1
|
Ou WT, Tan RJ, Zhai JW, Sun LJ, Xu FP, Huang XJ, Quan ZH, Zhou CJ. Silencing GDI2 inhibits proliferation, migration and invasion of colorectal cancer through activation of p53 signaling pathway. Heliyon 2024; 10:e37770. [PMID: 39323841 PMCID: PMC11422032 DOI: 10.1016/j.heliyon.2024.e37770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Objective To investigate the effect of silencing GDP dissociation inhibitor 2 (GDI2) on colorectal cancer development and possible mechanisms based on transcriptomic analysis. Methods The differences in the expression levels of GDI2 in normal colorectal tissues and tumor tissues of colorectal cancer (CRC) patients were detected. The correlation of GDI2 expression levels with survival and clinical characteristics of CRC patients was analyzed. The effects of GDI2 expression levels on the biological functions of CRC cells were examined by CCK-8 assay, plate clone formation assay, wound healing assay, and Transwell assay. The effect of GDI2 on the proliferation and growth of xenograft tumors was investigated by a xenograft tumor model of CRC in nude mice. Based on transcriptomics, we explored the possible mechanisms and associated pathways of the effect of silencing GDI2 on CRC cells. Cellular experiments and Western blot assays were performed to verify the potential mechanisms and related pathway of GDI2 action on CRC. Results The expression levels of GDI2 in CRC tissues and cells were higher than those in normal tissues and cells. The expression level of GDI2 correlated with clinical characteristics such as lymphatic metastasis, tumor stage, tumor volume, and lymphocyte count. Silencing of GDI2 reduced the proliferative activity and migration and invasion ability of CRC cells, as well as inhibited the proliferation of CRC xenograft tumors. The differentially expressed genes were significantly enriched in biological processes such as cell cycle arrest and the p53 signaling pathway after GDI2 silencing. The percentage of G0/G1 phase cells in CRC cells was increased after silencing GDI2 as verified by flow cytometry. RAB5A was highly associated with the p53 pathway and could interact with TP53 via the ZFYVE20 protein. The mutual binding between GDI2 protein and RAB5A protein was verified by immunoprecipitation assay. Silencing GDI2 while overexpressing RAB5A reversed the reduced proliferation, migration, and invasion ability as well as cell cycle arrest of CRC cells. Meanwhile, the addition of p53 signaling pathway inhibitor Pifithrin-α (PFT-α) also reversed the biological effects of silencing GDI2 on CRC cells. The p-p21 and p-p53 protein expression levels were significantly greater in the sh-GDI2 group than in the sh-NC group. However, the p-p21 and p-p53 protein expression levels were reduced after silencing GDI2 while overexpressing RAB5A. Conclusion Silencing GDI2 activates the p53 signaling pathway by regulating RAB5A expression levels, which in turn induces cell cycle arrest and ultimately affects the proliferative activity, migration, and invasive ability of CRC cells.
Collapse
Affiliation(s)
- Wen-Ting Ou
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Rong-Jian Tan
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Jia-Wei Zhai
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Li-Jun Sun
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Fei-Peng Xu
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Xian-Jin Huang
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Zhen-Hao Quan
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| | - Cai-Jin Zhou
- Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, China
| |
Collapse
|
2
|
Modulation of Rab GDP-Dissociation Inhibitor Trafficking and Expression by the Transmembrane Protein 59 (TMEM59). SEPARATIONS 2022. [DOI: 10.3390/separations9110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transmembrane protein 59 (TMEM59) is a type I transmembrane protein. However, the characterization and functions of TMEM59 in cells are not clear. Our results showed that TMEM59 localizes to vesicular structures. Further co-localization studies illustrated that TMEM59 is mainly distributed in the lysosome and acidic vesicular. TMEM59 movement between the nucleus and cell membrane was observed in living cells expressing TMEM59–EGFP fusion proteins. In addition, cell surface transport of amyloid precursor protein (APP) was significantly inhibited by TMEM59 and increased APP levels in HEK296T cells. TMEM59 also significantly inhibits transport of Rab GDP dissociation inhibitor alpha (GDI1) and Rab GDP dissociation inhibitor beta (GDI2), and further increases expression of GDI1 and GDI2 proteins in the cytoplasm. However, TMEM59 does not affect protein expression and localization of BACE2. These results suggest that TMEM59 may be involved in the packaging of acidic vesicles, modulated transport, and processing of APP, GDI1, and GDI2.
