1
|
Omidvar S, Mochiatti Guijo L, Duda V, Costa-Faidella J, Escera C, Koravand A. Can auditory evoked responses elicited to click and/or verbal sound identify children with or at risk of central auditory processing disorder: A scoping review. Int J Pediatr Otorhinolaryngol 2023; 171:111609. [PMID: 37393698 DOI: 10.1016/j.ijporl.2023.111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND (Central) auditory processing disorders, (C)APDs are clinically identified using behavioral tests. However, changes in attention and motivation may easily affect true identification. Although auditory electrophysiological tests, such as Auditory Brainstem Responses (ABR), are independent of most confounding cognitive factors, there is no consensus that click and/or speech-evoked ABR can be used to identify children with or at-risk of (C)APDs due to heterogeneity among studies. AIMS This study aimed to review the possibility of using ABR evoked by click and/or speech stimuli to identify children with or at risk of (C)APDs. METHODS The online databases of PubMed, Web of Science, Medline, Embase, and CINAHL were explored using combined keywords for all English and French articles published until April 2021. Additional gray literature was also included such as conference abstracts, dissertations, and editorials in ProQuest Dissertations. MAIN CONTRIBUTION Thirteen papers met the eligibility criteria and were included in the scoping review. Fourteen papers were cross-sectional and two were interventional studies. Eleven papers used click stimuli to assess children with/at risk of (C)APDs, and speech stimuli were utilized in the remaining studies. Despite the diversity of the results, especially in click ABR assessments, most studies indicated increases in the wave latencies and/or decreases in the wave amplitudes of click ABR in children with/at risk of (C)APDs. The results of speech ABR assessments were more consistent, as prolongation of the transient components of speech ABR was observed in these children, while sustained components remained almost unchanged. CONCLUSIONS Although both click and speech-evoked ABRs could be used to assess children with (C)APDs, it appears that speech-evoked ABR assessments yield more reliable findings. These findings, however, should be interpreted with caution given the heterogeneity among studies. Well-designed studies on children with confirmed (C)APDs using standard diagnostic and assessment protocols are recommended.
Collapse
Affiliation(s)
- Shaghayegh Omidvar
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ontario, Canada.
| | - Laura Mochiatti Guijo
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ontario, Canada; School of Speech-Language Pathology and Audiology, Sao Paulo State University "Júlio de Mesquita Filho" - UNESP, Marília, SP, Brazil.
| | - Victoria Duda
- École d'orthophonie et d'audiologie, Université de Montréal, Québec, Canada.
| | - Jordi Costa-Faidella
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institute de Recerca Sant Joan de Déu, Esplugues de Llobregat, Catalonia, Spain.
| | - Carless Escera
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institute de Recerca Sant Joan de Déu, Esplugues de Llobregat, Catalonia, Spain.
| | - Amineh Koravand
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Bsharat-Maalouf D, Karawani H. Bilinguals' speech perception in noise: Perceptual and neural associations. PLoS One 2022; 17:e0264282. [PMID: 35196339 PMCID: PMC8865662 DOI: 10.1371/journal.pone.0264282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/07/2022] [Indexed: 01/26/2023] Open
Abstract
The current study characterized subcortical speech sound processing among monolinguals and bilinguals in quiet and challenging listening conditions and examined the relation between subcortical neural processing and perceptual performance. A total of 59 normal-hearing adults, ages 19–35 years, participated in the study: 29 native Hebrew-speaking monolinguals and 30 Arabic-Hebrew-speaking bilinguals. Auditory brainstem responses to speech sounds were collected in a quiet condition and with background noise. The perception of words and sentences in quiet and background noise conditions was also examined to assess perceptual performance and to evaluate the perceptual-physiological relationship. Perceptual performance was tested among bilinguals in both languages (first language (L1-Arabic) and second language (L2-Hebrew)). The outcomes were similar between monolingual and bilingual groups in quiet. Noise, as expected, resulted in deterioration in perceptual and neural responses, which was reflected in lower accuracy in perceptual tasks compared to quiet, and in more prolonged latencies and diminished neural responses. However, a mixed picture was observed among bilinguals in perceptual and physiological outcomes in noise. In the perceptual measures, bilinguals were significantly less accurate than their monolingual counterparts. However, in neural responses, bilinguals demonstrated earlier peak latencies compared to monolinguals. Our results also showed that perceptual performance in noise was related to subcortical resilience to the disruption caused by background noise. Specifically, in noise, increased brainstem resistance (i.e., fewer changes in the fundamental frequency (F0) representations or fewer shifts in the neural timing) was related to better speech perception among bilinguals. Better perception in L1 in noise was correlated with fewer changes in F0 representations, and more accurate perception in L2 was related to minor shifts in auditory neural timing. This study delves into the importance of using neural brainstem responses to speech sounds to differentiate individuals with different language histories and to explain inter-subject variability in bilinguals’ perceptual abilities in daily life situations.
Collapse
Affiliation(s)
- Dana Bsharat-Maalouf
- Department of Communication Sciences and Disorders, University of Haifa, Haifa, Israel
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, University of Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
3
|
Venâncio LGA, Leal MDC, da Hora LCD, Griz SMS, Muniz LF. Frequency-Following Response (FFR) in cochlear implant users: a systematic review of acquisition parameters, analysis, and outcomes. Codas 2022; 34:e20210116. [PMID: 35081198 PMCID: PMC9886122 DOI: 10.1590/2317-1782/20212021116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To characterize the acquisition parameters, analysis, and results of the frequency-following response (FFR) in cochlear implant users. RESEARCH STRATEGIES The search was conducted in Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS), Ovid Technologies, PubMed, SciELO, ScienceDirect, Scopus, Web of Science, and gray literature. SELECTION CRITERIA Studies on FFR in cochlear implant users or that compared them with normal-hearing people, with no restriction of age, were included. Secondary and experimental studies were excluded. There was no restriction of language or year of publication. DATA ANALYSIS The data were analyzed and reported according to the stages in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), 2020. The methodological quality was analyzed with the Joanna Briggs Institute Critical Appraisal Checklist for Analytical Cross-Sectional Studies. Divergences were solved by a third researcher. RESULTS Six studies met the inclusion criteria. Only one study was comparative, whose control group comprised normal-hearing people. The variations in acquisition parameters were common and the analysis predominantly approached the time domain. Cochlear implant users had different FFR results from those of normal-hearing people, considering the existing literature. Most articles had low methodological quality. CONCLUSION There is no standardized FFR acquisition and analysis protocol for cochlear implant users. The results have a high risk of bias.
