1
|
Costalunga G, Vallentin D, Benichov JI. A neuroethological view of the multifaceted sensory influences on birdsong. Curr Opin Neurobiol 2024; 86:102867. [PMID: 38520789 DOI: 10.1016/j.conb.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Learning and execution of complex motor skills are often modulated by sensory feedback and contextual cues arriving across multiple sensory modalities. Vocal motor behaviors, in particular, are primarily influenced by auditory inputs, both during learning and mature vocal production. The importance of auditory input in shaping vocal output has been investigated in several songbird species that acquire their adult song based on auditory exposure to a tutor during development. Recent studies have highlighted the influences of stimuli arriving through other sensory channels in juvenile song learning and in adult song production. Here, we review changes induced by diverse sensory stimuli during the song learning process and the production of adult song, considering the neuroethological significance of sensory channels in different species of songbirds. Additionally, we highlight advances, open questions, and possible future approaches for understanding the neural circuits that enable the multimodal shaping of singing behavior.
Collapse
Affiliation(s)
- Giacomo Costalunga
- Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany.
| | | |
Collapse
|
2
|
Straight PJ, Gignac PM, Kuenzel WJ. A histological and diceCT-derived 3D reconstruction of the avian visual thalamofugal pathway. Sci Rep 2024; 14:8447. [PMID: 38600121 PMCID: PMC11006926 DOI: 10.1038/s41598-024-58788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Amniotes feature two principal visual processing systems: the tectofugal and thalamofugal pathways. In most mammals, the thalamofugal pathway predominates, routing retinal afferents through the dorsolateral geniculate complex to the visual cortex. In most birds, the thalamofugal pathway often plays the lesser role with retinal afferents projecting to the principal optic thalami, a complex of several nuclei that resides in the dorsal thalamus. This thalamic complex sends projections to a forebrain structure called the Wulst, the terminus of the thalamofugal visual system. The thalamofugal pathway in birds serves many functions such as pattern discrimination, spatial memory, and navigation/migration. A comprehensive analysis of avian species has unveiled diverse subdivisions within the thalamic and forebrain structures, contingent on species, age, and techniques utilized. In this study, we documented the thalamofugal system in three dimensions by integrating histological and contrast-enhanced computed tomography imaging of the avian brain. Sections of two-week-old chick brains were cut in either coronal, sagittal, or horizontal planes and stained with Nissl and either Gallyas silver or Luxol Fast Blue. The thalamic principal optic complex and pallial Wulst were subdivided on the basis of cell and fiber density. Additionally, we utilized the technique of diffusible iodine-based contrast-enhanced computed tomography (diceCT) on a 5-week-old chick brain, and right eyeball. By merging diceCT data, stained histological sections, and information from the existing literature, a comprehensive three-dimensional model of the avian thalamofugal pathway was constructed. The use of a 3D model provides a clearer understanding of the structural and spatial organization of the thalamofugal system. The ability to integrate histochemical sections with diceCT 3D modeling is critical to better understanding the anatomical and physiologic organization of complex pathways such as the thalamofugal visual system.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA.
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, AZ, USA
- MicroCT Imaging Consortium for Research and Outreach, University of Arkansas, Fayetteville, AR, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Costalunga G, Kobylkov D, Rosa-Salva O, Morandi-Raikova A, Vallortigara G, Mayer U. Responses in the left and right entopallium are differently affected by light stimulation in embryo. iScience 2024; 27:109268. [PMID: 38439979 PMCID: PMC10910295 DOI: 10.1016/j.isci.2024.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Sensory stimulation during the prenatal period has been argued to be a main factor in establishing asymmetry in the vertebrate brain. However, though largely studied in behavior and neuroanatomy, nothing is known on the effects of light stimulation in embryo on the activities of single neurons. We performed single-unit recordings from the left and right entopallium of dark- and light-incubated chicks, following ipsi-, contra-, and bilateral visual stimulation. Light incubation increased the general responsiveness of visual neurons in both the left and the right entopallium. Entopallial responses were clearly lateralized in dark-incubated chicks, which showed a general right-hemispheric dominance. This could be suppressed or inverted after light incubation, revealing the presence of both spontaneous and light-dependent asymmetries. These results suggest that asymmetry in single-neuron activity is present at the onset and can be modulated by environmental stimuli such as light exposure in embryos.
Collapse
Affiliation(s)
- Giacomo Costalunga
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Dmitry Kobylkov
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Anastasia Morandi-Raikova
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| |
Collapse
|
4
|
Nimpf S, Kaplan HS, Nordmann GC, Cushion T, Keays DA. Long-term, high-resolution in vivo calcium imaging in pigeons. CELL REPORTS METHODS 2024; 4:100711. [PMID: 38382523 PMCID: PMC10921020 DOI: 10.1016/j.crmeth.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/05/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
In vivo 2-photon calcium imaging has led to fundamental advances in our understanding of sensory circuits in mammalian species. In contrast, few studies have exploited this methodology in birds, with investigators primarily relying on histological and electrophysiological techniques. Here, we report the development of in vivo 2-photon calcium imaging in awake pigeons. We show that the genetically encoded calcium indicator GCaMP6s, delivered by the adeno-associated virus rAAV2/7, allows high-quality, stable, and long-term imaging of neuronal populations at single-cell and single-dendrite resolution in the pigeon forebrain. We demonstrate the utility of our setup by investigating the processing of colors in the visual Wulst, the avian homolog of the visual cortex. We report that neurons in the Wulst are color selective and display diverse response profiles to light of different wavelengths. This technology provides a powerful tool to decipher the operating principles that underlie sensory encoding in birds.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany.
| | - Harris S Kaplan
- Harvard University, Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Gregory C Nordmann
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - Thomas Cushion
- University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany; University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge CB2 3EG, UK; Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna 1030, Austria.
| |
Collapse
|
5
|
Racicot KJ, Ham JR, Augustine JK, Henriksen R, Wright D, Iwaniuk AN. A Comparison of Telencephalon Composition among Chickens, Junglefowl, and Wild Galliforms. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:13-24. [PMID: 38368854 DOI: 10.1159/000537844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Domestication is the process of modifying animals for human benefit through selective breeding in captivity. One of the traits that often diverges is the size of the brain and its constituent regions; almost all domesticated species have relatively smaller brains and brain regions than their wild ancestors. Although the effects of domestication on the brain have been investigated across a range of both mammal and bird species, almost nothing is known about the neuroanatomical effects of domestication on the world's most common bird: the chicken (Gallus gallus). METHODS We compared the quantitative neuroanatomy of the telencephalon of white leghorn chickens with red junglefowl, their wild counterpart, and several wild galliform species. We focused specifically on the telencephalon because telencephalic regions typically exhibit the biggest differences in size in domesticate-wild comparisons. RESULTS Relative telencephalon size was larger in chickens than in junglefowl and ruffed grouse (Bonasa umbellus). The relative size of telencephalic regions did not differ between chickens and junglefowl, but did differ in comparison with ruffed grouse. Ruffed grouse had larger hyperpallia and smaller entopallial, nidopallial, and striatal volumes than chickens and junglefowl. Multivariate analyses that included an additional three wild grouse species corroborated these findings: chicken and junglefowl have relatively larger nidopallial and striatal volumes than grouse. Conversely, the mesopallial and hyperpallial volumes tended to be relatively smaller in chickens and junglefowl. CONCLUSION From this suite of comparisons, we conclude that chickens do not follow a pattern of widespread decreases in telencephalic region sizes that is often viewed as typical of domestication. Instead, chickens have undergone a mosaic of changes with some regions increasing and others decreasing in size, and there are few differences between chickens and junglefowl.