Collapse
|
3
|
Zhang W, Liu Z, Xia S, Yao L, Li L, Gan Z, Tang H, Guo Q, Yan X, Sun Z. GDI2 is a novel diagnostic and prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:25304-25324. [PMID: 34894398 PMCID: PMC8714169 DOI: 10.18632/aging.203748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022]
Abstract
Background: GDP Dissociation inhibitor 2 (GDI2) gene has been correlated with some important biological processes in a variety of cancers, whereas the role of GDI2 in hepatocellular carcinoma (HCC) is ill-defined. We aimed to demonstrate the relationship between GDI2 and HCC based on The Cancer Genome Atlas (TCGA) data mining. Methods: The expression of GDI2 was compared between cancer and normal tissues of 371 HCC patients collected from TCGA-LIHC, and verified in HCC cell lines. Gene set enrichment analysis (GSEA) was applied to annotate biological function of GDI2. Furthermore, Wilcoxon rank sum test, Logistics regression, as well as Cox regression and Kaplan-Meier survival analysis, were employed to evaluate the association of GDI2 expression with clinicopathological characteristics, and survival status of HCC patients, respectively. Results: It showed that the expression of GDI2 was much higher in tumor tissues than in normal tissues (P < 0.001) of HCC patients. And the elevated expression of GDI2 was correlated with more aggressive HCC tumor status, including severe primary tumor extent, advanced pathological stage, serious histologic grade, and mutated TP53 status (P < 0.05). Moreover, high GDI2 expression was strongly associated with a poor survival rate (P < 0.001). Both enrichment and immune infiltration analyses implied that GDI2-associated signaling mainly involve lipid metabolism and extracellular matrix (ECM) constructing pathways related to tumor microenvironment (TME) (P < 0.05). Conclusions: The elevated expression of GDI2 predicts poor prognosis in HCC patients, indicating that GDI2 could be applied as a predictive biomarker for diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Wen Zhang
- School of Medicine, Kunming University of Science and Technology, Affiliated by The First People's Hospital of Yunnan Province, Kunming 650504, Yunnan, China.,Yunnan Digestive Endoscopy Clinical Medical Center, Gastroenterology Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Zhongjian Liu
- Yunnan Digestive Endoscopy Clinical Medical Center, Gastroenterology Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Lei Yao
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
| | - Lan Li
- Ophthalmology Department, Jiangxi Provincial People's Hospital, Nanchang 330006, Jiangxi, China
| | - Ziying Gan
- Yunnan Digestive Endoscopy Clinical Medical Center, Gastroenterology Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Hui Tang
- Yunnan Digestive Endoscopy Clinical Medical Center, Gastroenterology Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Qiang Guo
- Yunnan Digestive Endoscopy Clinical Medical Center, Gastroenterology Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Xinmin Yan
- Yunnan Digestive Endoscopy Clinical Medical Center, Gastroenterology Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Zhiwei Sun
- School of Medicine, Kunming University of Science and Technology, Affiliated by The First People's Hospital of Yunnan Province, Kunming 650504, Yunnan, China.,Yunnan Digestive Endoscopy Clinical Medical Center, Gastroenterology Department, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| |
Collapse
|
4
|
