2
|
Fergani C, Mazzella L, Coolen LM, McCosh RB, Hardy SL, Newcomb N, Grachev P, Lehman MN, Goodman RL. Do Substance P and Neurokinin A Play Important Roles in the Control of LH Secretion in Ewes? Endocrinology 2016; 157:4829-4841. [PMID: 27704950 PMCID: PMC5133348 DOI: 10.1210/en.2016-1565] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is now general agreement that neurokinin B (NKB) acts via neurokinin-3-receptor (NK3R) to stimulate secretion of GnRH and LH in several species, including rats, mice, sheep, and humans. However, the roles of two other tachykinins, substance P (SP) and neurokinin A, which act primarily via NK1R and NK2R, respectively, are less clear. In rodents, these signaling pathways can stimulate LH release and substitute for NKB signaling; in humans, SP is colocalized with kisspeptin and NKB in the mediobasal hypothalamus. In this study, we examined the possible role of these tachykinins in control of the reproductive axis in sheep. Immunohistochemistry was used to describe the expression of SP and NK1R in the ovine diencephalon and determine whether these proteins are colocalized in kisspeptin or GnRH neurons. SP-containing cell bodies were largely confined to the arcuate nucleus, but NK1R-immunoreactivity was more widespread. However, there was very low coexpression of SP or NK1R in kisspeptin cells and none in GnRH neurons. We next determined the minimal effective dose of these three tachykinins that would stimulate LH secretion when administered into the third ventricle of ovary-intact anestrous sheep. A much lower dose of NKB (0.2 nmol) than of neurokinin A (2 nmol) or SP (10 nmol) consistently stimulated LH secretion. Moreover, the relative potency of these three neuropeptides parallels the relative selectivity of NK3R. Based on these anatomical and pharmacological data, we conclude that NKB-NK3R signaling is the primary pathway for the control of GnRH secretion by tachykinins in ewes.
Collapse
Affiliation(s)
- Chrysanthi Fergani
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Leanne Mazzella
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Lique M Coolen
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Richard B McCosh
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Steven L Hardy
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Nora Newcomb
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Pasha Grachev
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Michael N Lehman
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Robert L Goodman
- Departments of Neurobiology and Anatomical Sciences (C.F., M.N.L.) and Physiology (L.M.C., N.N.), University of Mississippi Medical Center, Jackson, Mississippi 39216-4505; and Department of Physiology and Pharmacology (L.M., R.B.M., S.L.H., P.G., R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| |
Collapse
|
3
|
Hu G, Lin C, He M, Wong AOL. Neurokinin B and reproductive functions: "KNDy neuron" model in mammals and the emerging story in fish. Gen Comp Endocrinol 2014; 208:94-108. [PMID: 25172151 DOI: 10.1016/j.ygcen.2014.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022]
Abstract
In mammals, neurokinin B (NKB), the gene product of the tachykinin family member TAC3, is known to be a key regulator for episodic release of luteinizing hormone (LH). Its regulatory actions are mediated by a subpopulation of kisspeptin neurons within the arcuate nucleus with co-expression of NKB and dynorphin A (commonly called the "KNDy neurons"). By forming an "autosynaptic feedback loop" within the hypothalamus, the KNDy neurons can modulate gonadotropin-releasing hormone (GnRH) pulsatility and subsequent LH release in the pituitary. NKB regulation of LH secretion has been recently demonstrated in zebrafish, suggesting that the reproductive functions of NKB may be conserved from fish to mammals. Interestingly, the TAC3 genes in fish not only encode the mature peptide of NKB but also a novel tachykinin-like peptide, namely NKB-related peptide (or neurokinin F). Recent studies in zebrafish also reveal that the neuroanatomy of TAC3/kisspeptin system within the fish brain is quite different from that of mammals. In this article, the current ideas of "KNDy neuron" model for GnRH regulation and steroid feedback, other reproductive functions of NKB including its local actions in the gonad and placenta, the revised model of tachykinin evolution from invertebrates to vertebrates, as well as the emerging story of the two TAC3 gene products in fish, NKB and NKB-related peptide, will be reviewed with stress on the areas with interesting questions for future investigations.
