1
|
Gupta T, Raghavendar G, Terenius O, Ito K, Mishra RK, Ponnuvel KM. An investigation into the effects of infection and ORF expression patterns of the Indian bidensovirus isolate ( BmBDV) infecting the silkworm Bombyx mori. Virusdisease 2022; 33:76-83. [PMID: 35493748 PMCID: PMC9005581 DOI: 10.1007/s13337-021-00750-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
The Indian isolate of Bombyx mori bidensovirus (BmBDV) is a bipartite virus that comprises of a segmented, non-homologous, two linear single-strands of DNA molecules (VD1 and VD2). It is one of the causative agents of the fatal silkworm disease 'Flacherie' that causes severe crop loss for the sericulture farmers. Genome analyses of the Indian isolate of BmBDV revealed that it consists of 6 putative ORFs similar to the Japanese and Chinese isolates. VD1 consists of 4 ORFs while VD2 has 2 ORFs that code for 4 non- structural (NS) and 2 structural (VP) proteins, in total. In this study, we investigated, in detail, the impact of BmBDV pathogenesis on growth and development of the silkworm Bombyx mori, at different developmental stages. Mortality rate and weight uptake analyses were also performed on newly ecdysed 4th instar larvae. BmBDV infection was not found to be developmental stage specific and it occurred at all stages. Onset of mortality took place 8 days post infection (dpi) and 100% mortality occurred at 11 dpi. The infected larvae showed a significant difference in weight uptake wherein from 7 dpi the larvae stopped gaining weight and from 8th dpi started demonstrating the typical symptoms of flacherie. Further, the expression pattern of the 6 viral ORFs were also investigated in the newly ecdysed 4th instar BmBDV infected silkworms. Among all the six ORFs, VD2 ORF 1 and 2 revealed the highest transcript numbers, which was followed by VD1 ORF 4 that encodes for the viral DNA polymerase enzyme. This was the first ever attempt to understand the pathogenesis and the expression pattern of all the six ORF transcripts of the Indian isolate of BmBDV.
Collapse
Affiliation(s)
- Tania Gupta
- Genomics Division, Central Silk Board, Seri-Biotech Research Laboratory, Carmelaram Post, Kodathi, Bengaluru 560035 India
| | - G. Raghavendar
- Genomics Division, Central Silk Board, Seri-Biotech Research Laboratory, Carmelaram Post, Kodathi, Bengaluru 560035 India
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 21 Uppsala, Sweden
| | - Katsuhiko Ito
- Department of Science of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Rakesh Kumar Mishra
- Genomics Division, Central Silk Board, Seri-Biotech Research Laboratory, Carmelaram Post, Kodathi, Bengaluru 560035 India
| | - Kangayam M. Ponnuvel
- Genomics Division, Central Silk Board, Seri-Biotech Research Laboratory, Carmelaram Post, Kodathi, Bengaluru 560035 India
| |
Collapse
|
2
|
Gupta T, Ito K, Kadono-Okuda K, Murthy GN, Gowri EV, Ponnuvel KM. Characterization and genome comparison of an Indian isolate of bidensovirus infecting the silkworm Bombyx mori. Arch Virol 2017; 163:125-134. [PMID: 29030707 DOI: 10.1007/s00705-017-3584-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
The bipartite genome of an Indian isolate of Bombyx mori bidensovirus (BmBDV), one of the causative agents of the fatal silkworm disease 'Flacherie', was cloned and completely sequenced. Nucleotide sequence analysis of this Indian isolate of BmBDV revealed two viral DNA segments, VD1 and VD2 as well as a DNA polymerase motif which supports its taxonomical status as the type species of a new family of Bidnaviridae. The Indian isolate of BmBDV was found to have a total of six putative ORFs four of which were located on the VD1 with the other two being on the VD2 DNA segment. The VD1 DNA segment was found to code for three non-structural proteins including a viral DNA polymerase as well as one structural protein, while the VD2 DNA segment was found to code for one structural and one non-structural protein, similar to that of the Japanese and Zhenjiang isolates of BmBDV. A BmBDV ORF expression study was done through real time qPCR wherein the VD2 ORF 1 and 2 showed the maximum transcript levels. This is the first report of the genome characterization of an Indian isolate of BmBDV, infecting silkworm B. mori.