GDI2 is a target of paclitaxel that affects tumorigenesis of prostate cancer via the p75NTR signaling pathway. Biochem Biophys Res Commun 2021; 562:119-126. [PMID: 34051575 DOI: 10.1016/j.bbrc.2021.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate cancer (PCa) refers to malignant tumors derived from prostate epithelial cells, whose morbidity and mortality rates have been increasing every year. Although new drugs for treating prostate cancer continue to emerge, the unclear mechanism underlying drug targets limits this therapy, thereby constraining identification of effective therapeutic targets. Although GDP dissociation inhibitor 2(GDI2) is highly expressed and closely associated with occurrence and development of many tumors, its role in prostate cancer remains unclear. In this study, we investigated the role of GDI2 and elucidated its underlying mechanism of action in prostate cancer. Moreover, we screened chemotherapeutic drugs that affect GDI2 expression with a view of identifying novel targets for diagnosis and treatment of prostate cancer. METHODS We performed sequence analyses and functional assays to precisely elucidate the GDI2 role in prostate cancer. Moreover, we induced tumorigenesis in nude mice to verify the role of GDI2 in vivo. Finally, we used the CCK8 assay to ascertain the most suitable IC50 across the three drugs and performed quantitative real time polymerase chain reaction (qRT-PCR) and Western Blot to analyze the effects of drugs on expression of GDI2, p75NTR, and p-NFκB. RESULTS GDI2 was up-regulated in prostate cancer cells and tissues. Knocking down GDI2 suppressed cell proliferation but promoted cell apoptosis. Interestingly, knocking down GDI2 activated the p75NTR signaling pathway, indicating, for the first time, that p75NTR is negatively correlated with GDI2 expression. CONCLUSION Taken together, these results indicate that GDI2 is a therapeutic target of paclitaxel. Knocking down of GDI2 inhibits cell proliferation and promotes cell apoptosis via the p75NTR signaling pathway in prostate cancer. Notably, paclitaxel inhibits GDI2 expression, implying that GDI2 may be a promising therapeutic target in prostate cancer.
Collapse
|
5
|
Tong SJ, Wall AA, Hung Y, Luo L, Stow JL. Guanine nucleotide exchange factors activate Rab8a for Toll-like receptor signalling. Small GTPases 2021; 12:27-43. [PMID: 30843452 PMCID: PMC7781844 DOI: 10.1080/21541248.2019.1587278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023] Open
Abstract
Macrophages are important immune sentinels that detect and clear pathogens and initiate inflammatory responses through the activation of surface receptors, including Toll-like receptors (TLRs). Activated TLRs employ complex cellular trafficking and signalling pathways to initiate transcription for inflammatory cytokine programs. We have previously shown that Rab8a is activated by multiple TLRs and regulates downstream Akt/mTOR signalling by recruiting the effector PI3Kγ, but the guanine nucleotide exchange factors (GEF) canonically required for Rab8a activation in TLR pathways is not known. Using GST affinity pull-downs and mass spectrometry analysis, we identified a Rab8 specific GEF, GRAB, as a Rab8a binding partner in LPS-activated macrophages. Co-immunoprecipitation and fluorescence microscopy showed that both GRAB and a structurally similar GEF, Rabin8, undergo LPS-inducible binding to Rab8a and are localised on cell surface ruffles and macropinosomes where they coincide with sites of Rab8a mediated signalling. Rab nucleotide activation assays with CRISPR-Cas9 mediated knock-out (KO) cell lines of GRAB, Rabin8 and double KOs showed that both GEFs contribute to TLR4 induced Rab8a GTP loading, but not membrane recruitment. In addition, measurement of signalling profiles and live cell imaging with the double KOs revealed that either GEF is individually sufficient to mediate PI3Kγ-dependent Akt/mTOR signalling at macropinosomes during TLR4-driven inflammation, suggesting a redundant relationship between these proteins. Thus, both GRAB and Rabin8 are revealed as key positive regulators of Rab8a nucleotide exchange for TLR signalling and inflammatory programs. These GEFs may be useful as potential targets for manipulating inflammation. Abbreviations: TLR: Toll-like Receptor; OCRL: oculocerebrorenal syndrome of Lowe protein; PI3Kγ: phosphoinositol-3-kinase gamma; LPS: lipopolysaccharide; GEF: guanine nucleotide exchange factor; GST: glutathione S-transferases; BMMs: bone marrow derived macrophages; PH: pleckstrin homology; GAP: GTPase activating protein; ABCA1: ATP binding cassette subfamily A member 1; GDI: GDP dissociation inhibitor; LRP1: low density lipoprotein receptor-related protein 1.