Collapse
Affiliation(s)
- Kelsey J Racicot
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jackson R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jacqueline K Augustine
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Lima, Lima, Ohio, USA
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linkoping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linkoping, Sweden
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
6
|
Straight PJ, Gignac PM, Kuenzel WJ. Mapping the avian visual tectofugal pathway using 3D reconstruction. J Comp Neurol 2024; 532:e25558. [PMID: 38047431 DOI: 10.1002/cne.25558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Image processing in amniotes is usually accomplished by the thalamofugal and/or tectofugal visual systems. In laterally eyed birds, the tectofugal system dominates with functions such as color and motion processing, spatial orientation, stimulus identification, and localization. This makes it a critical system for complex avian behavior. Here, the brains of chicks, Gallus gallus, were used to produce serial brain sections in either coronal, sagittal, or horizontal planes and stained with either Nissl and Gallyas silver myelin or Luxol fast blue stain and cresyl echt violet (CEV). The emerging techniques of diffusible iodine-based contrast-enhanced computed tomography (diceCT) coupled with serial histochemistry in three planes were used to generate a comprehensive three-dimensional (3D) model of the avian tectofugal visual system. This enabled the 3D reconstruction of tectofugal circuits, including the three primary neuronal projections. Specifically, major components of the system included four regions of the retina, layers of the optic tectum, subdivisions of the nucleus rotundus in the thalamus, the entopallium in the forebrain, and supplementary components connecting into or out of this major avian visual sensory system. The resulting 3D model enabled a better understanding of the structural components and connectivity of this complex system by providing a complete spatial organization that occupied several distinct brain regions. We demonstrate how pairing diceCT with traditional histochemistry is an effective means to improve the understanding of, and thereby should generate insights into, anatomical and functional properties of complicated neural pathways, and we recommend this approach to clarify enigmatic properties of these pathways.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, Arizona, USA
- Anatomy and Cell Biology Department, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
7
|
Kálmán M, Sebők OM. Entopallium Lost GFAP Immunoreactivity during Avian Evolution: Is GFAP a "Condition Sine Qua Non"? BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:302-313. [PMID: 38071961 PMCID: PMC10885840 DOI: 10.1159/000535281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
INTRODUCTION The present study demonstrates that in the same brain area the astroglia can express GFAP (the main cytoskeletal protein of astroglia) in some species but not in the others of the same vertebrate class. It contrasts the former opinions that the distribution of GFAP found in a species is characteristic of the entire class. The present study investigated birds in different phylogenetic positions: duck (Cairina moschata domestica), chicken (Gallus gallus domesticus), and quails (Coturnix japonica and Excalfactoria chinensis) of Galloanserae; pigeon (Columba livia domestica) of a group of Neoaves, in comparison with representatives of other Neoaves lineages, which emerged more recently in evolution: finches (Taeniopygia guttata and Erythrura gouldiae), magpie (Pica pica), and parrots (Melopsittacus undulatus and Nymphicus hollandicus). METHODS Following a perfusion with 4% buffered paraformaldehyde, immunoperoxidase reactions were performed with two types of anti-GFAP: monoclonal and polyclonal, on floating sections. RESULTS The entopallium (formerly "ectostriatum," a telencephalic area in birds) was GFAP-immunopositive in pigeon and in the representatives of Galloanserae but not in songbirds and parrots, which emerged more recently in evolution. The lack of GFAP expression of a brain area, however, does not mean the lack of astroglia. Lesions induced GFAP expression in the territory of GFAP-immunonegative entopallia. It proved that the GFAP immunonegativity is not due to the lack of capability, but rather the suppression of GFAP production of the astrocytes in this territory. In the other areas investigated besides the entopallium (optic tectum and cerebellum), no considerable interspecific differences of GFAP immunopositivity were found. It proved that the immunonegativity of entopallium is due to neither the general lack of GFAP expression nor the incapability of our reagents to detect GFAP in these species. CONCLUSION The data are congruent with our proposal that a lack of GFAP expression has evolved in different brain areas in vertebrate evolution, typically in lineages that emerged more recently. Comparative studies on GFAP-immunopositive and GFAP-immunonegative entopallia may promote understanding the role of GFAP in neural networks.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Olivér M Sebők
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
The effect of progressive image scrambling on neuronal responses at three stations of the pigeon tectofugal pathway. Sci Rep 2022; 12:14190. [PMID: 35986036 PMCID: PMC9391454 DOI: 10.1038/s41598-022-18006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
The progressive image scrambling procedure is an effective way of determining sensitivity to image features at different stages of the visual system, but it hasn’t yet been used to evaluate neuronal responses in birds. We determined the effect of progressively scrambling images of objects on the population responses of anterior entopallium (ENTO), mesopallium ventrolaterale (MVL), and posterior nidopallium intermediate pars lateralis (NIL) in pigeons. We found that MVL responses were more sensitive to both the intact objects and the highly scrambled images, whereas ENTO showed no clear preference for the different stimuli. In contrast, the NIL population response strongly preferred the original images over the scrambled images. These findings suggest that the anterior tectofugal pathway may process local shape in a hierarchical manner, and the posterior tectofugal pathway may process global shape of greater complexity. Another possibility is that the differential responses between ENTO/MVL and NIL may reflect an anterior–posterior map of varying sensitivity to spatial frequency.
Collapse
|
9
|
Keirnan A, Worthy TH, Smaers JB, Mardon K, Iwaniuk AN, Weisbecker V. Not like night and day: the nocturnal letter-winged kite does not differ from diurnal congeners in orbit or endocast morphology. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220135. [PMID: 35620001 PMCID: PMC9128852 DOI: 10.1098/rsos.220135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Nocturnal birds display diverse adaptations of the visual system to low-light conditions. The skulls of birds reflect many of these and are used increasingly to infer nocturnality in extinct species. However, it is unclear how reliable such assessments are, particularly in cases of recent evolutionary transitions to nocturnality. Here, we investigate a case of recently evolved nocturnality in the world's only nocturnal hawk, the letter-winged kite Elanus scriptus. We employed phylogenetically informed analyses of orbit, optic foramen and endocast measurements from three-dimensional reconstructions of micro-computed tomography scanned skulls of the letter-winged kite, two congeners, and 13 other accipitrid and falconid raptors. Contrary to earlier suggestions, the letter-winged kite was not unique in any of our metrics. However, all species of Elanus have significantly higher ratios of orbit versus optic foramen diameter, suggesting high visual sensitivity at the expense of acuity. In addition, visual system morphology varies greatly across accipitrid species, likely reflecting hunting styles. Overall, our results suggest that the transition to nocturnality can occur rapidly and without changes to key hard-tissue indicators of vision, but also that hard-tissue anatomy of the visual system may provide a means of inferring a range of raptor behaviours, well beyond nocturnality.