Collapse
Affiliation(s)
- Guangfu Hu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chengyuan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Anderson O L Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Hodson DJ, Townsend J, Tortonese DJ. Cells co-expressing luteinising hormone and thyroid-stimulating hormone are present in the ovine pituitary pars distalis but not the pars tuberalis: implications for the control of endogenous circannual rhythms of prolactin. Neuroendocrinology 2013; 97:355-62. [PMID: 23548370 DOI: 10.1159/000350790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/18/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS A mammalian circannual pacemaker responsible for regulating the seasonal pattern of prolactin has been recently described in sheep. This pacemaker resides within the pars tuberalis, an area of the pituitary gland that densely expresses melatonin receptors. However, the chemical identity of the cell type which acts as the pacemaker remains elusive. Mathematical-modelling approaches have established that this cell must be responsive to the static melatonin signal as well as prolactin negative feedback. Considering that in sheep the gonadotroph is the only cell in the pars tuberalis which expresses the prolactin receptor, and that in other photoperiodic species the thyrotroph is the only cell expressing the melatonin receptor in this tissue, a cell type which expresses both proteins would fulfil the theoretical criteria of a circannual pacemaker. METHODS Pituitary glands were obtained from female sheep under short days (breeding season) and long days (non-breeding season) and double immunofluorescent staining was conducted to determine the prevalence of bi-hormonal cells in the pars distalis and pars tuberalis using specific antibodies to luteinising hormone-β and thyroid-stimulating hormone-β. RESULTS The results reveal that whilst such a bihormonal cell is clearly present in the pars distalis and constitute 4% of the gonadotroph population in this region, the same cell type is completely absent from the pars tuberalis even though LH gonadotrophs are abundantly expressed. CONCLUSIONS Based on these findings, together with existing data, we are able to propose an alternative model where the gonadotroph itself is controlled indirectly by neighbouring melatonin responsive cells, allowing it to act as a pacemaker.
Collapse
Affiliation(s)
- David J Hodson
- Department of Anatomy, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
5
|
Fischer C, Christ E, Korf HW, von Gall C. Tafa-3 encoding for a secretory peptide is expressed in the mouse pars tuberalis and is affected by melatonin 1 receptor deficiency. Gen Comp Endocrinol 2012; 177:98-103. [PMID: 22426341 DOI: 10.1016/j.ygcen.2012.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 11/22/2022]
Abstract
The hypophysial pars tuberalis (PT) is an important interface between neuroendocrine brain centers (hypothalamus, pineal organ) and the anterior lobe of the hypophysis (PD). The best investigated role of the PT is the control of seasonally changing functions. In mammals, melatonin secreted from the pineal organ represents a major input signal to the PT. By acting upon melatonin type 1 receptors (MT1) melatonin controls the functional activity of the PT. Most interestingly, the PT sends its output signals in two directions: via a "retrograde" pathway to the hypothalamus and via an "anterograde" pathway to the PD. TSH has been identified as "retrograde" messenger, while endocannabinoids function as messengers of the "anterograde" pathway. Here we show in mice that the PT expresses Tafa-3 encoding for a secretory peptide. In the PT of wild type mice Tafa-3 mRNA levels varied between day and night: they were low at mid-day and high at mid-night. This day/night difference was not observed in the PT of mice with a targeted deletion of the MT1 receptor indicating that Tafa-3 mRNA expression in the PT is controlled by melatonin acting through the MT1 receptor. Notably, Tafa-3 expression was not restricted to the PT, but was also found in other brain regions, such as the hippocampus, the habenular and thalamic nuclei. In these regions, Tafa-3 expression did not display a day/night difference and was not affected by MT1-deficiency. Thus, Tafa-3 expression appears to be controlled by region-specific mechanisms. Our data suggest that TAFA-3 is a signaling molecule from the PT and provides further evidence for the emerging concept that the PT rather than relying upon highly organ-specific messengers employs a cocktail of signaling molecules that also operate in other brain systems.
Collapse
Affiliation(s)
- Claudia Fischer
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt/M, Germany
| | | | | | | |
Collapse
|
6
|
Lemamy GJ, Guillaume V, Ndéboko B, Mouecoucou J, Oliver C. Substance P stimulates Growth Hormone (GH) and GH-Releasing Hormone (GHRH) secretions through tachykinin NK2 receptors in sheep. Peptides 2012; 35:60-4. [PMID: 22450468 DOI: 10.1016/j.peptides.2012.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 03/10/2012] [Accepted: 03/10/2012] [Indexed: 10/28/2022]
Abstract
Substance P is ubiquitous undecapeptide belonging to the tachykinins family. It has been found in the hypothalamus and is involved in the hypothalamo-hypophysial axis in several mammals, including human. Previous studies have shown that substance P increases GH secretions in rats and human. In this study, we have shown that intravenously infused substance P in sheep caused an increased level of Growth Hormone (GH) and GH-Releasing Hormone (GHRH), and decreased Somatotropin Release Inhibiting Hormone (SRIH) secretions. GH was obtained from peripheral blood. GHRH and SRIH were directly collected from hypophysial portal blood, using a trans-nasal surgery technique in a vigil sheep that allowed accessing to hypothalamo-hypophysial portal vessels. Hormones assays were performed by radioimmunoassay (RIA). Moreover, we showed that substance P-induced GH and GHRH secretion appears to be mediated by NK2 tachykinin receptors, since it is specifically blocked by a non peptidic tachykinin NK2 receptor antagonist (SR48968, Sanofi, Montpellier, France) whereas a non peptidic tachykinin NK1 antagonist (SR140333, Sanofi, Montpellier, France) failed to modify GH and GHRH hormones secretions.