Collapse
Affiliation(s)
- Samuel J. Tong
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Adam A. Wall
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Yu Hung
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Streicher JM. The Role of Heat Shock Proteins in Regulating Receptor Signal Transduction. Mol Pharmacol 2019; 95:468-474. [PMID: 30670482 DOI: 10.1124/mol.118.114652] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/12/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock proteins (Hsp) are a class of stress-inducible proteins that mainly act as molecular protein chaperones. This chaperone activity is diverse, including assisting in nascent protein folding and regulating client protein location and translocation within the cell. The main proteins within the Hsp family, particularly Hsp70 and Hsp90, also have a highly diverse and numerous set of protein clients, which when combined with the high expression levels of Hsp proteins (2%-6% of total protein content) establishes these molecules as "central regulators" of cell protein physiology. Among the client proteins, Hsps regulate numerous signal-transduction and receptor-regulatory kinases, and indeed directly regulate some receptors themselves. This also makes the Hsps, particularly Hsp90, central regulators of signal-transduction machinery, with important impacts on endogenous and drug ligand responses. Among these roles, Hsp90 in particular acts to maintain mature signaling kinases in a metastable conformation permissive for signaling activation. In this review, we will focus on the roles of the Hsps, with a special focus on Hsp90, in regulating receptor signaling and subsequent physiologic responses. We will also explore potential means to manipulate Hsp function to improve receptor-targeted therapies. Overall, Hsps are important regulators of receptor signaling that are receiving increasing interest and exploration, particularly as Hsp90 inhibitors progress toward clinical approval for the treatment of cancer. Understanding the complex interplay of Hsp regulation of receptor signaling may provide important avenues to improve patient treatment.
Collapse
Affiliation(s)
- John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Lohmer LL, Clay MR, Naegeli KM, Chi Q, Ziel JW, Hagedorn EJ, Park JE, Jayadev R, Sherwood DR. A Sensitized Screen for Genes Promoting Invadopodia Function In Vivo: CDC-42 and Rab GDI-1 Direct Distinct Aspects of Invadopodia Formation. PLoS Genet 2016; 12:e1005786. [PMID: 26765257 PMCID: PMC4713207 DOI: 10.1371/journal.pgen.1005786] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022] Open
Abstract
Invadopodia are specialized membrane protrusions composed of F-actin, actin regulators, signaling proteins, and a dynamically trafficked invadopodial membrane that drive cell invasion through basement membrane (BM) barriers in development and cancer. Due to the challenges of studying invasion in vivo, mechanisms controlling invadopodia formation in their native environments remain poorly understood. We performed a sensitized genome-wide RNAi screen and identified 13 potential regulators of invadopodia during anchor cell (AC) invasion into the vulval epithelium in C. elegans. Confirming the specificity of this screen, we identified the Rho GTPase cdc-42, which mediates invadopodia formation in many cancer cell lines. Using live-cell imaging, we show that CDC-42 localizes to the AC-BM interface and is activated by an unidentified vulval signal(s) that induces invasion. CDC-42 is required for the invasive membrane localization of WSP-1 (N-WASP), a CDC-42 effector that promotes polymerization of F-actin. Loss of CDC-42 or WSP-1 resulted in fewer invadopodia and delayed BM breaching. We also characterized a novel invadopodia regulator, gdi-1 (Rab GDP dissociation inhibitor), which mediates membrane trafficking. We show that GDI-1 functions in the AC to promote invadopodia formation. In the absence of GDI-1, the specialized invadopodial membrane was no longer trafficked normally to the invasive membrane, and instead was distributed to plasma membrane throughout the cell. Surprisingly, the pro-invasive signal(s) from the vulval cells also controls