Collapse
Affiliation(s)
- Aubrey Keirnan
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Trevor H. Worthy
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Karine Mardon
- Centre of Advanced Imaging, The University of Queensland, St. Lucia, QLD, Australia
| | - Andrew N. Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
10
|
Neurons in the pigeon visual network discriminate between faces, scrambled faces, and sine grating images. Sci Rep 2022; 12:589. [PMID: 35022466 PMCID: PMC8755821 DOI: 10.1038/s41598-021-04559-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Discriminating between object categories (e.g., conspecifics, food, potential predators) is a critical function of the primate and bird visual systems. We examined whether a similar hierarchical organization in the ventral stream that operates for processing faces in monkeys also exists in the avian visual system. We performed electrophysiological recordings from the pigeon Wulst of the thalamofugal pathway, in addition to the entopallium (ENTO) and mesopallium ventrolaterale (MVL) of the tectofugal pathway, while pigeons viewed images of faces, scrambled controls, and sine gratings. A greater proportion of MVL neurons fired to the stimuli, and linear discriminant analysis revealed that the population response of MVL neurons distinguished between the stimuli with greater capacity than ENTO and Wulst neurons. While MVL neurons displayed the greatest response selectivity, in contrast to the primate system no neurons were strongly face-selective and some responded best to the scrambled images. These findings suggest that MVL is primarily involved in processing the local features of images, much like the early visual cortex.
Collapse
|
11
|
Pepperberg IM. Nonhuman and Nonhuman-Human Communication: Some Issues and Questions. Front Psychol 2021; 12:647841. [PMID: 34630194 PMCID: PMC8495326 DOI: 10.3389/fpsyg.2021.647841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
Deciphering nonhuman communication – particularly nonhuman vocal communication – has been a longstanding human quest. We are, for example, fascinated by the songs of birds and whales, the grunts of apes, the barks of dogs, and the croaks of frogs; we wonder about their potential meaning and their relationship to human language. Do these utterances express little more than emotional states, or do they convey actual bits and bytes of concrete information? Humans’ numerous attempts to decipher nonhuman systems have, however, progressed slowly. We still wonder why only a small number of species are capable of vocal learning, a trait that, because it allows for innovation and adaptation, would seem to be a prerequisite for most language-like abilities. Humans have also attempted to teach nonhumans elements of our system, using both vocal and nonvocal systems. The rationale for such training is that the extent of success in instilling symbolic reference provides some evidence for, at the very least, the cognitive underpinnings of parallels between human and nonhuman communication systems. However, separating acquisition of reference from simple object-label association is not a simple matter, as reference begins with such associations, and the point at which true reference emerges is not always obvious. I begin by discussing these points and questions, predominantly from the viewpoint of someone studying avian abilities. I end by examining the question posed by Premack: do nonhumans that have achieved some level of symbolic reference then process information differently from those that have not? I suggest the answer is likely “yes,” giving examples from my research on Grey parrots (Psittacus erithacus).
Collapse
Affiliation(s)
- Irene M Pepperberg
- Department of Psychology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
12
|
Watanabe A, Balanoff AM, Gignac PM, Gold MEL, Norell MA. Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 2021; 10:68809. [PMID: 34227464 PMCID: PMC8260227 DOI: 10.7554/elife.68809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
How do large and unique brains evolve? Historically, comparative neuroanatomical studies have attributed the evolutionary genesis of highly encephalized brains to deviations along, as well as from, conserved scaling relationships among brain regions. However, the relative contributions of these concerted (integrated) and mosaic (modular) processes as drivers of brain evolution remain unclear, especially in non-mammalian groups. While proportional brain sizes have been the predominant metric used to characterize brain morphology to date, we perform a high-density geometric morphometric analysis on the encephalized brains of crown birds (Neornithes or Aves) compared to their stem taxa—the non-avialan coelurosaurian dinosaurs and Archaeopteryx. When analyzed together with developmental neuroanatomical data of model archosaurs (Gallus, Alligator), crown birds exhibit a distinct allometric relationship that dictates their brain evolution and development. Furthermore, analyses by neuroanatomical regions reveal that the acquisition of this derived shape-to-size scaling relationship occurred in a mosaic pattern, where the avian-grade optic lobe and cerebellum evolved first among non-avialan dinosaurs, followed by major changes to the evolutionary and developmental dynamics of cerebrum shape after the origin of Avialae. Notably, the brain of crown birds is a more integrated structure than non-avialan archosaurs, implying that diversification of brain morphologies within Neornithes proceeded in a more coordinated manner, perhaps due to spatial constraints and abbreviated growth period. Collectively, these patterns demonstrate a plurality in evolutionary processes that generate encephalized brains in archosaurs and across vertebrates.
Collapse
Affiliation(s)
- Akinobu Watanabe
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, United States.,Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Life Sciences Vertebrates Division, Natural History Museum, London, United Kingdom
| | - Amy M Balanoff
- Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, United States
| | - Paul M Gignac
- Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - M Eugenia L Gold
- Division of Paleontology, American Museum of Natural History, New York, United States.,Biology Department, Suffolk University, Boston, United States
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, United States
| |
Collapse
|
13
|
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021; 31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Matheus Macedo-Lima
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Garrett Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Ben-Yishay E, Krivoruchko K, Ron S, Ulanovsky N, Derdikman D, Gutfreund Y. Directional tuning in the hippocampal formation of birds. Curr Biol 2021; 31:2592-2602.e4. [PMID: 33974847 DOI: 10.1016/j.cub.2021.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Birds strongly rely on spatial memory and navigation. Therefore, it is of utmost interest to reveal how space is represented in the avian brain. Here we used tetrodes to record neurons from the hippocampal formation of Japanese quails-a ground-dwelling species-while the quails roamed in an open-field arena. Whereas spatially modulated cells (place cells, grid cells, border cells) were generally not encountered, the firing rate of about 12% of the neurons was unimodally and significantly modulated by the head azimuth-i.e., these were head-direction cells (HD cells). Typically, HD cells were maximally active at one preferred direction and minimally at the opposite null direction, with preferred directions spanning all 360° across the population. The preferred direction was independent of the animal's position and speed and was stable during the recording session. The HD tuning was broader compared to that of HD cells in rodents, and most cells had non-zero baseline firing in all directions. However, similar to findings in rodents, the HD tuning usually rotated with the rotation of a salient visual cue in the arena. Thus, these findings support the existence of an allocentric HD representation in the quail hippocampal formation and provide the first demonstration of HD cells in birds.