Collapse
Affiliation(s)
| | - Mariana de Carvalho Leal
- Programa de Pós-graduação em Saúde da Comunicação Humana, Departamento de Cirurgia, Universidade Federal de Pernambuco – UFPE - Recife (PE), Brasil.
| | - Laís Cristine Delgado da Hora
- Programa de Pós-graduação em Saúde da Comunicação Humana, Universidade Federal de Pernambuco – UFPE - Recife (PE), Brasil.
| | - Silvana Maria Sobral Griz
- Programa de Pós-graduação em Saúde da Comunicação Humana, Departamento de Fonoaudiologia, Universidade Federal de Pernambuco – UFPE - Recife (PE), Brasil.
| | - Lilian Ferreira Muniz
- Programa de Pós-graduação em Saúde da Comunicação Humana, Departamento de Fonoaudiologia, Universidade Federal de Pernambuco – UFPE - Recife (PE), Brasil.
| |
Collapse
|
4
|
Lemos FA, da Silva Nunes AD, de Souza Evangelista CK, Escera C, Taveira KVM, Balen SA. Frequency-Following Response in Newborns and Infants: A Systematic Review of Acquisition Parameters. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2085-2102. [PMID: 34057846 DOI: 10.1044/2021_jslhr-20-00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose The purpose of this study is to characterize parameters used for frequency-following response (FFR) acquisition in children up to 24 months of age through a systematic review. Method The study was registered in PROSPERO and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses' recommendations. Search was performed in six databases (LILACS, LIVIVO, PsycINFO, PubMed, Scopus, and Web of Science) and gray literature (Google Scholar, OpenGrey, ProQuest)as well as via manual searches in bibliographic references. Observational studies using speech stimuli to elicit the FFR in infants with normal hearing on the age range from 0 until 24 months were included. No restrictions regarding language and year of publication were applied. Risk of bias was assessed with the Joanna Briggs Institute Critical Appraisal Checklist. Data on stimulus, presentation rate, time window for analysis, number of sweeps, artifact rejection, online filters, stimulated ear, and examination condition were extracted. Results Four hundred fifty-nine studies were identified. After removing duplicates and reading titles and abstracts, 15 articles were included. Seven studies were classified as low risk of bias, seven as moderate risk, and one as high risk. Conclusions There is a consensus in the use of some acquisition parameters of the FFR with speech stimulus, such as the vertical mounting, the use of alternating polarity, a sampling rate of 20000 Hz, and the /da/ synthesized syllable of 40 ms in duration as the preferred stimulus. Although these parameters show some consensus, the results disclosed lack of a single established protocol for FFR acquisition with speech stimulus in infants in the investigated age range.
Collapse
Affiliation(s)
- Fabiana Aparecida Lemos
- Speech, Language and Hearing Sciences Graduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Laboratory of Technological Innovation in Health of the Federal University of Rio Grande do Norte (LAIS/UFRN), Natal, Brazil
| | - Aryelly Dayane da Silva Nunes
- Speech, Language and Hearing Sciences Graduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Laboratory of Technological Innovation in Health of the Federal University of Rio Grande do Norte (LAIS/UFRN), Natal, Brazil
| | - Carolina Karla de Souza Evangelista
- Speech, Language and Hearing Sciences Graduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Laboratory of Technological Innovation in Health of the Federal University of Rio Grande do Norte (LAIS/UFRN), Natal, Brazil
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Spain
- Sant Joan de Déu Research Institute, Esplugues de Llobregat Barcelona, Spain
| | | | - Sheila Andreoli Balen
- Speech, Language and Hearing Sciences Graduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Laboratory of Technological Innovation in Health of the Federal University of Rio Grande do Norte (LAIS/UFRN), Natal, Brazil
| |
Collapse
|
5
|
Richard C, Neel ML, Jeanvoine A, Connell SM, Gehred A, Maitre NL. Characteristics of the Frequency-Following Response to Speech in Neonates and Potential Applicability in Clinical Practice: A Systematic Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:1618-1635. [PMID: 32407639 DOI: 10.1044/2020_jslhr-19-00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose We sought to critically analyze and evaluate published evidence regarding feasibility and clinical potential for predicting neurodevelopmental outcomes of the frequency-following responses (FFRs) to speech recordings in neonates (birth to 28 days). Method A systematic search of MeSH terms in the Cumulative Index to Nursing and Allied HealthLiterature, Embase, Google Scholar, Ovid Medline (R) and E-Pub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily, Web of Science, SCOPUS, COCHRANE Library, and ClinicalTrials.gov was performed. Manual review of all items identified in the search was performed by two independent reviewers. Articles were evaluated based on the level of methodological quality and evidence according to the RTI item bank. Results Seven articles met inclusion criteria. None of the included studies reported neurodevelopmental outcomes past 3 months of age. Quality of the evidence ranged from moderate to high. Protocol variations were frequent. Conclusions Based on this systematic review, the FFR to speech can capture both temporal and spectral acoustic features in neonates. It can accurately be recorded in a fast and easy manner at the infant's bedside. However, at this time, further studies are needed to identify and validate which FFR features could be incorporated as an addition to standard evaluation of infant sound processing evaluation in subcortico-cortical networks. This review identifies the need for further research focused on identifying specific features of the neonatal FFRs, those with predictive value for early childhood outcomes to help guide targeted early speech and hearing interventions.