Collapse
Affiliation(s)
- Guy-Joseph Lemamy
- University of Aix-Marseille and Institut National de la Santé Et de la Recherche Médicale (INSERM) U 297, Laboratory of Experimental Neuroendocrinology, Boulevard P. Dramard, 13916 Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
7
|
Lasaga M, Debeljuk L. Tachykinins and the hypothalamo-pituitary-gonadal axis: An update. Peptides 2011; 32:1972-8. [PMID: 21801774 DOI: 10.1016/j.peptides.2011.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 11/22/2022]
Abstract
Tachykinins play a critical role in neuroendocrine regulation of reproduction. The best known members of the family are substance P (SP), neurokinin A and neurokinin B. Tachykinins mediate their biological actions through three G protein-coupled receptors, named NK1, NK2, and NK3. SP was suggested to play an important role in the ovulatory process in mammals and humans. Recent findings suggest a role of tachykinins in the aging of the hypothalamo-pituitary-gonadal axis. A high presence of SP was found in the sheep pars tuberalis and evidence indicates that it may have some role in the control of prolactin secretion. The presence of SP was confirmed in Leydig cells of the rat testes of animals submitted to constant light or treated with estrogens. Tachykinins were found to increase the motility of human spermatozoa. Tachykinins were also found to be present in the mouse ovary and more specifically, in the granulose cells. It is possible that tachykinins may play an important role in the ovarian function. NKB has been implicated in the steroid feedback control of GnRH release. Human mutations in the gene encoding this peptide or its receptor (TACR3) lead to a defect in the control of GnRH. A specific subset of neurons in the arcuate nucleus of the hypothalamus, colocalized three neuropeptides, kisspeptin, NKB and dynorphin. This subpopulation of neurons mediates the gonadal hormone feedback control of GnRH secretion. NKB/NK3 signaling plays a role in puberty onset and fertility in humans. This minireview summarizes the recent data about the action of tachykinins on the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Mercedes Lasaga
- Research Institute for Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
8
|
Dupré SM. Encoding and decoding photoperiod in the mammalian pars tuberalis. Neuroendocrinology 2011; 94:101-12. [PMID: 21778697 DOI: 10.1159/000328971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
In mammals, the nocturnal melatonin signal is well established as a key hormonal indicator of seasonal changes in day-length, providing the brain with an internal representation of the external photoperiod. The pars tuberalis (PT) of the pituitary gland is the major site of expression of the G-coupled receptor MT1 in the brain and is considered as the main site of integration of the photoperiodic melatonin signal. Recent studies have revealed how the photoperiodic melatonin signal is encoded and conveyed by the PT to the brain and the pituitary, but much remains to be resolved. The development of new animal models and techniques such as cDNA arrays or high throughput sequencing has recently shed the light onto the regulatory networks that might be involved. This review considers the current understanding of the mechanisms driving photoperiodism in the mammalian PT with a particular focus on the seasonal prolactin secretion.
Collapse
Affiliation(s)
- Sandrine M Dupré
- University of Manchester, Faculty of Life Sciences, Manchester, UK.
| |
Collapse
|
9
|
Dupré SM, Miedzinska K, Duval CV, Yu L, Goodman RL, Lincoln GA, Davis JRE, McNeilly AS, Burt DD, Loudon ASI. Identification of Eya3 and TAC1 as long-day signals in the sheep pituitary. Curr Biol 2010; 20:829-35. [PMID: 20434341 DOI: 10.1016/j.cub.2010.02.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Seasonally breeding mammals such as sheep use photoperiod, encoded by the nocturnal secretion of the pineal hormone melatonin, as a critical cue to drive hormone rhythms and synchronize reproduction to the most optimal time of year. Melatonin acts directly on the pars tuberalis (PT) of the pituitary, regulating expression of thyrotropin, which then relays messages back to the hypothalamus to control reproductive circuits. In addition, a second local intrapituitary circuit controls seasonal prolactin (PRL) release via one or more currently uncharacterized low-molecular-weight peptides, termed "tuberalins," of PT origin. Studies in birds have identified the transcription factor Eya3 as the first molecular response activated by long photoperiod (LP). Using arrays and in situ hybridization studies, we demonstrate here that Eya3 is the strongest LP-activated gene in sheep, revealing a common photoperiodic molecular response in birds and mammals. We also demonstrate TAC1 (encoding the tachykinins substance P and neurokinin A) to be strongly activated by LP within the sheep PT. We show that these PRL secretagogues act on primary pituitary cells and thus are candidates for the elusive PT-expressed tuberalin seasonal hormone regulator.
Collapse
Affiliation(s)
- Sandrine M Dupré
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|