GDI-1 activity and invadopodial membrane trafficking. These studies represent the first in vivo screen for genes regulating invadopodia and demonstrate that invadopodia formation requires the integration of distinct cellular processes that are coordinated by an extracellular cue. During animal development specialized cells acquire the ability move and invade into other tissues to form complex organs and structures. Understanding this cellular behavior is important medically, as cancer cells can hijack the developmental program of invasion to metastasize throughout the body. One of the most formidable barriers invasive cells face is basement membrane–-a thin, dense, sheet-like assembly of proteins and carbohydrates that surrounds most tissues. Cells deploy small, protrusive, membrane associated structures called invadopodia (invasive feet) to breach basement membranes. How invadopodia are formed and controlled during invasion has been challenging to understand, as it is difficult to examine these dynamic structures in live animals. Using the nematode worm Caenorhabditis elegans, we have conducted the first large-scale screen to isolate genes that control invadopodia in live animals. Our screen isolated 13 genes and we confirmed two are key invadopodia regulators: the Rho GTPase CDC-42 that promotes F-actin polymerization at invadopodia to generate the force to breach basement membranes, and the Rab GDI-1 that promotes membrane addition at invadopodia that may allow invadopodia to extend through basement membranes. This work provides new insights into invadopodia construction and identifies potential novel targets for anti-metastasis therapies.
Collapse
Affiliation(s)
- Lauren L. Lohmer
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Matthew R. Clay
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Kaleb M. Naegeli
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Joshua W. Ziel
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Elliott J. Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jieun E. Park
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ranjay Jayadev
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - David R. Sherwood
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lin YS, Yang CC, Hsu CC, Hsu JT, Wu SC, Lin CJ, Cheng WTK. Establishment of a novel, eco-friendly transgenic pig model using porcine pancreatic amylase promoter-driven fungal cellulase transgenes. Transgenic Res 2014; 24:61-71. [PMID: 25063310 DOI: 10.1007/s11248-014-9817-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/11/2014] [Indexed: 11/25/2022]
Abstract
Competition between humans and livestock for cereal and legume grains makes it challenging to provide economical feeds to livestock animals. Recent increases in corn and soybean prices have had a significant impact on the cost of feed for pig producers. The utilization of byproducts and alternative ingredients in pig diets has the potential to reduce feed costs. Moreover, unlike ruminants, pigs have limited ability to utilize diets with high fiber content because they lack endogenous enzymes capable of breaking down nonstarch polysaccharides into simple sugars. Here, we investigated the feasibility of a transgenic strategy in which expression of the fungal cellulase transgene was driven by the porcine pancreatic amylase promoter in pigs. A 2,488 bp 5'-flanking region of the porcine pancreatic amylase gene was cloned by the genomic walking technique, and its structural features were characterized. Using GFP as a reporter, we found that this region contained promoter activity and had the potential to control heterologous gene expression. Transgenic pigs were generated by pronuclear microinjection. Founders and offspring were identified by PCR and Southern blot analyses. Cellulase mRNA and protein showed tissue-specific expression in the pancreas of F1 generation pigs. Cellulolytic enzyme activity was also identified in the pancreas of transgenic pigs. These results demonstrated the establishment of a tissue-specific promoter of the porcine pancreatic amylase gene. Transgenic pigs expressing exogenous cellulase may represent a way to increase the intake of low-cost, fiber-rich feeds.