Collapse
Affiliation(s)
- Céline Richard
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Switzerland
| | - Mary Lauren Neel
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Arnaud Jeanvoine
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Sharon Mc Connell
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Alison Gehred
- Medical Library Division, Nationwide Children's Hospital, Columbus, OH
| | - Nathalie L Maitre
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
6
|
Speech Auditory Brainstem Responses: Effects of Background, Stimulus Duration, Consonant-Vowel, and Number of Epochs. Ear Hear 2019; 40:659-670. [PMID: 30124503 PMCID: PMC6493675 DOI: 10.1097/aud.0000000000000648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives: The aims of this study were to systematically explore the effects of stimulus duration, background (quiet versus noise), and three consonant–vowels on speech-auditory brainstem responses (ABRs). Additionally, the minimum number of epochs required to record speech-ABRs with clearly identifiable waveform components was assessed. The purpose was to evaluate whether shorter duration stimuli could be reliably used to record speech-ABRs both in quiet and in background noise to the three consonant–vowels, as opposed to longer duration stimuli that are commonly used in the literature. Shorter duration stimuli and a smaller number of epochs would require shorter test sessions and thus encourage the transition of the speech-ABR from research to clinical practice. Design: Speech-ABRs in response to 40 msec [da], 50 msec [ba] [da] [ga], and 170 msec [ba] [da] [ga] stimuli were collected from 12 normal-hearing adults with confirmed normal click-ABRs. Monaural (right-ear) speech-ABRs were recorded to all stimuli in quiet and to 40 msec [da], 50 msec [ba] [da] [ga], and 170 msec [da] in a background of two-talker babble at +10 dB signal to noise ratio using a 2-channel electrode montage (Cz-Active, A1 and A2-reference, Fz-ground). Twelve thousand epochs (6000 per polarity) were collected for each stimulus and background from all participants. Latencies and amplitudes of speech-ABR peaks (V, A, D, E, F, O) were compared across backgrounds (quiet and noise) for all stimulus durations, across stimulus durations (50 and 170 msec) and across consonant–vowels ([ba], [da], and [ga]). Additionally, degree of phase locking to the stimulus fundamental frequency (in quiet versus noise) was evaluated for the frequency following response in speech-ABRs to the 170 msec [da]. Finally, the number of epochs required for a robust response was evaluated using Fsp statistic and bootstrap analysis at different epoch iterations. Results: Background effect: the addition of background noise resulted in speech-ABRs with longer peak latencies and smaller peak amplitudes compared with speech-ABRs in quiet, irrespective of stimulus duration. However, there was no effect of background noise on the degree of phase locking of the frequency following response to the stimulus fundamental frequency in speech-ABRs to the 170 msec [da]. Duration effect: speech-ABR peak latencies and amplitudes did not differ in response to the 50 and 170 msec stimuli. Consonant–vowel effect: different consonant–vowels did not have an effect on speech-ABR peak latencies regardless of stimulus duration. Number of epochs: a larger number of epochs was required to record speech-ABRs in noise compared with in quiet, and a smaller number of epochs was required to record speech-ABRs to the 40 msec [da] compared with the 170 msec [da]. Conclusions: This is the first study that systematically investigated the clinical feasibility of speech-ABRs in terms of stimulus duration, background noise, and number of epochs. Speech-ABRs can be reliably recorded to the 40 msec [da] without compromising response quality even when presented in background noise. Because fewer epochs were needed for the 40 msec [da], this would be the optimal stimulus for clinical use. Finally, given that there was no effect of consonant–vowel on speech-ABR peak latencies, there is no evidence that speech-ABRs are suitable for assessing auditory discrimination of the stimuli used.
Collapse
|
7
|
Krizman J, Kraus N. Analyzing the FFR: A tutorial for decoding the richness of auditory function. Hear Res 2019; 382:107779. [PMID: 31505395 PMCID: PMC6778514 DOI: 10.1016/j.heares.2019.107779] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023]
Abstract
The frequency-following response, or FFR, is a neurophysiological response to sound that precisely reflects the ongoing dynamics of sound. It can be used to study the integrity and malleability of neural encoding of sound across the lifespan. Sound processing in the brain can be impaired with pathology and enhanced through expertise. The FFR can index linguistic deprivation, autism, concussion, and reading impairment, and can reflect the impact of enrichment with short-term training, bilingualism, and musicianship. Because of this vast potential, interest in the FFR has grown considerably in the decade since our first tutorial. Despite its widespread adoption, there remains a gap in the current knowledge of its analytical potential. This tutorial aims to bridge this gap. Using recording methods we have employed for the last 20 + years, we have explored many analysis strategies. In this tutorial, we review what we have learned and what we think constitutes the most effective ways of capturing what the FFR can tell us. The tutorial covers FFR components (timing, fundamental frequency, harmonics) and factors that influence FFR (stimulus polarity, response averaging, and stimulus presentation/recording jitter). The spotlight is on FFR analyses, including ways to analyze FFR timing (peaks, autocorrelation, phase consistency, cross-phaseogram), magnitude (RMS, SNR, FFT), and fidelity (stimulus-response correlations, response-to-response correlations and response consistency). The wealth of information contained within an FFR recording brings us closer to understanding how the brain reconstructs our sonic world.