Collapse
Affiliation(s)
- Elhanan Ben-Yishay
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Ksenia Krivoruchko
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Shaked Ron
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dori Derdikman
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Yoram Gutfreund
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel.
| |
Collapse
|
15
|
Abstract
Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.
Collapse
Affiliation(s)
| | - Joseph Brain
- Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
16
|
Baciadonna L, Cornero FM, Emery NJ, Clayton NS. Convergent evolution of complex cognition: Insights from the field of avian cognition into the study of self-awareness. Learn Behav 2021; 49:9-22. [PMID: 32661811 DOI: 10.3758/s13420-020-00434-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pioneering research on avian behaviour and cognitive neuroscience have highlighted that avian species, mainly corvids and parrots, have a cognitive tool kit comparable with apes and other large-brained mammals, despite conspicuous differences in their neuroarchitecture. This cognitive tool kit is driven by convergent evolution, and consists of complex processes such as casual reasoning, behavioural flexibility, imagination, and prospection. Here, we review experimental studies in corvids and parrots that tested complex cognitive processes within this tool kit. We then provide experimental examples for the potential involvement of metacognitive skills in the expression of the cognitive tool kit. We further expand the discussion of cognitive and metacognitive abilities in avian species, suggesting that an integrated assessment of these processes, together with revised and multiple tasks of mirror self-recognition, might shed light on one of the most highly debated topics in the literature-self-awareness in animals. Comparing the use of multiple assessments of self-awareness within species and across taxa will provide a more informative, richer picture of the level of consciousness in different organisms.
Collapse
Affiliation(s)
- Luigi Baciadonna
- Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| | - Francesca M Cornero
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Nathan J Emery
- Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
17
|
Kersten Y, Friedrich-Müller B, Nieder A. A histological study of the song system of the carrion crow (Corvus corone). J Comp Neurol 2021; 529:2576-2595. [PMID: 33474740 DOI: 10.1002/cne.25112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
The song system of songbirds (oscines) is one of the best studied neuroethological model systems. So far, it has been treated as a relatively constrained sensorimotor system. Songbirds such as crows, however, are also known for their capability to cognitively control their audio-vocal system. Yet, the neuroanatomy of the corvid song system has never been explored systematically. We aim to close this scientific gap by presenting a stereotactic investigation of the extended song system of the carrion crow (Corvus corone), an oscine songbird of the corvid family that has become an interesting model system for cognitive neuroscience. In order to identify and delineate the song nuclei, the ascending auditory nuclei, and the descending vocal-motor nuclei, four stains were applied. In addition to the classical Nissl-, myelin-, and a combination of Nissl-and-myelin staining, staining for tyrosine hydroxylase was used to reveal the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the song system. We show that the crow brain contains the important song-related nuclei, including auditory input and motor output structures, and map them throughout the brain. Fiber-stained sections reveal putative connection patterns between the crow's song nuclei comparable to other songbirds.
Collapse
Affiliation(s)
- Ylva Kersten
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Rook N, Tuff JM, Isparta S, Masseck OA, Herlitze S, Güntürkün O, Pusch R. AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia). Commun Biol 2021; 4:100. [PMID: 33483632 PMCID: PMC7822860 DOI: 10.1038/s42003-020-01595-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/13/2020] [Indexed: 01/30/2023] Open
Abstract
Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons' contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - John Michael Tuff
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sevim Isparta
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Şht. Ömer Halisdemir Blv, 06110, Ankara, Turkey
| | | | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Roland Pusch
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
19
|
Morandi-Raikova A, Danieli K, Lorenzi E, Rosa-Salva O, Mayer U. Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: Rightwards lateralization of parvalbumin neurons in the entopallium. Laterality 2021; 26:163-185. [DOI: 10.1080/1357650x.2021.1873357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Krubeal Danieli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Elena Lorenzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
20
|
Clark WJ, Colombo M. The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Prog Neurobiol 2020; 195:101781. [DOI: 10.1016/j.pneurobio.2020.101781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
|
21
|
Pepperberg IM. The Comparative Psychology of Intelligence: Some Thirty Years Later. Front Psychol 2020; 11:973. [PMID: 32508723 PMCID: PMC7248277 DOI: 10.3389/fpsyg.2020.00973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
After re-reading Macphail's (1987) essay "The Comparative Psychology of Intelligence" with all the associated commentaries, I was struck by how contemporary many of the arguments and counter-arguments still appear. Of course, we now know much more about the abilities of many more species (including their neurobiology) and fewer researchers currently favor explanations of behavior based solely on associative processes; however, the role of contextual variables in comparative psychology still remains cloudy. I discuss these issues briefly. Given my research interests involving the cognitive and communicative abilities of Grey parrots, the one aspect of the original article upon which I feel I can comment in depth involves Macphail's claims about the importance of language-and specifically syntax-in problem-solving and thus in placing humans above all other creatures. Granted, no other species has (or in my opinion is likely ever to acquire) everything that goes into what is considered "human language." Nevertheless, several other species have acquired symbolic representation, and considerable information now exists upon which to base an argument that such acquisition by itself enables more complex and "human-like" cognitive processes. Such processes may form the basis of the kind of intelligence that is measured-not surprisingly-with human-based tasks, including the use of such representations as a means to directly query non-human subjects in ways not unlike those used with young children.
Collapse
Affiliation(s)
- Irene M Pepperberg
- Department of Psychology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
22
|
Morandi-Raikova A, Mayer U. The effect of monocular occlusion on hippocampal c-Fos expression in domestic chicks (Gallus gallus). Sci Rep 2020; 10:7205. [PMID: 32350337 PMCID: PMC7190859 DOI: 10.1038/s41598-020-64224-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 01/07/2023] Open
Abstract
In birds, like in mammals, the hippocampus is particularly sensitive to exposure to novel environments, a function that is based on visual input. Chicks' eyes are placed laterally and their optic fibers project mainly to the contralateral brain hemispheres, with only little direct interhemispheric coupling. Thus, monocular occlusion has been frequently used in chicks to document functional specialization of the two hemispheres. However, we do not know whether monocular occlusion influences hippocampal activation. The aim of the present work was to fill this gap by directly testing this hypothesis. To induce hippocampal activation, chicks were exposed to a novel environment with their left or right eye occluded, or in conditions of binocular vision. Their hippocampal expression of c-Fos (neural activity marker) was compared to a baseline group that remained in a familiar environment. Interestingly, while the hippocampal activation in the two monocular groups was not different from the baseline, it was significantly higher in the binocular group exposed to the novel environment. This suggest that the representation of environmental novelty in the hippocampus of domestic chicks involves strong binocular integration.
