups of subjects. SETTING Laboratory. PARTICIPANTS Twenty able-bodied persons, 20 persons with paraplegia, and 20 persons with tetraplegia. INTERVENTIONS Two 1-hour protocols were used: alternate and normal plus pushup. In the alternate protocol, sitting posture was alternated every 10 minutes between normal (sitting upright with ischial support) and with partially removed ischial support (WO-BPS) postures; in the normal plus pushup protocol, sitting was in normal posture with pushups (lifting the subject off the seat) performed every 20 minutes. MAIN OUTCOME MEASURE Interface pressure on seat and backrest. RESULTS In WO-BPS posture, the concentrated interface pressure observed around the ischia in normal posture was significantly repositioned to the thighs. By cyclically repositioning the interface pressure, the alternate protocol was superior to the normal plus pushup protocol in terms of a significantly lower average interface pressure over the buttocks. CONCLUSIONS A sitting protocol periodically reducing the ischial support helps lower the sitting load on the buttocks, especially the area close to ischial tuberosities.
Collapse
Affiliation(s)
- Mohsen Makhsous
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Makhsous M, Priebe M, Bankard J, Rowles D, Zeigler M, Chen D, Lin F. Measuring tissue perfusion during pressure relief maneuvers: insights into preventing pressure ulcers. J Spinal Cord Med 2007; 30:497-507. [PMID: 18092567 PMCID: PMC2141722 DOI: 10.1080/10790268.2007.11754584] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE To study the effect on tissue perfusion of relieving interface pressure using standard wheelchair pushups compared with a mechanical automated dynamic pressure relief system. DESIGN Repeated measures in 2 protocols on 3 groups of subjects. PARTICIPANTS Twenty individuals with motor-complete paraplegia below T4, 20 with motor-complete tetraplegia, and 20 able-bodied subjects. METHODS Two 1-hour sitting protocols: dynamic protocol, sitting configuration alternated every 10 minutes between a normal sitting configuration and an off-loading configuration; wheelchair pushup protocol, normal sitting configuration with standard wheelchair pushup once every 20 minutes. MAIN OUTCOME MEASURES Transcutaneous partial pressures of oxygen and carbon dioxide measured from buttock overlying the ischial tuberosity and interface pressure measured at the seat back and buttocks. Perfusion deterioration and recovery times were calculated during changes in interface pressures. RESULTS In the off-loading configuration, concentrated interface pressure during the normal sitting configuration was significantly diminished, and tissue perfusion was significantly improved. Wheelchair pushups showed complete relief of interface pressure but incomplete recovery of tissue perfusion. CONCLUSIONS Interface pressure analysis does not provide complete information about the effectiveness of pressure relief maneuvers. Measures of tissue perfusion may help establish more effective strategies. Relief achieved by standard wheelchair pushups may not be sufficient to recover tissue perfusion compromised during sitting; alternate maneuvers may be necessary. The dynamic seating system provided effective pressure relief with sustained reduction in interface pressure adequate for complete recovery of tissue perfusion. Differences in perfusion recovery times between subjects with spinal cord injury (SCI) and controls raise questions about the importance of changes in vascular responses to pressure after SCI.
Collapse
Affiliation(s)
- Mohsen Makhsous
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N. Michigan Avenue, Suite 100, Chicago, IL 60640, USA.
| | - Michael Priebe
- Department of Physical Medicine, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - James Bankard
- Department of Physical Therapy and Human Movement Sciences
| | - Diana Rowles
- Department of Physical Medicine & Rehabilitation
,Sensory Motor Performance Program and Spinal Cord Injury Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Mary Zeigler
- Sensory Motor Performance Program and Spinal Cord Injury Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| | - David Chen
- Department of Physical Medicine & Rehabilitation
,Sensory Motor Performance Program and Spinal Cord Injury Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Fang Lin
- Department of Physical Therapy and Human Movement Sciences
,Department of Physical Medicine & Rehabilitation
,Dept of Orthopaedic Surgery, Northwestern University, Chicago, Illinois
| |
Collapse
|
17
|
Abstract
There is a wide range of pressure ulcer prevention devices, but little guidance on clinical and cost-effectiveness. This paper reviews the literature and demonstrates that approaches to evaluation are clinically and experimentally flawed.
Collapse
Affiliation(s)
- J Jones
- Stoke Mandeville Hospital, Aylesbury, UK.
| |
Collapse
|
18
|
Gibson AT, Segal MB. A study of the routes by which protein passes from the pericardial cavity to the blood in rabbits. J Physiol 1978; 280:423-33. [PMID: 690898 PMCID: PMC1282667 DOI: 10.1113/jphysiol.1978.sp012392] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The routes by which radioiodinated serum albumin placed in the pericardial cavity gains access to the circulation have been investigated in rabbits. 1. Eighty per cent of pericardial cavity protein passes through the parietal pericardium and into the circulation through the thoracic duct. 2. A small amount of protein is drained through the right lymph duct; this is probably derived from protein passing from the pericardial cavity into the pleural cavity. 3. There is no apparent movement of protein directly into blood vessels of the parietal pericardium. For theoretical reasons movement of protein across the visceral pericardium and into the blood vessels of the myocardium is also unlikely. 4. A small amount of protein enters the circulation when both major lymphatics are ligated. It is proposed that lymphatic uptake may continue and secondary lymphovenous junctions will open as a result of raised intralymphatic pressure.
Collapse
|