Collapse
Affiliation(s)
- Tania Gupta
- Seribiotech Research Laboratory, Carmelaram-Post, Kodathi, Bangalore, 560035, India
| | - Katsuhiko Ito
- Laboratory of Sericultural Science, Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Keiko Kadono-Okuda
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, 305-8634, Japan
| | - Geetha N Murthy
- Seribiotech Research Laboratory, Carmelaram-Post, Kodathi, Bangalore, 560035, India
| | - E Vijaya Gowri
- Seribiotech Research Laboratory, Carmelaram-Post, Kodathi, Bangalore, 560035, India
| | - Kangayam M Ponnuvel
- Seribiotech Research Laboratory, Carmelaram-Post, Kodathi, Bangalore, 560035, India.
| |
Collapse
|
3
|
Tijssen P, Pénzes JJ, Yu Q, Pham HT, Bergoin M. Reprint of: Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past. J Invertebr Pathol 2017; 147:23-36. [PMID: 32781498 DOI: 10.1016/j.jip.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
Abstract
A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy.
Collapse
Affiliation(s)
- Peter Tijssen
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Judit J Pénzes
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Qian Yu
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Hanh T Pham
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Max Bergoin
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada; Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
4
|
Li G, Zhou Q, Qiu L, Yao Q, Chen K, Tang Q, Hu Z. Serine protease Bm-SP142 was differentially expressed in resistant and susceptible Bombyx mori strains, involving in the defence response to viral infection. PLoS One 2017; 12:e0175518. [PMID: 28414724 PMCID: PMC5393580 DOI: 10.1371/journal.pone.0175518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Bm-SP142 is a 35 kDa protease in the silkworm, but its exact functions remain unknown. In this study, sequence alignment revealed that the His-Asp-Ser catalytic triad is embedded in the TAAHC-DIAL-GDSGGP sequence motif, establishing Bm-SP142 as a serine protease. Soluble recombinant GST-BmSP142 was expressed and purified, and serine protease activity was confirmed in vitro. RT-qPCR results indicated that Bm-SP142 was mainly expressed in the middle part of the silkworm midgut, and Bm-SP142 transcripts were significantly up-regulated at 24 hours post infection (hpi) in BmBDV-resistant strains (798) inoculated with BmBDV and BmNPV-resistant strains (NB) inoculated with BmNPV, but not in BmBDV-susceptible strains (306). Surprisingly, transcripts were significantly down-regulated at 12 hpi in BmNPV-susceptible strains (HuaBa 35) inoculated with BmNPV, compared with healthy silkworms. Recombinant BmNPV treated with purified Bm-SP142 effectively impaired its ability to infect BmN cells, and Bm-SP142 decreases the efficiency of BmNPV and BmBDV propagation in silkworms. Furthermore, overexpression of Bm-SP142 in BmN cells inhibited viral propagation.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qian Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- * E-mail: (ZH); (QT)
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- * E-mail: (ZH); (QT)
| |
Collapse
|
5
|
Lü P, Xing Y, Hu Z, Yang Y, Pan Y, Chen K, Zhu F, Zhou Y, Chen K, Yao Q. A characterization of structural proteins expressed by Bombyx mori bidensovirus. J Invertebr Pathol 2017; 144:18-23. [DOI: 10.1016/j.jip.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
|
6
|
Maciel-Vergara G, Ros VID. Viruses of insects reared for food and feed. J Invertebr Pathol 2017; 147:60-75. [PMID: 28189501 DOI: 10.1016/j.jip.2017.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in industrial settings, can be the key for a change in the way natural resources are utilized in order to produce meat, animal protein and a list of other valuable animal products. However, because insect mass rearing technology is relatively new, little is known about the different factors that determine the quality and yield of the production process. Obtaining such knowledge is crucial for the success of insect-based product development. One of the issues that is likely to compromise the success of insect rearing is the outbreak of insect diseases. In particular, viral diseases can be devastating for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks in mass rearing systems, ranging from simple sanitation methods to highly sophisticated methods including RNAi and transgenics.
Collapse
Affiliation(s)
- Gabriela Maciel-Vergara
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Tijssen P, Pénzes JJ, Yu Q, Pham HT, Bergoin M. Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past. J Invertebr Pathol 2016; 140:83-96. [PMID: 27663091 DOI: 10.1016/j.jip.2016.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022]
Abstract
A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy.