Collapse
Affiliation(s)
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
| |
Collapse
|
23
|
Lovell PV, Wirthlin M, Kaser T, Buckner AA, Carleton JB, Snider BR, McHugh AK, Tolpygo A, Mitra PP, Mello CV. ZEBrA: Zebra finch Expression Brain Atlas-A resource for comparative molecular neuroanatomy and brain evolution studies. J Comp Neurol 2020; 528:2099-2131. [PMID: 32037563 DOI: 10.1002/cne.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Julia B Carleton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Brian R Snider
- Center for Spoken Language Understanding, Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| | - Anne K McHugh
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
24
|
Knudsen EI. Evolution of neural processing for visual perception in vertebrates. J Comp Neurol 2020; 528:2888-2901. [PMID: 32003466 PMCID: PMC7586818 DOI: 10.1002/cne.24871] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/22/2023]
Abstract
Visual perception requires both visual information and attention. This review compares, across classes of vertebrates, the functional and anatomical characteristics of (a) the neural pathways that process visual information about objects, and (b) stimulus selection pathways that determine the objects to which an animal attends. Early in the evolution of vertebrate species, visual perception was dominated by information transmitted via the midbrain (retinotectal) visual pathway, and attention was probably controlled primarily by a selection network in the midbrain. In contrast, in primates, visual perception is dominated by information transmitted via the forebrain (retinogeniculate) visual pathway, and attention is mediated largely by networks in the forebrain. In birds and nonprimate mammals, both the retinotectal and retinogeniculate pathways contribute critically to visual information processing, and both midbrain and forebrain networks play important roles in controlling attention. The computations and processing strategies in birds and mammals share some strikingly similar characteristics despite over 300 million years of independent evolution and being implemented by distinct brain architectures. The similarity of these functional characteristics suggests that they provide valuable advantages to visual perception in advanced visual systems. A schema is proposed that describes the evolution of the pathways and computations that enable visual perception in vertebrate species.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University, Stanford, California
| |
Collapse
|
25
|
The whole is equal to the sum of its parts: Pigeons (Columba livia) and crows (Corvus macrorhynchos) do not perceive emergent configurations. Learn Behav 2020; 48:53-65. [PMID: 31993982 DOI: 10.3758/s13420-020-00413-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously demonstrated that chimpanzees, like humans, showed better accuracy and faster response time in discriminating visual patterns when the patterns were presented in redundant and uninformative contexts than when they were presented alone. In the present study, we examined the effect of redundant context on pattern discrimination in pigeons (Columba livia) and large-billed crows (Corvus macrorhynchos) using the same task and stimuli as those used in our previous study on chimpanzees. Birds were trained to search for an odd target among homogenous distractors. Each stimulus was presented in one of three ways: (1) alone, (2) with identical context that resulted in emergent configuration to chimpanzees (congruent context), or (3) with identical context that did not result in emergent configuration to chimpanzees (incongruent context). In contrast to the facilitative effect of congruent contexts we previously reported in chimpanzees, the same contexts disrupted target localization performance in both pigeons and crows. These results imply that birds, unlike chimpanzees, do not perceive emergent configurations.
Collapse
|
26
|
Xu EG, Lin N, Cheong RS, Ridsdale C, Tahara R, Du TY, Das D, Zhu J, Peña Silva L, Azimzada A, Larsson HCE, Tufenkji N. Artificial turf infill associated with systematic toxicity in an amniote vertebrate. Proc Natl Acad Sci U S A 2019; 116:25156-25161. [PMID: 31767765 PMCID: PMC6911194 DOI: 10.1073/pnas.1909886116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Artificial athletic turf containing crumb rubber (CR) from shredded tires is a growing environmental and public health concern. However, the associated health risk is unknown due to the lack of toxicity data for higher vertebrates. We evaluated the toxic effects of CR in a developing amniote vertebrate embryo. CR water leachate was administered to fertilized chicken eggs via different exposure routes, i.e., coating by dropping CR leachate on the eggshell; dipping the eggs into CR leachate; microinjecting CR leachate into the air cell or yolk. After 3 or 7 d of incubation, embryonic morphology, organ development, physiology, and molecular pathways were measured. The results showed that CR leachate injected into the yolk caused mild to severe developmental malformations, reduced growth, and specifically impaired the development of the brain and cardiovascular system, which were associated with gene dysregulation in aryl hydrocarbon receptor, stress-response, and thyroid hormone pathways. The observed systematic effects were probably due to a complex mixture of toxic chemicals leaching from CR, such as metals (e.g., Zn, Cr, Pb) and amines (e.g., benzothiazole). This study points to a need to closely examine the potential regulation of the use of CR on playgrounds and artificial fields.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Chemical Engineering, McGill University, Montréal, QC H3A 0C5, Canada
| | - Nicholas Lin
- Department of Chemical Engineering, McGill University, Montréal, QC H3A 0C5, Canada
| | - Rachel S Cheong
- Department of Chemical Engineering, McGill University, Montréal, QC H3A 0C5, Canada
| | | | - Rui Tahara
- Redpath Museum, McGill University, Montréal, QC H3A 0C4, Canada
| | - Trina Y Du
- Redpath Museum, McGill University, Montréal, QC H3A 0C4, Canada
| | - Dharani Das
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Jiping Zhu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Laura Peña Silva
- Department of Chemical Engineering, McGill University, Montréal, QC H3A 0C5, Canada
- Redpath Museum, McGill University, Montréal, QC H3A 0C4, Canada
| | - Agil Azimzada
- Department of Chemical Engineering, McGill University, Montréal, QC H3A 0C5, Canada
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Hans C E Larsson
- Redpath Museum, McGill University, Montréal, QC H3A 0C4, Canada;
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montréal, QC H3A 0C5, Canada;
| |
Collapse
|
27
|
Belekhova MG, Kenigfest NB, Vasilyev DS, Chudinova TV. Distribution of Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Projective Zone (Wulst) of the Pigeon Thalamofugal Visual Pathway: A Discussion in the Light of Current Concepts on Homology between the Avian Wulst and the Mammalian Striate (Visual) Cortex. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Fernández M, Ahumada‐Galleguillos P, Sentis E, Marín G, Mpodozis J. Intratelencephalic projections of the avian visual dorsal ventricular ridge: Laminarly segregated, reciprocally and topographically organized. J Comp Neurol 2019; 528:321-359. [DOI: 10.1002/cne.24757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Máximo Fernández
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
| | - Patricio Ahumada‐Galleguillos
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
- Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Elisa Sentis
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
| | - Gonzalo Marín
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
- Facultad de Medicina Universidad Finis Terrae Santiago Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
| |
Collapse
|
29
|
Neuronal Correlates of Spatial Working Memory in the Endbrain of Crows. Curr Biol 2019; 29:2616-2624.e4. [DOI: 10.1016/j.cub.2019.06.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 01/20/2023]
|
30
|
Selective response of the nucleus taeniae of the amygdala to a naturalistic social stimulus in visually naive domestic chicks. Sci Rep 2019; 9:9849. [PMID: 31285532 PMCID: PMC6614359 DOI: 10.1038/s41598-019-46322-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
The detection of animate beings at the onset of life is important for phylogenetically distant species, such as birds and primates. Naïve chicks preferentially approach a stimulus resembling a conspecific (a stuffed fowl) over a less naturalistic one (a scrambled version of the stuffed fowl, presenting the same low-level visual features as the fowl in an unnatural configuration). The neuronal mechanisms underlying this behavior are mostly unknown. However, it has been hypothesized that innate social predispositions may involve subpallial brain areas including the amygdala. Here we asked whether a stuffed hen would activate areas of the arcopallium/amygdala complex, in particular the nucleus taeniae of the amygdala (TnA) or septum. We measured brain activity by visualizing the immediate early gene product c-Fos. After exposure to the hen, TnA showed higher density of c-Fos expressing neurons, compared to chicks that were exposed to the scrambled stimulus. A similar trend was present in the lower portion of the arcopallium, but not in the upper portion of the arcopallium or in the septum. This demonstrates that at birth the TnA is already engaged in responses to social visual stimuli, suggesting an important role for this nucleus in the early ontogenetic development of social behavior.