Collapse
Affiliation(s)
- Jennifer Krizman
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA. https://www.brainvolts.northwestern.edu
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
8
|
Krizman J, Bonacina S, Kraus N. Sex differences in subcortical auditory processing emerge across development. Hear Res 2019; 380:166-174. [DOI: 10.1016/j.heares.2019.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 01/26/2023]
|
9
|
Backer KC, Kessler AS, Lawyer LA, Corina DP, Miller LM. A novel EEG paradigm to simultaneously and rapidly assess the functioning of auditory and visual pathways. J Neurophysiol 2019; 122:1312-1329. [PMID: 31268796 DOI: 10.1152/jn.00868.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective assessment of the sensory pathways is crucial for understanding their development across the life span and how they may be affected by neurodevelopmental disorders (e.g., autism spectrum) and neurological pathologies (e.g., stroke, multiple sclerosis, etc.). Quick and passive measurements, for example, using electroencephalography (EEG), are especially important when working with infants and young children and with patient populations having communication deficits (e.g., aphasia). However, many EEG paradigms are limited to measuring activity from one sensory domain at a time, may be time consuming, and target only a subset of possible responses from that particular sensory domain (e.g., only auditory brainstem responses or only auditory P1-N1-P2 evoked potentials). Thus we developed a new multisensory paradigm that enables simultaneous, robust, and rapid (6-12 min) measurements of both auditory and visual EEG activity, including auditory brainstem responses, auditory and visual evoked potentials, as well as auditory and visual steady-state responses. This novel method allows us to examine neural activity at various stations along the auditory and visual hierarchies with an ecologically valid continuous speech stimulus, while an unrelated video is playing. Both the speech stimulus and the video can be customized for any population of interest. Furthermore, by using two simultaneous visual steady-state stimulation rates, we demonstrate the ability of this paradigm to track both parafoveal and peripheral visual processing concurrently. We report results from 25 healthy young adults, which validate this new paradigm.NEW & NOTEWORTHY A novel electroencephalography paradigm enables the rapid, reliable, and noninvasive assessment of neural activity along both auditory and visual pathways concurrently. The paradigm uses an ecologically valid continuous speech stimulus for auditory evaluation and can simultaneously track visual activity to both parafoveal and peripheral visual space. This new methodology may be particularly appealing to researchers and clinicians working with infants and young children and with patient populations with limited communication abilities.
Collapse
Affiliation(s)
- Kristina C Backer
- Center for Mind and Brain, University of California, Davis, California.,Department of Cognitive and Information Sciences, University of California, Merced, California
| | - Andrew S Kessler
- Center for Mind and Brain, University of California, Davis, California
| | - Laurel A Lawyer
- Center for Mind and Brain, University of California, Davis, California
| | - David P Corina
- Center for Mind and Brain, University of California, Davis, California.,Deptartment of Linguistics, University of California, Davis, California
| | - Lee M Miller
- Center for Mind and Brain, University of California, Davis, California.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| |
Collapse
|
10
|
Nasrollaholhosseini SH, Mercier J, Fischer G, Besio WG. Electrode-Electrolyte Interface Modeling and Impedance Characterizing of Tripolar Concentric Ring Electrode. IEEE Trans Biomed Eng 2019; 66:2897-2905. [PMID: 30735984 DOI: 10.1109/tbme.2019.2897935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrodes are used to convert ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface and characterizing the impedance of the interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. Previous work has yielded accurate models for single-element biomedical electrodes. This paper introduces a model for a tripolar concentric ring electrode (TCRE) derived from impedance measurements using electrochemical impedance spectroscopy with a Ten20 electrode impedance matching paste. It is shown that the model serves well to predict the performance of the electrode-electrolyte interface for TCREs as well as standard cup electrodes. In this paper, we also discuss the comparison between the TCRE and the standard cup electrode regarding their impedance characterization and demonstrate the benefit of using TCREs in biomedical applications. We have also conducted auditory evoked potential experiments using both TCRE and standard cup electrodes. The results show that electroencephalography (EEG) recorded from tripolar concentric ring electrodes is beneficial, acquiring the auditory brainstem response with less stimuli with respect to recoding EEG using standard cup electrodes.
Collapse
|
11
|
Gabriel LB, Vernier LS, Ferreira MIDDC, Silveira AL, Machado MS. Parameters for Applying the Brainstem Auditory Evoked Potential with Speech Stimulus: Systematic Review. Int Arch Otorhinolaryngol 2018; 22:460-468. [PMID: 30357057 PMCID: PMC6197961 DOI: 10.1055/s-0037-1605598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/29/2017] [Indexed: 11/08/2022] Open
Abstract
Introduction
Studies using the Brainstem Auditory Evoked Potential with speech stimulus are increasing in Brazil, and there are divergences between the methodologies used for testing.
Objectives
To analyze the parameters used in the study of the Brainstem Auditory Evoked Potentials with speech stimulus.
Data Synthesis
The survey was performed using electronic databases. The search strategy was as follows: “Evoked potentials, auditory” OR “Brain stem” OR “Evoked potentials, auditory, brain stem” AND “Speech.” The survey was performed from June to July of 2016. The criteria used for including articles in this study were: being written in Portuguese, English or Spanish; presenting the description of the testing parameters and the description of the sample. In the databases selected, 2,384 articles were found, and 43 articles met all of the inclusion criteria. The predominance of the following parameters was observed to achieve the potential during study: stimulation with the syllable /da/; monaural presentation with greater use of the right ear; intensity of 80 dB SPL; vertical placement of electrodes; use of in-ear headphones; patient seated, distracted in awake state; alternating polarity; use of speech synthesizer software for the elaboration of stimuli; presentation rate of 10.9/s; and sampling rate of 20 kHz.
Conclusions
The theme addressed in this systematic review is relatively recent. However, the results are significant enough to encourage the use of the procedure in clinical practice and advise clinicians about the most used procedures in each parameter.