Collapse
Affiliation(s)
- Peter Tijssen
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Judit J Pénzes
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Qian Yu
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Hanh T Pham
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Max Bergoin
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada; Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
8
|
Zhang P, Miao D, Zhang Y, Wang M, Hu Z, Lü P, Yao Q. Cloning and rescue of the genome of Bombyx mori bidensovirus, and characterization of a recombinant virus. Virol J 2016; 13:126. [PMID: 27391602 PMCID: PMC4938981 DOI: 10.1186/s12985-016-0576-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
Background Bombyx mori bidensovirus (BmBDV), which belongs to the Bidnaviridae family established by the International Committee on Taxonomy of Viruses in 2011, was the first bidensovirus identified in insects. The structure of BmBDV is similar to that of parvoviruses, while its replication is similar to that of adenoviruses. Although BmBDV has the potential to be used as a tool in biological pest control and as an expression vector, virus rescue has been a bottleneck in the application of this virus. Methods In this study, we constructed a full-length genomic clone of BmBDV and showed that its terminal structure was restored. A recombinant BmBDV that expressed the green fluorescence protein (GFP) gene was constructed. Then, BmN cells, which are an ovarian cell line, were co-transfected with the linearized genome using continuous culture and expanded cell culture methods. Results The results showed that the GFP gene was expressed successfully, and that cell lesions occurred in virus-infected cells. Furthermore, typical densonucleosis viruses were observed in reinfected silkworm larvae and larval midgut tissues infected by BmBDV, as evidenced by the emission of green fluorescence. Conclusions Overall, these results suggest that the virus could be rescued from the infected BmN cells after co-transfection with the linear full length virus genome.
Collapse
Affiliation(s)
- Panpan Zhang
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Di Miao
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yahui Zhang
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Meizi Wang
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Krupovic M, Koonin EV. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci Rep 2014; 4:5347. [PMID: 24939392 PMCID: PMC4061559 DOI: 10.1038/srep05347] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022] Open
Abstract
Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
10
|
Pan X, Lü P, Zhang M, Hu Z, Li G, Ma S, Feng F, Chen K, Yao Q. Expression analysis of Bombyx mori bidensovirus structural proteins and assembly of virus-like particles in insect cells. Curr Microbiol 2014; 69:567-73. [PMID: 24916668 DOI: 10.1007/s00284-014-0613-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
Bombyx mori bidensovirus (BmBDV) is a new designated species of the new genus Bidensovirus in the new family Bidnaviridae, which contains two single-stranded linear DNAs (VD1 and VD2) and causes the chronic densonucleosis disease of silkworm. Previous researches revealed that VD1-ORF3 encodes the major structural proteins VPs. In this work, through western blot, we found that VPs expressed from 48 h post-inoculation and kept increasing until 120 h post-inoculation in midgut of Bombyx mori. In order to further investigate the translation of vp gene, the ORFs (vp1 and vp2) of the VP started just up-stream of the first two candidate initiation codons were expressed in Sf9 cells by a baculovirus expression system. The expression products were purified by gradient density centrifugation and analyzed by Western blot and electron microscopy. The results showed that the expressions of vp1 yielded three proteins (VP1, VP1', and VP2), which are the same with the viral VPs expression in midgut of Bombyx mori, and vp2 generated two VPs with the molecular weights of about 51 kDa (VP2) and 37 kDa. The observation by electron microscopy indicated that these VPs can auto-assemble into virus-like particles that could not be distinguished from virus particles. These findings will provide materials for studying the structure of BmBDV and be helpful in the studies on BmBDV-based disease in silkworms.