Collapse
|
31
|
Atoji Y, Wild JM. Projections of the densocellular part of the hyperpallium in the rostral Wulst of pigeons (Columba livia). Brain Res 2019; 1711:130-139. [DOI: 10.1016/j.brainres.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 01/01/2019] [Indexed: 10/27/2022]
|
32
|
Behroozi M, Billings BK, Helluy X, Manger PR, Güntürkün O, Ströckens F. Functional MRI in the Nile crocodile: a new avenue for evolutionary neurobiology. Proc Biol Sci 2019; 285:rspb.2018.0178. [PMID: 29695446 DOI: 10.1098/rspb.2018.0178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/29/2018] [Indexed: 01/12/2023] Open
Abstract
Crocodilians are important for understanding the evolutionary history of amniote neural systems as they are the nearest extant relatives of modern birds and share a stem amniote ancestor with mammals. Although the crocodilian brain has been investigated anatomically, functional studies are rare. Here, we employed functional magnetic resonance imaging (fMRI), never tested in poikilotherms, to investigate crocodilian telencephalic sensory processing. Juvenile Crocodylus niloticus were placed in a 7 T MRI scanner to record blood oxygenation level-dependent (BOLD) signal changes during the presentation of visual and auditory stimuli. Visual stimulation increased BOLD signals in rostral to mid-caudal portions of the dorso-lateral anterior dorsal ventricular ridge (ADVR). Simple auditory stimuli led to signal increase in the rostromedial and caudocentral ADVR. These activation patterns are in line with previously described projection fields of diencephalic sensory fibres. Furthermore, complex auditory stimuli activated additional regions of the caudomedial ADVR. The recruitment of these additional, presumably higher-order, sensory areas reflects observations made in birds and mammals. Our results indicate that structural and functional aspects of sensory processing have been likely conserved during the evolution of sauropsids. In addition, our study shows that fMRI can be used to investigate neural processing in poikilotherms, providing a new avenue for neurobiological research in these critical species.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Xavier Helluy
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Universitätsstraße 150, 44780, Bochum, Germany.,Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Onur Güntürkün
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Universitätsstraße 150, 44780, Bochum, Germany.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| | - Felix Ströckens
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
33
|
Darras VM. The Role of Maternal Thyroid Hormones in Avian Embryonic Development. Front Endocrinol (Lausanne) 2019; 10:66. [PMID: 30800099 PMCID: PMC6375826 DOI: 10.3389/fendo.2019.00066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
During avian embryonic development, thyroid hormones (THs) coordinate the expression of a multitude of genes thereby ensuring that the correct sequence of cell proliferation, differentiation and maturation is followed in each tissue and organ. Although THs are needed from the start of development, the embryonic thyroid gland only matures around mid-incubation in precocial birds and around hatching in altricial species. Therefore, maternal THs deposited in the egg yolk play an essential role in embryonic development. They are taken up by the embryo throughout its development, from the first day till hatching, and expression of TH regulators such as distributor proteins, transporters, and deiodinases in the yolk sac membrane provide the tools for selective metabolism and transport starting from this level. TH receptors and regulators of local TH availability are expressed in avian embryos in a dynamic and tissue/cell-specific pattern from the first stages studied, as shown in detail in chicken. Maternal hyperthyroidism via TH supplementation as well as injection of THs into the egg yolk increase TH content in embryonic tissues while induction of maternal hypothyroidism by goitrogen treatment results in a decrease. Both increase and decrease of maternal TH availability were shown to alter gene expression in early chicken embryos. Knockdown of the specific TH transporter monocarboxylate transporter 8 at early stages in chicken cerebellum, optic tectum, or retina allowed to reduce local TH availability, interfering with gene expression and confirming that development of the central nervous system (CNS) is highly dependent on maternal THs. While some of the effects on cell proliferation, migration and differentiation seem to be transient, others result in persistent defects in CNS structure. In addition, a number of studies in both precocial and altricial birds showed that injection of THs into the yolk at the start of incubation influences a number of parameters in posthatch performance and fitness. In conclusion, the data presently available clearly indicate that maternal THs play an important role in avian embryonic development, but how exactly their influence on cellular and molecular processes in the embryo is linked to posthatch fitness needs to be further explored.
Collapse
|
34
|
Acerbo MJ, Lazareva OF. Pharmacological manipulation of GABA activity in nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS) impairs figure-ground discrimination in pigeons: Running head: SP/IPS in figure-ground segregation. Behav Brain Res 2018; 344:1-8. [PMID: 29408282 DOI: 10.1016/j.bbr.2018.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/09/2018] [Accepted: 01/30/2018] [Indexed: 11/18/2022]
Abstract
Figure-ground segregation is a fundamental visual ability that allows an organism to separate an object from its background. Our earlier research has shown that nucleus rotundus (Rt), a thalamic nucleus processing visual information in pigeons, together with its inhibitory complex, nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS), are critically involved in figure-ground discrimination (Acerbo et al., 2012; Scully et al., 2014). Here, we further investigated the role of SP/IPS by conducting bilateral microinjections of GABAergic receptor antagonist and agonists (bicuculline and muscimol, respectively) and non-NMDA glutamate receptor antagonist (CNQX) after the pigeons mastered figure-ground discrimination task. We used two doses of each drug (bicuculline: 0.1 mM and 0.05 mM; muscimol: 4.4 mM and 8.8 mM; CNQX: 2.15 mM and 4.6 mM) in a within-subject design, and alternated drug injections with baseline (ACSF). The order of injections was randomized across birds to reduce potential carryover effects. We found that a low dose of bicuculline produced a decrement on figure trials but not on background trials, whereas a high dose impaired performance on background trials but not on figure trials. Muscimol produced an equivalent, dose-dependent impairment on both types of trials. Finally, CNQX had no consistent effect at either dose. Together, these results further confirm our earlier hypothesis that inhibitory projections from SP to Rt modulate figure-ground discrimination, and suggest that the Rt and the SP/IPS provide a plausible substrate that could perform figure-ground segregation in avian brain.