Collapse
Affiliation(s)
- Luísa Bello Gabriel
- Phonoaudiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Luíza Silva Vernier
- Speech Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | | | - Márcia Salgado Machado
- Phonoaudiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Bidelman G, Powers L. Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: level dependence, adaptation and phase-locking limits. Int J Audiol 2018; 57:665-672. [DOI: 10.1080/14992027.2018.1470338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Gavin Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Louise Powers
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| |
Collapse
|
13
|
Otto-Meyer S, Krizman J, White-Schwoch T, Kraus N. Children with autism spectrum disorder have unstable neural responses to sound. Exp Brain Res 2018; 236:733-743. [DOI: 10.1007/s00221-017-5164-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
|
14
|
Differences between auditory frequency-following responses and onset responses: Intracranial evidence from rat inferior colliculus. Hear Res 2017; 357:25-32. [PMID: 29156225 DOI: 10.1016/j.heares.2017.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
A periodic sound, such as a pure tone, evokes both transient onset field-potential responses and sustained frequency-following responses (FFRs) in the auditory midbrain, the inferior colliculus (IC). It is not clear whether the two types of responses are based on the same or different neural substrates. Although it has been assumed that FFRs are based on phase locking to the periodic sound, the evidence showing the direct relationship between the FFR amplitude and the phase-locking strength is still lacking. Using intracranial recordings from the rat central nucleus of inferior colliculus (ICC), this study was to examine whether FFRs and onset responses are different in sensitivity to pure-tone frequency and/or response-stimulus correlation, when a tone stimulus is presented either monaurally or binaurally. Particularly, this study was to examine whether the FFR amplitude is correlated with the strength of phase locking. The results showed that with the increase of tone-stimulus frequency from 1 to 2 kHz, the FFR amplitude decreased but the onset-response amplitude increased. Moreover, the FFR amplitude, but not the onset-response amplitude, was significantly correlated with the phase coherence between tone-evoked potentials and the tone stimulus. Finally, the FFR amplitude was negatively correlated with the onset-response amplitude. These results indicate that periodic-sound-evoked FFRs are based on phase-locking activities of sustained-response neurons, but onset responses are based on transient activities of onset-response neurons, suggesting that FFRs and onset responses are associated with different functions.
Collapse
|
15
|
Gama N, Peretz I, Lehmann A. Recording the human brainstem frequency-following-response in the free-field. J Neurosci Methods 2017; 280:47-53. [PMID: 28185890 DOI: 10.1016/j.jneumeth.2017.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND The human auditory brainstem frequency-following response (FFR) is an objective measure used to investigate the brainstem's encoding ability of sounds. Traditionally, FFRs are recorded under close-field conditions (earphones), but free-field stimulations (loudspeaker) have yet to be attempted, which would increase the applications of FFRs by making this technique accessible to those who cannot wear inserted transducers. Here we test the feasibility and reliability of measuring speech ABRs across free and close-field. NEW METHOD The FFR was evoked by a 40-ms consonant-vowel (cv) /da/ syllable which was presented in the standard close-field conditions with insert earphones, and in a novel free-field condition via a loudspeaker. RESULTS A well-defined FFR was observed for each stimulating method (free or close-field). We show that it is possible and reliable to elicit FFRs from a speaker and that these do not systematically differ from those elicited by conventional earphones. COMPARISON WITH EXISTING METHOD Neural responses were subjected to a comparative within-subjects analysis, using standard measures found in the literature in order to quantify and compare the intrinsic (amplitude, noise, consistency), acoustic (latency, spectral amplitude) and reliability properties (intraclass correlation coefficients and Bland and Altman limits of agreement) of the neural signal. CONCLUSIONS Reliable FFRs can be elicited using free-field presentation with comparable to acoustical, intrinsic and reliability properties as those elicited by standard close-field presentations.
Collapse
Affiliation(s)
- Nuno Gama
- International Laboratory for Brain, Music and Sound Research (BRAMS www.brams.org), Outremont, QC, Canada; MRC Institute of Hearing Research, Nottingham, United Kingdom.
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research (BRAMS www.brams.org), Outremont, QC, Canada; Center for Research on Brain, Language and Music (CRBLM crblm.ca), Montreal, QC, Canada; University of Montreal, Psychology Department, Montreal, QC, Canada
| | - Alexandre Lehmann
- International Laboratory for Brain, Music and Sound Research (BRAMS www.brams.org), Outremont, QC, Canada; Center for Research on Brain, Language and Music (CRBLM crblm.ca), Montreal, QC, Canada; University of Montreal, Psychology Department, Montreal, QC, Canada; Department of Otolaryngology Head & Neck Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Communicating in Challenging Environments: Noise and Reverberation. THE FREQUENCY-FOLLOWING RESPONSE 2017. [DOI: 10.1007/978-3-319-47944-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Skoe E, Brody L, Theodore RM. Reading ability reflects individual differences in auditory brainstem function, even into adulthood. BRAIN AND LANGUAGE 2017; 164:25-31. [PMID: 27694016 DOI: 10.1016/j.bandl.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/22/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
Research with developmental populations suggests that the maturational state of auditory brainstem encoding is linked to reading ability. Specifically, children with poor reading skills resemble biologically younger children with respect to their auditory brainstem responses (ABRs) to speech stimulation. Because ABR development continues into adolescence, it is possible that the link between ABRs and reading ability changes or resolves as the brainstem matures. To examine these possibilities, ABRs were recorded at varying presentation rates in adults with diverse, yet unimpaired reading levels. We found that reading ability in adulthood related to ABR Wave V latency, with more juvenile response morphology linked to less proficient reading ability, as has been observed for children. These data add to the evidence indicating that auditory brainstem responses serve as an index of the sound-based skills that underlie reading, even into adulthood.
Collapse
Affiliation(s)
- Erika Skoe
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, 850 Bolton Road, Unit 1085, Storrs, CT 06269, United States; Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT 06269, United States.
| | - Lisa Brody
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, 850 Bolton Road, Unit 1085, Storrs, CT 06269, United States.
| | - Rachel M Theodore
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, 850 Bolton Road, Unit 1085, Storrs, CT 06269, United States; Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT 06269, United States.
| |
Collapse
|
18
|
Auditory interference control in children with learning disability: An exploratory study. Int J Pediatr Otorhinolaryngol 2015; 79:2079-85. [PMID: 26432540 DOI: 10.1016/j.ijporl.2015.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The current study aimed to compare the auditory interference control of participants with Learning Disability (LD) to a control group on two versions of an auditory Stroop task. METHODS A group of eight children with LD (clinical group) and another group of eight typically developing children (control group) served as participants. All the participants were involved in a semantic and a gender identification-based auditory Stroop task. Each participant was presented with eight different words (10 times) that were pre-recorded by a male and a female speaker. The semantic task required the participants to ignore the speaker's gender and attend to the meaning of the word, and vice-versa for the gender identification task. The participants' performance accuracy and reaction time (RT) was measured on both the tasks. RESULTS Control group participants significantly outperformed the clinical group participants on both the tasks with regard to performance accuracy as well as RT. CONCLUSION The results suggest that children with LD have problems in suppressing irrelevant auditory stimuli and focusing on the relevant auditory stimuli. This can be attributed to the auditory processing problems in these children.