Collapse
Affiliation(s)
- Y S Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang C, Omran AG, He F, Deng X, Wu L, Peng J, Yin F. Screening and identification of dynamin-1 interacting proteins in rat brain synaptosomes. Brain Res 2013; 1543:17-27. [PMID: 24211660 DOI: 10.1016/j.brainres.2013.10.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 01/27/2023]
Abstract
Dynamin-1 is a multi-domain GTPase that is crucial for the fission stage of synaptic vesicle recycling and vesicle trafficking. In this study, we constructed prokaryotic expression plasmids for the four functional domains of dynamin-1, which are pGEX-4T-2-PH, pGEX-4T-2-PRD, pGEX-4T-2-GED and pGEX-4T-2-GTPase. Glutathione S-transferase pull-down, co-immunoprecipitation (co-IP), and liquid chromatography/mass spectrometry were used to screen and identify dynamin-1 interacting proteins in rat brain synaptosomes. We identified a set of 63 candidate protein interactions, including 36 proteins interacting with dynamin-1 C-terminal proline-rich domain (PRD), 14 with pleckstrin-homology domain (PH), 7 with GTPase effector domain (GED) and 6 with GTPase domain, consisting of synaptic vesicle-associated proteins, cytoskeletal proteins, metabolic enzymes and other proteins. We selected three previously unreported dynamin-1 interacting proteins to verify their interaction with dynamin-1 under native conditions. Using co-IP, we found that Rab GDP-dissociation inhibitor (Rab GDI) and chloride channel 3 (ClC-3) do interact with dynamin-1, but not with TUC-4b (the TOAD-64/Ulip/CRMP (TUC) family member). Those novel interactions detected in our study offer valuable insight into the protein-protein interacting network that could enhance our understanding of dynamin-1 mediated synaptic vesicle recycling.
Collapse
Affiliation(s)
- Ciliu Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Ahmed Galal Omran
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Lei Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| |
Collapse
|
10
|
Afshar K, Dube FF, Najafabadi HS, Bonneil E, Thibault P, Salavati R, Bede JC. Insights into the insect salivary gland proteome: diet-associated changes in caterpillar labial salivary proteins. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:351-366. [PMID: 23353727 DOI: 10.1016/j.jinsphys.2013.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
The primary function of salivary glands is fluid and protein secretion during feeding. Compared to mammalian systems, little is known about salivary protein secretion processes and the effect of diet on the salivary proteome in insect models. Therefore, the effect of diet nutritional quality on caterpillar labial salivary gland proteins was investigated using an unbiased global proteomic approach by nanoLC/ESI/tandem MS. Caterpillars of the beet armyworm, Spodoptera exigua Hübner, were fed one of three diets: an artificial diet containing their self-selected protein to carbohydrate (p:c) ratio (22p:20c), an artificial diet containing a higher nutritional content but the same p:c ratio (33p:30c) or the plant Medicago truncatula Gaertn. As expected, most identified proteins were associated with secretory processes and not influenced by diet. However, some diet-specific differences were observed. Nutrient stress-associated proteins, such as peptidyl-propyl cis-trans isomerase and glucose-regulated protein94/endoplasmin, and glyceraldehyde 3-phosphate dehydrogenase were identified in the labial salivary glands of caterpillars fed nutritionally poor diets, suggesting a link between nutritional status and vesicular exocytosis. Heat shock proteins and proteins involved in endoplasmic reticulum-associated protein degradation were also abundant in the labial salivary glands of these caterpillars. In comparison, proteins associated with development, such as arylphorin, were found in labial salivary glands of caterpillars fed 33p:30c. These results suggest that caterpillars fed balanced or nutritionally-poor diets have accelerated secretion pathways compared to those fed a protein-rich diet.