Collapse
|
35
|
Krauzlis RJ, Bogadhi AR, Herman JP, Bollimunta A. Selective attention without a neocortex. Cortex 2018; 102:161-175. [PMID: 28958417 PMCID: PMC5832524 DOI: 10.1016/j.cortex.2017.08.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 12/01/2022]
Abstract
Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA.
| | | | - James P Herman
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA
| |
Collapse
|
36
|
Belekhova MG, Vasilyev DS, Kenigfest NB, Chudinova TV. Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Pigeon Entopallium: A Comparative Analysis of Interspecies Variability as Related to the Discussion on Avian Entopallium Homology. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Kuenzel WJ. Mapping the brain of the chicken (Gallus gallus), with emphasis on the septal-hypothalamic region. Gen Comp Endocrinol 2018; 256:4-15. [PMID: 28923430 DOI: 10.1016/j.ygcen.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
There has been remarkable progress in discoveries made in the avian brain, particularly over the past two decades. This review first highlights some of the discoveries made in the forebrain and credits the Avian Brain Nomenclature Forum, responsible for changing many of the terms found in the cerebrum and for stimulating collaborative research thereafter. The Forum facilitated communication among comparative neurobiologists by eliminating confusing and inaccurate names. The result over the past 15yearshas been a standardized use of avian forebrain terms. Nonetheless, additional changes are needed. The goal of the paper is to encourage a continuing effort to unify the nomenclature throughout the entire avian brain. To emphasize the need for consensus for a single name for each neural structure, I have selected specific structures in the septum and hypothalamus that our laboratory has been investigating, to demonstrate a lack of uniformity in names applied to conservative brain regions compared to the forebrain. The specific areas reviewed include the distributions of gonadotropin-releasing hormone neurons and their terminal fields in circumventricular organs, deep-brain photoreceptors, gonadotropin inhibitory neurons and a complex structure and function of the nucleus of the hippocampal commissure.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
38
|
Knudsen EI, Schwarz JS, Knudsen PF, Sridharan D. Space-Specific Deficits in Visual Orientation Discrimination Caused by Lesions in the Midbrain Stimulus Selection Network. Curr Biol 2017; 27:2053-2064.e5. [PMID: 28669762 DOI: 10.1016/j.cub.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 11/15/2022]
Abstract
Perceptual decisions require both analysis of sensory information and selective routing of relevant information to decision networks. This study explores the contribution of a midbrain network to visual perception in chickens. Analysis of visual orientation information in birds takes place in the forebrain sensory area called the Wulst, as it does in the primary visual cortex (V1) of mammals. In contrast, the midbrain, which receives parallel retinal input, encodes orientation poorly, if at all. We discovered, however, that small electrolytic lesions in the midbrain severely impair a chicken's ability to discriminate orientations. Focal lesions were placed in the optic tectum (OT) and in the nucleus isthmi pars parvocellularis (Ipc)-key nodes in the midbrain stimulus selection network-in chickens trained to perform an orientation discrimination task. A lesion in the OT caused a severe impairment in orientation discrimination specifically for targets at the location in space represented by the lesioned location. Distracting stimuli increased the deficit. A lesion in the Ipc produced similar but more transient effects. We discuss the possibilities that performance deficits were caused by interference with orientation information processing (sensory deficit) versus with the routing of information in the forebrain (agnosia). The data support the proposal that the OT transmits a space-specific signal that is required to gate orientation information from the Wulst into networks that mediate behavioral decisions, analogous to the role of ascending signals from the superior colliculus (SC) in monkeys. Furthermore, our results indicate a critical role for the cholinergic Ipc in this gating process.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jason S Schwarz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Phyllis F Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
39
|
Mayer U, Rosa-Salva O, Morbioli F, Vallortigara G. The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus). Eur J Neurosci 2017; 45:423-432. [DOI: 10.1111/ejn.13484] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Francesca Morbioli
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| |
Collapse
|
40
|
First exposure to an alive conspecific activates septal and amygdaloid nuclei in visually-naïve domestic chicks (Gallus gallus). Behav Brain Res 2017; 317:71-81. [DOI: 10.1016/j.bbr.2016.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 12/29/2022]
|
41
|
Chakraborty M, Jarvis ED. Brain evolution by brain pathway duplication. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0056. [PMID: 26554045 PMCID: PMC4650129 DOI: 10.1098/rstb.2015.0056] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27713, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27713, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
42
|
Stacho M, Ströckens F, Xiao Q, Güntürkün O. Functional organization of telencephalic visual association fields in pigeons. Behav Brain Res 2016; 303:93-102. [DOI: 10.1016/j.bbr.2016.01.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 12/24/2022]
|
43
|
Visual response properties of neurons in four areas of the avian pallium. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:235-45. [DOI: 10.1007/s00359-016-1071-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 01/19/2023]
|
44
|
Lazareva OF, Wasserman EA. No evidence for feature binding by pigeons in a change detection task. Behav Processes 2016; 123:90-106. [PMID: 26394018 PMCID: PMC4729622 DOI: 10.1016/j.beproc.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
We trained pigeons to respond to one key when two consecutive displays were the same as one another (no-change trial) and to respond to another key when the two displays were different from one another (change trial; change detection task). Change-trial displays were distinguished by a change in all three features (color, orientation, and location) of all four items presented in the display. Pigeons learned this change-no change discrimination to high levels of accuracy. In Experiments 1 and 2, we compared replace trials in which one or two features were replaced by novel features to switch trials in which the features were exchanged among the objects. Pigeons reported both replace and switch trials as "no-change" trials. In contrast, adult humans in Experiment 3 reported both types of trials as "change" trials and showed robust evidence for feature binding. In Experiment 4, we manipulated the total number of objects in the display and the number of objects that underwent change. Unlike people, pigeons showed strong control by the number of feature changes in the second display; pigeons' failure to exhibit feature binding may therefore be attributed to their failure to attend to items in the displays as integral objects.