Collapse
|
19
|
Gabr TA, Darwish ME. Speech auditory brainstem response audiometry in children with specific language impairment. HEARING BALANCE AND COMMUNICATION 2015. [DOI: 10.3109/21695717.2016.1092715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Rocha-Muniz CN, Befi-Lopes DM, Schochat E. Mismatch negativity in children with specific language impairment and auditory processing disorder. Braz J Otorhinolaryngol 2015; 81:408-15. [PMID: 26142650 PMCID: PMC9442763 DOI: 10.1016/j.bjorl.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/12/2014] [Indexed: 11/27/2022] Open
Abstract
Introduction Mismatch negativity, an electrophysiological measure, evaluates the brain's capacity to discriminate sounds, regardless of attentional and behavioral capacity. Thus, this auditory event-related potential is promising in the study of the neurophysiological basis underlying auditory processing. Objective To investigate complex acoustic signals (speech) encoded in the auditory nervous system of children with specific language impairment and compare with children with auditory processing disorders and typical development through the mismatch negativity paradigm. Methods It was a prospective study. 75 children (6–12 years) participated in this study: 25 children with specific language impairment, 25 with auditory processing disorders, and 25 with typical development. Mismatch negativity was obtained by subtracting from the waves obtained by the stimuli /ga/ (frequent) and /da/ (rare). Measures of mismatch negativity latency and two amplitude measures were analyzed. Results It was possible to verify an absence of mismatch negativity in 16% children with specific language impairment and 24% children with auditory processing disorders. In the comparative analysis, auditory processing disorders and specific language impairment showed higher latency values and lower amplitude values compared to typical development. Conclusion These data demonstrate changes in the automatic discrimination of crucial acoustic components of speech sounds in children with specific language impairment and auditory processing disorders. It could indicate problems in physiological processes responsible for ensuring the discrimination of acoustic contrasts in pre-attentional and pre-conscious levels, contributing to poor perception.
Collapse
|
21
|
Bidelman GM. Multichannel recordings of the human brainstem frequency-following response: Scalp topography, source generators, and distinctions from the transient ABR. Hear Res 2015; 323:68-80. [DOI: 10.1016/j.heares.2015.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/09/2015] [Accepted: 01/27/2015] [Indexed: 12/28/2022]
|
22
|
Rocha-Muniz CN, Befi-Lopes DM, Schochat E. Sensitivity, specificity and efficiency of speech-evoked ABR. Hear Res 2014; 317:15-22. [PMID: 25262622 DOI: 10.1016/j.heares.2014.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
We determined the sensitivity, specificity and efficiency of speech-evoked Auditory Brainstem Response (ABR) as a diagnostic support for Auditory Processing Disorder (APD) and specific language impairment (SLI). Speech-evoked ABRs were elicited using the five-formant syllable/da/. The waveforms V, A, C, D, E, F, and O of all groups were analyzed. The sensitivity and specificity were calculated, and receiver operating characteristic analyses were performed to determine the optimum cut-off. Seventy-five children who were native speakers of Brazilian-Portuguese participated. The participants included 25 children with APD, 25 children with SLI and 25 with typical development. Statistical analysis demonstrated a cut-off for latency values of 6.48, 7.51, 17.82, 22.33, 30.79, 39.54 and 48.00 for V, A, C, D, E, F, and O waves, respectively. The A wave exhibited superior balance for the APD group. For the SLI group, the A, D and O waves exhibited the best balance. Furthermore, when analyzing the APD and SLI groups separately, better sensitivity values were observed for the SLI group than the APD group. Speech-evoked ABR is a useful test to identify auditory processing disorders and language impairment. Furthermore, this study represented an important step forward in establishing the clinical utility of speech-evoked ABR in Brazilian Portuguese-speaking children.
Collapse
Affiliation(s)
| | | | - Eliane Schochat
- University of Sao Paulo School of Medicine (USP), São Paulo, Brazil
| |
Collapse
|
23
|
Kumar Neupane A, Gururaj K, Mehta G, Sinha SK. Effect of Repetition Rate on Speech Evoked Auditory Brainstem Response in Younger and Middle Aged Individuals. Audiol Res 2014; 4:106. [PMID: 26557355 PMCID: PMC4627139 DOI: 10.4081/audiores.2014.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/03/2014] [Accepted: 07/23/2014] [Indexed: 12/02/2022] Open
Abstract
Speech evoked auditory brainstem responses depicts the neural encoding of speech at the level of brainstem. This study was designed to evaluate the neural encoding of speech at the brainstem in younger population and middle-aged population at three different repetition rates (6.9, 10.9 and 15.4). Speech evoked auditory brainstem response was recorded from 84 participants (young participants=42, middle aged participants=42) with normal hearing sensitivity. The latency of wave V and amplitude of the fundamental frequency, first formant frequency and second formant frequency was calculated. Results showed that the latency of wave V was prolonged for middle-aged individuals for all three-repetition rates compared to the younger participants. The results of the present study also revealed that there was no difference in encoding of fundamental frequency between middle aged and younger individuals at any of the repetition rates. However, increase in repetition rate did affect the encoding of the fundamental frequency in middle-aged individuals. The above results suggest a differential effect of repetition rate on wave V latency and encoding of fundamental frequency. Further, it was noticed that repetition rate did not affect the amplitude of first formant frequency or second formant frequency in middle aged participants compared to the younger participants.