Collapse
Affiliation(s)
- Khashayar Afshar
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Qc, Canada H9X 3V9.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang XX, Sun RJ, Wu M, Li T, Zhang Y, Chen L. Differential protein expression in EC304 gastric cancer cells induced by alphastatin. Asian Pac J Cancer Prev 2012; 13:1667-74. [PMID: 22799386 DOI: 10.7314/apjcp.2012.13.4.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To explore the differential protein expression profile in EC304 gastric cancer cells induced by alphastatin. METHODS Cultured EC304 cells in the exponential phase of growth were randomly divided into alphastatin and control groups. Total proteins were extracted and the two dimensional electrophoresis (2-DE) technique was applied to analyze differences in expression with ImageMaster 2D Platinum 5.0 software. Proteins were identified using the MASCOT database and selected differently expressed proteins were characterised by western blotting and immunofluorescence. RESULTS 1350 ± 90 protein spots were detected by the ImageMaster software in the 2-DE gel images from the control and alphastatin groups. The match rate was about 72-80% for the spectrum profiles, with 29 significantly different protein spots being identified, 10 upregulated, 16 downregulated, two new and one lost. The MASCOT search scores were 64-666 and the peptide matching numbers were 3-27 with sequence coverage of 8-62%. Twenty-three proteins were checked by mass spectrometry, including decrease in Nm23 and profilin-2 isoform b associated with the regulation of actin multimerisation induced by extracellular signals. CONCLUSION The proteome in EC304 cells is dramatically altered by alphastatin, which appears to play an important role in modulating cellular activity and anti-angiogenesis by regulating protein expression and signal transduction pathways through Nm23 and profilin-2 isoform b, providing new research directions for anti-angiogenic therapy of gastric cancer.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
12
|
Rab3D regulates amylase levels, not agonist-induced amylase release, in AR42J cells. Cell Mol Biol Lett 2012; 17:258-73. [PMID: 22367855 PMCID: PMC6275755 DOI: 10.2478/s11658-012-0008-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/15/2012] [Indexed: 12/23/2022] Open
Abstract
Rab3D is a low molecular weight GTP-binding protein that associates with secretory granules in exocrine cells. AR42J cells are derived from rat pancreatic exocrine tumor cells and develop an acinar cell-like phenotype when treated with dexamethasone (Dex). In the present study, we examined the role of Rab3D in Dex-treated AR42J cells. Rab3D expression and localization were analyzed by subcellular fractionation and immunoblotting. The role of Rab3D was examined by overexpressing myc-labeled wild-type-Rab3D and a constitutively active form of Rab3D (Rab3D-Q81L) in AR42J cells. We found that Rab3D is predominantly membrane-associated in AR42J cells and co-localizes with zymogen granules (ZG). Following CCK-8-induced exocytosis, amylase-positive ZGs appeared to move towards the periphery of the cell and co-localization between Rab3D and amylase was less complete when compared to basal conditions. Overexpression of WT, but not mutant Rab3D, resulted in an increase in cellular amylase levels. Overexpression of mutant and WT Rab3D did not affect granule morphology, CCK-8-induced secretion, long-term (48 hr) basal amylase release or granule density. We conclude that Rab3D is not involved in agonist-induced exocytosis in AR42J cells. Instead, Rab3D may regulate amylase content in these cells.
Collapse
|
13
|
Effect of ephrin-A1/EphA2 on invasion of trophoblastic cells. ACTA ACUST UNITED AC 2011; 31:824-827. [DOI: 10.1007/s11596-011-0684-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Indexed: 10/14/2022]
|
14
|
Abstract
PURPOSE OF REVIEW This review identifies and puts into context the recent articles which have advanced understanding of the functions of pancreatic acinar cells and the mechanisms by which these functions are regulated. RECENT FINDINGS Receptors present on acinar cells, particularly those for cholecystokinin and secretin, have been better characterized as to the molecular nature of the ligand-receptor interaction. Other reports have described the potential regulation of acinar cells by GLP-1 and cannabinoids. Intracellular Ca2+ signaling remains at the center of stimulus secretion coupling and its regulation has been further defined. Recent studies have identified specific channels mediating Ca2+ release from intracellular stores and influx across the plasma membrane. Work downstream of intracellular mediators has focused on molecular mechanisms of exocytosis particularly involving small G proteins, SNARE proteins and chaperone molecules. In addition to secretion, recent studies have further defined the regulation of pancreatic growth both in adaptive regulation to diet and hormones in the regeneration that occurs after pancreatic damage. Lineage tracing has been used to show the contribution of different cell types. The importance of specific amino acids as signaling molecules to activate the mTOR pathway is being elucidated. SUMMARY Understanding the mechanisms that regulate pancreatic acinar cell function is contributing to knowledge of normal pancreatic function and alterations in disease.
Collapse
|