Collapse
Affiliation(s)
- Olga F Lazareva
- Drake University, 324 Olin Hall, Department of Psychology, Drake University, Des Moines, IA 50311, United States.
| | | |
Collapse
|
45
|
|
46
|
Belekhova MG, Chudinova TV, Rio JP, Tostivint H, Vesselkin NP, Kenigfest NB. Distribution of calcium-binding proteins in the pigeon visual thalamic centers and related pretectal and mesencephalic nuclei. Phylogenetic and functional determinants. Brain Res 2016; 1631:165-93. [PMID: 26638835 DOI: 10.1016/j.brainres.2015.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022]
Abstract
Multichannel processing of environmental information constitutes a fundamental basis of functioning of sensory systems in the vertebrate brain. Two distinct parallel visual systems - the tectofugal and thalamofugal exist in all amniotes. The vertebrate central nervous system contains high concentrations of intracellular calcium-binding proteins (CaBPrs) and each of them has a restricted expression pattern in different brain regions and specific neuronal subpopulations. This study aimed at describing the patterns of distribution of parvalbumin (PV) and calbindin (CB) in the visual thalamic and mesencephalic centers of the pigeon (Columba livia). We used a combination of immunohistochemistry and double labeling immunofluorescent technique. Structures studied included the thalamic relay centers involved in the tectofugal (nucleus rotundus, Rot) and thalamofugal (nucleus geniculatus lateralis, pars dorsalis, GLd) visual pathways as well as pretectal, mesencephalic, isthmic and thalamic structures inducing the driver and/or modulatory action to the visual processing. We showed that neither of these proteins was unique to the Rot or GLd. The Rot contained i) numerous PV-immunoreactive (ir) neurons and a dense neuropil, and ii) a few CB-ir neurons mostly located in the anterior dorsal part and associated with a light neuropil. These latter neurons partially overlapped with the former and some of them colocalized both proteins. The distinct subnuclei of the GLd were also characterized by different patterns of distribution of CaBPrs. Some (nucleus dorsolateralis anterior, pars magnocellularis, DLAmc; pars lateralis, DLL; pars rostrolateralis, DLAlr; nucleus lateralis anterior thalami, LA) contained both CB- and PV-ir neurons in different proportions with a predominance of the former in the DLAmc and DLL. The nucleus lateralis dorsalis of nuclei optici principalis thalami only contained PV-ir neurons and a neuropil similar to the interstitial pretectal/thalamic nuclei of the tectothalamic tract, nucleus pretectalis and thalamic reticular nucleus. The overlapping distribution of PV and CB immunoreactivity was typical for the pretectal nucleus lentiformis mesencephali and the nucleus ectomamillaris as well as for the visual isthmic nuclei. The findings are discussed in the light of the contributive role of the phylogenetic and functional factors determining the circuits׳ specificity of the different CaBPr types.
Collapse
Affiliation(s)
- Margarita G Belekhova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia.
| | - Tatiana V Chudinova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia.
| | - Jean-Paul Rio
- CRICM UPMC/INSERM UMR_S975/CNRS UMR 7225, Hôpital de la Salpêtrière, 47, Bd de l׳Hôpital, 75651 Paris Cedex 13, France.
| | - Hérve Tostivint
- CNRS UMR 7221, MNHN USM 0501, Département Régulations, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, 7, rue Cuvier, 75005 Paris, France.
| | - Nikolai P Vesselkin
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia; Department of Medicine, The State University of Saint-Petersburg, 7-9, Universitetskaya nab., 199034 St. Petersburg, Russia.
| | - Natalia B Kenigfest
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia; CNRS UMR 7221, MNHN USM 0501, Département Régulations, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, 7, rue Cuvier, 75005 Paris, France.
| |
Collapse
|
47
|
Koenen C, Pusch R, Bröker F, Thiele S, Güntürkün O. Categories in the pigeon brain: A reverse engineering approach. J Exp Anal Behav 2015; 105:111-22. [DOI: 10.1002/jeab.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Charlotte Koenen
- Biopsychology; Institute of Cognitive Neuroscience; Ruhr-University Bochum; Germany
- International Graduate School of Neuroscience; Ruhr-University Bochum; Germany
| | - Roland Pusch
- Biopsychology; Institute of Cognitive Neuroscience; Ruhr-University Bochum; Germany
| | - Franziska Bröker
- Biopsychology; Institute of Cognitive Neuroscience; Ruhr-University Bochum; Germany
| | - Samuel Thiele
- Biopsychology; Institute of Cognitive Neuroscience; Ruhr-University Bochum; Germany
| | - Onur Güntürkün
- Biopsychology; Institute of Cognitive Neuroscience; Ruhr-University Bochum; Germany
- International Graduate School of Neuroscience; Ruhr-University Bochum; Germany
| |
Collapse
|
48
|
Levenson RM, Krupinski EA, Navarro VM, Wasserman EA. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images. PLoS One 2015; 10:e0141357. [PMID: 26581091 PMCID: PMC4651348 DOI: 10.1371/journal.pone.0141357] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023] Open
Abstract
Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)—which share many visual system properties with humans—can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds’ histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task—namely, classification of suspicious mammographic densities (masses)—the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds’ successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools.
Collapse
Affiliation(s)
- Richard M Levenson
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Elizabeth A Krupinski
- Department of Radiology & Imaging Sciences, College of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Victor M Navarro
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa, United States of America
| | - Edward A Wasserman
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
49
|
Wild JM, Gaede AH. Second tectofugal pathway in a songbird (Taeniopygia guttata) revisited: Tectal and lateral pontine projections to the posterior thalamus, thence to the intermediate nidopallium. J Comp Neurol 2015; 524:963-85. [PMID: 26287809 DOI: 10.1002/cne.23886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 01/16/2023]
Abstract
Birds are almost always said to have two visual pathways from the retina to the telencephalon: thalamofugal terminating in the Wulst, and tectofugal terminating in the entopallium. Often ignored is a second tectofugal pathway that terminates in the nidopallium medial to and separate from the entopallium (e.g., Gamlin and Cohen [1986] J Comp Neurol 250:296-310). Using standard tract-tracing and electroanatomical techniques, we extend earlier evidence of a second tectofugal pathway in songbirds (Wild [1994] J Comp Neurol 349:512-535), by showing that visual projections to nucleus uvaeformis (Uva) of the posterior thalamus in zebra finches extend farther rostrally than to Uva, as generally recognized in the context of the song control system. Projections to "rUva" resulted from injections of biotinylated dextran amine into the lateral pontine nucleus (PL), and led to extensive retrograde labeling of tectal neurons, predominantly in layer 13. Injections in rUva also resulted in extensive retrograde labeling of predominantly layer 13 tectal neurons, retrograde labeling of PL neurons, and anterograde labeling of PL. It thus appears that some tectal neurons could project to rUva and PL via branched axons. Ascending projections of rUva terminated throughout a visually responsive region of the intermediate nidopallium (NI) lying between the nucleus interface medially and the entopallium laterally. Lastly, as shown by Clarke in pigeons ([1977] J Comp Neurol 174:535-552), we found that PL projects to caudal cerebellar folia.
Collapse
Affiliation(s)
- J Martin Wild
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea H Gaede
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
50
|
Mayer U, Pecchia T, Bingman VP, Flore M, Vallortigara G. Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: An immediate early gene study. Hippocampus 2015; 26:27-40. [DOI: 10.1002/hipo.22486] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 Rovereto (TN) Italy
| | - Tommaso Pecchia
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 Rovereto (TN) Italy
| | - Verner Peter Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience; Mind and Behavior, Bowling Green State University; Bowling Green Ohio
| | - Michele Flore
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 Rovereto (TN) Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 Rovereto (TN) Italy
| |
Collapse
|