Collapse
Affiliation(s)
| | - Krithika Gururaj
- All India Institute of Speech and Hearing , Manasagangothri, India
| | - Garvita Mehta
- All India Institute of Speech and Hearing , Manasagangothri, India
| | | |
Collapse
|
24
|
Ahadi M, Pourbakht A, Jafari AH, Jalaie S. Effects of stimulus presentation mode and subcortical laterality in speech-evoked auditory brainstem responses. Int J Audiol 2014; 53:243-9. [DOI: 10.3109/14992027.2013.866281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Skoe E, Krizman J, Anderson S, Kraus N. Stability and plasticity of auditory brainstem function across the lifespan. Cereb Cortex 2013; 25:1415-26. [PMID: 24366906 DOI: 10.1093/cercor/bht311] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The human auditory brainstem is thought to undergo rapid developmental changes early in life until age ∼2 followed by prolonged stability until aging-related changes emerge. However, earlier work on brainstem development was limited by sparse sampling across the lifespan and/or averaging across children and adults. Using a larger dataset than past investigations, we aimed to trace more subtle variations in auditory brainstem function that occur normally from infancy into the eighth decade of life. To do so, we recorded auditory brainstem responses (ABRs) to a click stimulus and a speech syllable (da) in 586 normal-hearing healthy individuals. Although each set of ABR measures (latency, frequency encoding, response consistency, nonstimulus activity) has a distinct developmental profile, across all measures developmental changes were found to continue well past age 2. In addition to an elongated developmental trajectory and evidence for multiple auditory developmental processes, we revealed a period of overshoot during childhood (5-11 years old) for latency and amplitude measures, when the latencies are earlier and the amplitudes are greater than the adult value. Our data also provide insight into the capacity for experience-dependent auditory plasticity at different stages in life and underscore the importance of using age-specific norms in clinical and experimental applications.
Collapse
Affiliation(s)
- Erika Skoe
- Auditory Neuroscience Laboratory Department of Communication Sciences Northwestern University, Evanston, IL 60208, USA Current address: Department of Speech, Language and Hearing Sciences, Faculty Affiliate of the Department of Psychology, Faculty Affiliate of the Cognitive Sciences Program, University of Connecticut, Storrs, CT 06269, USA
| | - Jennifer Krizman
- Auditory Neuroscience Laboratory Department of Communication Sciences Bilingualism and Psycholinguistics Research Group Northwestern University, Evanston, IL 60208, USA
| | - Samira Anderson
- Auditory Neuroscience Laboratory Department of Communication Sciences Northwestern University, Evanston, IL 60208, USA Current address: Department of Hearing and Speech Science, University of Maryland, College Park, MD 20742, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory Department of Communication Sciences Institute for Neuroscience Department of Neurobiology and Physiology Department of Otolaryngology Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
26
|
Gnanateja GN, Ranjan R, Firdose H, Sinha SK, Maruthy S. Acoustic basis of context dependent brainstem encoding of speech. Hear Res 2013; 304:28-32. [PMID: 23792077 DOI: 10.1016/j.heares.2013.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/15/2022]
Abstract
The newfound context dependent brainstem encoding of speech is evidence of online regularity detection and modulation of the sub-cortical responses. We studied the influence of spectral structure of the contextual stimulus on context dependent encoding of speech at the brainstem, in an attempt to understand the acoustic basis for this effect. Fourteen normal hearing adults participated in a randomized true experimental design in whom brainstem responses were recorded. Brainstem responses for a high pass filtered /da/ in the context of syllables, that either had same or different spectral structure were compared with each other. The findings suggest that spectral structure is one of the parameters which cue the context dependent sub-cortical encoding of speech. Interestingly, the results also revealed that, brainstem can encode pitch even with negligible acoustic information below the second formant frequency.
Collapse
Affiliation(s)
- G Nike Gnanateja
- Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore 570006, Karnataka, India.
| | | | | | | | | |
Collapse
|
27
|
Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N. Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2013; 56:31-43. [PMID: 22761320 PMCID: PMC3648418 DOI: 10.1044/1092-4388(2012/12-0043)] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PURPOSE To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds. METHOD Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR. RESULTS Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included. CONCLUSION The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.
Collapse
Affiliation(s)
- Samira Anderson
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA.
| | | | | | | |
Collapse
|
28
|
Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response. Hear Res 2012; 294:143-52. [DOI: 10.1016/j.heares.2012.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 11/23/2022]
|
29
|
Krizman J, Skoe E, Kraus N. Sex differences in auditory subcortical function. Clin Neurophysiol 2012; 123:590-7. [PMID: 21855407 PMCID: PMC3226913 DOI: 10.1016/j.clinph.2011.07.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/15/2011] [Accepted: 07/07/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Sex differences have been demonstrated in the peripheral auditory system as well as in higher-level cognitive processing. Here, we aimed to determine if the subcortical response to a complex auditory stimulus is encoded differently between the sexes. METHODS Using electrophysiological techniques, we assessed the auditory brainstem response to a synthesized stop-consonant speech syllable [da] in 76 native-English speaking, young adults (38 female). Timing and frequency components of the response were compared between males and females to determine which aspects of the response are affected by sex. RESULTS A dissimilarity between males and females was seen in the neural response to the components of the speech stimulus that change rapidly over time; but not in the slower changing, lower frequency information in the stimulus. We demonstrate that, in agreement with the click-evoked brainstem response, females have earlier peaks relative to males in the subcomponents of the response representing the onset of the speech sound. In contrast, the response peaks comprising the frequency-following response, which encode the fundamental frequency (F(0)) of the stimulus, as well as the spectral amplitude of the response to the F(0), is not affected by sex. Notably, the higher-frequency elements of the speech syllable are encoded differently between males and females, with females having greater representation of spectrotemporal information for frequencies above the F(0). CONCLUSIONS Our results provide a baseline for interpreting the higher incidence of language impairment (e.g. dyslexia, autism, specific language impairment) in males, and the subcortical deficits associated with these disorders. SIGNIFICANCE These results parallel the subcortical encoding patterns that are documented for good and poor readers in that poor readers differ from good readers on encoding fast but not slow components of speech. This parallel may thus help to explain the higher incidence of reading impairment in males compared to females.