Collapse
Affiliation(s)
- Xiaoli Pan
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bombyx mori bidensovirus: The type species of the new genus Bidensovirus in the new family Bidnaviridae. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5876-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Li G, Hu Z, Guo X, Li G, Tang Q, Wang P, Chen K, Yao Q. Identification of Bombyx mori bidensovirus VD1-ORF4 reveals a novel protein associated with viral structural component. Curr Microbiol 2013; 66:527-34. [PMID: 23328902 DOI: 10.1007/s00284-013-0306-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/02/2013] [Indexed: 01/27/2023]
Abstract
Bombyx mori bidensovirus (BmBDV) VD1-ORF4 (open reading frame 4, ORF4) consists of 3,318 nucleotides, which codes for a predicted 1,105-amino acid protein containing a conserved DNA polymerase motif. However, its functions in viral propagation remain unknown. In the current study, the transcription of VD1-ORF4 was examined from 6 to 96 h postinfection (p.i.) by RT-PCR, 5'-RACE revealed the transcription initiation site of BmBDV ORF4 to be -16 nucleotides upstream from the start codon, and 3'-RACE revealed the transcription termination site of VD1-ORF4 to be +7 nucleotides downstream from termination codon. Three different proteins were examined in the extracts of BmBDV-infected silkworms midguts by Western blot using raised antibodies against VD1-ORF4 deduced amino acid, and a specific protein band about 53 kDa was further detected in purified virions using the same antibodies. Taken together, BmBDV VD1-ORF4 codes for three or more proteins during the viral life cycle, one of which is a 53 kDa protein and confirmed to be a component of BmBDV virion.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bao YY, Chen LB, Wu WJ, Zhao D, Wang Y, Qin X, Zhang CX. Direct interactions between bidensovirus BmDNV-Z proteins and midgut proteins from the virus target Bombyx mori. FEBS J 2013; 280:939-49. [PMID: 23216561 DOI: 10.1111/febs.12088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 11/26/2022]
Abstract
In this study we aimed to identify the protein-protein interactions between Bombyx mori midgut and the bidensovirus BmDNV-Z via a yeast two-hybrid (Y2H) system. To achieve this we constructed a Gal4 activation domain fusion library that expresses the host genes and Gal4 DNA binding domain fusion bait vectors that express BmDNV-Z genes. Y2H assay revealed 15 potential interactions between host and viral proteins. To verify the interactions, we modified and reconstructed a pair of bimolecular fluorescence complementation (BiFC) vectors and achieved the co-expressions of the candidate host genes and viral genes in insect culture cells. The BiFC assay confirmed the specificity of the interactions including B. mori 35 kDa protease and two BmDNV-Z proteins encoded by VD1-ORF2 and VD2-ORF1; B. mori transgelin and BmDNV-Z protein encoded by VD2-ORF3; and B. mori serine protease precursor and BmDNV-Z encoded by VD2-ORF3 in vitro. Our findings revealed that the specific host midgut proteins are involved in the interactions between B. mori and BmDNV-Z, which will facilitate our understanding of the molecular mechanisms of BmDNV-Z infection.
Collapse
Affiliation(s)
- Yan-Yuan Bao
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Expression analysis of Bombyx mori parvo-like virus VD2-ORF1 gene encoding a minor structural protein. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0074-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
The non-structural protein NS-2 of Bombyx mori parvo-like virus is localized to the nuclear membrane. Curr Microbiol 2011; 63:8-15. [PMID: 21479931 DOI: 10.1007/s00284-011-9933-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/30/2011] [Indexed: 01/13/2023]
Abstract
Bombyx mori parvo-like virus (BmPLV) has two complementary single-stranded DNA genome (VD1 and VD2) and owns a self-encoding DNA polymerase motif, but its replication mechanism is unclear. In our previous research, a protein encoded by VD1-ORF1 was indentified in the midgut of BmPLV China Zhenjiang isolate-(BmPLV-Z) infected silkworm larvae via two-dimensional gel electrophoresis (2-DE). This protein was named as non-structural protein 2 (NS2), which showed no similarity to that of parvoviruses. To date, little is known about it. In this study, sequence alignment results showed that NS2 shared homology with some chromosomal replication initiator protein dnaA and DNA-binding response regulators. The ns2 was cloned and expressed in E. coli, and then a polyclonal antibody of the NS2 protein was prepared successfully. The data from real-time quantitative PCR displayed that the transcription of VD1-ORF1 from BmPLV-Z-infected midguts started from 28-h post inoculation (h p.i.) in low amounts, but in high amounts at late stages of infection. Immunofluorescence showed that NS2 ultimately concentrated on the nuclear membrane in BmN cells at late stages, indicating that NS2 might be associated with integral membrane protein.
Collapse
|