Collapse
Affiliation(s)
- Jennifer Krizman
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
30
|
|
31
|
Lauer AM, May BJ. The medial olivocochlear system attenuates the developmental impact of early noise exposure. J Assoc Res Otolaryngol 2011; 12:329-43. [PMID: 21347798 DOI: 10.1007/s10162-011-0262-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 02/07/2011] [Indexed: 10/18/2022] Open
Abstract
The early onset of peripheral deafness profoundly alters the functional maturation of the central auditory system. A prolonged exposure to an artificial acoustic environment has a similar disruptive influence. These observations establish the importance of normal patterns of sound-driven activity during the initial stages of auditory development. The present study was designed to address the role of cochlear gain control during these activity-dependent developmental processes. It was hypothesized that the regulation of auditory nerve activity by the medial olivocochlear system (MOCS) would preserve normal development when the immature auditory system was challenged by continuous background noise. To test this hypothesis, knock-out mice lacking MOCS feedback were reared in noisy or quiet environments and then evaluated with behavioral paradigms for auditory processing deficits. Relative to wild-type controls, noise-reared knock-out mice showed a decreased ability to process rapid acoustic events. Additional anatomical and physiological assessments linked these perceptual deficits to synaptic defects in the auditory brainstem that shared important features with human auditory neuropathy. Our findings offer a new perspective on the potentially damaging effects of environmental noise and how these risks are ameliorated by the protective role of MOCS feedback.
Collapse
Affiliation(s)
- Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|
32
|
Anderson S, Skoe E, Chandrasekaran B, Zecker S, Kraus N. Brainstem correlates of speech-in-noise perception in children. Hear Res 2010; 270:151-7. [PMID: 20708671 PMCID: PMC2997182 DOI: 10.1016/j.heares.2010.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/30/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
Children often have difficulty understanding speech in challenging listening environments. In the absence of peripheral hearing loss, these speech perception difficulties may arise from dysfunction at more central levels in the auditory system, including subcortical structures. We examined brainstem encoding of pitch in a speech syllable in 38 school-age children. In children with poor speech-in-noise perception, we find impaired encoding of the fundamental frequency and the second harmonic, two important cues for pitch perception. Pitch, an essential factor in speaker identification, aids the listener in tracking a specific voice from a background of voices. These results suggest that the robustness of subcortical neural encoding of pitch features in time-varying signals is a key factor in determining success with perceiving speech in noise.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | |
Collapse
|
33
|
Song JH, Nicol T, Kraus N. Test-retest reliability of the speech-evoked auditory brainstem response. Clin Neurophysiol 2010; 122:346-55. [PMID: 20719558 DOI: 10.1016/j.clinph.2010.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/15/2010] [Accepted: 07/04/2010] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The speech-evoked auditory brainstem response (ABR) provides an objective measure of subcortical encoding of complex acoustic features. However, the intrasubject reliability of this response in both optimal and challenging listening conditions has not yet been systematically documented. This study aimed to evaluate test-retest reliability of the speech-evoked ABR in young adults. METHODS In each of two sessions, ABRs were obtained with: (1) a 170 ms /da/ syllable presented in quiet as well as 2-talker and 6-talker babble background noise conditions and (2) a 40 ms /da/ syllable presented in quiet. Test-retest reliability of the responses was analyzed in the frequency and time domains. RESULTS The speech-evoked ABR does not vary significantly across sessions within individuals on measures of temporal encoding (i.e., peak latencies, stimulus-to-response and response-to-response measures), frequency representation and response magnitude. CONCLUSIONS The subcortical auditory pathway produces a response to a complex sound that is stable and replicable from session to session. SIGNIFICANCE By demonstrating the high degree of replicability in optimal and challenging listening conditions, the applicability of the speech-evoked ABR may be increased to examining a range of auditory processing abilities in clinical and research settings.
Collapse
Affiliation(s)
- Judy H Song
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
34
|
Abrams DA, Nicol T, Zecker S, Kraus N. Rapid acoustic processing in the auditory brainstem is not related to cortical asymmetry for the syllable rate of speech. Clin Neurophysiol 2010; 121:1343-50. [PMID: 20378402 PMCID: PMC2935274 DOI: 10.1016/j.clinph.2010.02.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 01/26/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Temporal acuity in the auditory brainstem is correlated with left-dominant patterns of cortical asymmetry for processing rapid speech-sound stimuli. Here we investigate whether a similar relationship exists between brainstem processing of rapid speech components and cortical processing of syllable patterns in speech. METHODS We measured brainstem and cortical evoked potentials in response to speech tokens in 23 children. We used established measures of auditory brainstem and cortical activity to examine functional relationships between these structures. RESULTS We found no relationship between brainstem responses to fast acoustic elements of speech and right-dominant cortical processing of syllable patterns. CONCLUSIONS Brainstem processing of rapid elements in speech is not functionally related to rightward cortical asymmetry associated with the processing of syllable-rate features in speech. Viewed together with previous evidence linking brainstem timing with leftward cortical asymmetry for faster acoustic features, findings support the existence of distinct mechanisms for encoding rapid vs. slow elements of speech. SIGNIFICANCE Results provide a fundamental advance in our knowledge of the segregation of sub-cortical input associated with cortical asymmetries for acoustic rate processing in the human auditory system. Implications of these findings for auditory perception, reading ability and development are discussed.
Collapse
Affiliation(s)
- Daniel A Abrams
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brain stem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical auditory function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, on-line auditory processing), helps shape sensory perception. Thus, by being an objective and noninvasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, and persons with hearing loss, auditory processing, and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical or research programs.
Collapse
|