1
|
Lance EI, Faulcon LM, Fu Z, Yang J, Whyte-Stewart D, Strouse JJ, Barron-Casella E, Jones K, Van Eyk JE, Casella JF, Everett AD. Proteomic discovery in sickle cell disease: Elevated neurogranin levels in children with sickle cell disease. Proteomics Clin Appl 2021; 15:e2100003. [PMID: 33915030 PMCID: PMC8666096 DOI: 10.1002/prca.202100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes stroke and silent cerebral infarct (SCI). Our aim was to identify markers of brain injury in SCD. EXPERIMENTAL DESIGN Plasma proteomes were analyzed using a sequential separation approach of hemoglobin (Hb) and top abundant plasma protein depletion, followed by reverse phase separation of intact proteins, trypsin digestion, and tandem mass spectrometry. We compared plasma proteomes of children with SCD with and without SCI in the Silent Cerebral Infarct Multi-Center Clinical Trial (SIT Trial) to age-matched, healthy non-SCD controls. RESULTS From the SCD group, 1172 proteins were identified. Twenty-five percent (289/1172) were solely in the SCI group. Twenty-five proteins with enriched expression in the human brain were identified in the SCD group. Neurogranin (NRGN) was the most abundant brain-enriched protein in plasma of children with SCD. Using a NRGN sandwich immunoassay and SIT Trial samples, median NRGN levels were higher at study entry in children with SCD (0.28 ng/mL, N = 100) compared to control participants (0.12 ng/mL, N = 25, p < 0.0004). CONCLUSIONS AND CLINICAL RELEVANCE NRGN levels are elevated in children with SCD. NRGN and other brain-enriched plasma proteins identified in plasma of children with SCD may provide biochemical evidence of neurological injury.
Collapse
Affiliation(s)
- Eboni I. Lance
- Department of Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Zongming Fu
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Yang
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donna Whyte-Stewart
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John J. Strouse
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Emily Barron-Casella
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly Jones
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer E. Van Eyk
- Division of Cardiology, Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - James F. Casella
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Sagi V, Mittal A, Gupta M, Gupta K. Immune cell neural interactions and their contributions to sickle cell disease. Neurosci Lett 2019; 699:167-171. [PMID: 30738871 DOI: 10.1016/j.neulet.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Sickle cell disease (SCD) is characterized by hemolysis, inflammation, and pain. Mechanisms of pain manifestation are complex, and there is a major gap in knowledge of how the nervous and immune systems interact to contribute to pain and other comorbidities in SCD. Sterile inflammation in the periphery and central nervous system contributes to vascular and neural activation. Cellular and soluble mediators create an inflammatory and neuroinflammatory microenvironment contributing to neurogenic inflammation and acute and chronic pain. In this review we highlight relevant neuro-immune interactions that contribute to the pathobiology of SCD.
Collapse
Affiliation(s)
- Varun Sagi
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aditya Mittal
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Targeting novel mechanisms of pain in sickle cell disease. Blood 2017; 130:2377-2385. [PMID: 29187376 DOI: 10.1182/blood-2017-05-782003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Patients with sickle cell disease (SCD) suffer from intense pain that can start during infancy and increase in severity throughout life, leading to hospitalization and poor quality of life. A unique feature of SCD is vaso-occlusive crises (VOCs) characterized by episodic, recurrent, and unpredictable episodes of acute pain. Microvascular obstruction during a VOC leads to impaired oxygen supply to the periphery and ischemia reperfusion injury, inflammation, oxidative stress, and endothelial dysfunction, all of which may perpetuate a noxious microenvironment leading to pain. In addition to episodic acute pain, patients with SCD also report chronic pain. Current treatment of moderate to severe pain in SCD is mostly reliant upon opioids; however, long-term use of opioids is associated with multiple side effects. This review presents up-to-date developments in our understanding of the pathobiology of pain in SCD. To help focus future research efforts, major gaps in knowledge are identified regarding how sickle pathobiology evokes pain, pathways specific to chronic and acute sickle pain, perception-based targets of "top-down" mechanisms originating from the brain and neuromodulation, and how pain affects the sickle microenvironment and pathophysiology. This review also describes mechanism-based targets that may help develop novel therapeutic and/or preventive strategies to ameliorate pain in SCD.
Collapse
|
4
|
Tran H, Gupta M, Gupta K. Targeting novel mechanisms of pain in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:546-555. [PMID: 29222304 PMCID: PMC6142592 DOI: 10.1182/asheducation-2017.1.546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Patients with sickle cell disease (SCD) suffer from intense pain that can start during infancy and increase in severity throughout life, leading to hospitalization and poor quality of life. A unique feature of SCD is vaso-occlusive crises (VOCs) characterized by episodic, recurrent, and unpredictable episodes of acute pain. Microvascular obstruction during a VOC leads to impaired oxygen supply to the periphery and ischemia reperfusion injury, inflammation, oxidative stress, and endothelial dysfunction, all of which may perpetuate a noxious microenvironment leading to pain. In addition to episodic acute pain, patients with SCD also report chronic pain. Current treatment of moderate to severe pain in SCD is mostly reliant upon opioids; however, long-term use of opioids is associated with multiple side effects. This review presents up-to-date developments in our understanding of the pathobiology of pain in SCD. To help focus future research efforts, major gaps in knowledge are identified regarding how sickle pathobiology evokes pain, pathways specific to chronic and acute sickle pain, perception-based targets of "top-down" mechanisms originating from the brain and neuromodulation, and how pain affects the sickle microenvironment and pathophysiology. This review also describes mechanism-based targets that may help develop novel therapeutic and/or preventive strategies to ameliorate pain in SCD.
Collapse
Affiliation(s)
- Huy Tran
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN; and
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, CA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN; and
| |
Collapse
|
5
|
Pediatric arterial ischemic stroke: Epidemiology, risk factors, and management. Blood Cells Mol Dis 2017; 67:23-33. [PMID: 28336156 DOI: 10.1016/j.bcmd.2017.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
Pediatric arterial ischemic stroke (AIS) is an uncommon but important cause of neurologic morbidity in neonates and children, with consequences including hemiparesis, intellectual disabilities, and epilepsy. The causes of pediatric AIS are unique to those typically associated with stroke in adults. Familiarity with the risk factors for AIS in children will help with efficient diagnosis, which is unfortunately frequently delayed. Here we review the epidemiology and risk factors for AIS in neonates and children. We also outline consensus-based practices in the evaluation and management of pediatric AIS. Finally we discuss the outcomes observed in this population. While much has been learned in recent decades, many uncertainties sill persist in regard to pediatric AIS. The ongoing development of specialized centers and investigators dedicated to pediatric stroke will continue to answer such questions and improve our ability to effectively care for these patients.
Collapse
|
6
|
Abstract
Neonates with critical CHD have evidence, by imaging, of preoperative brain injury, although the timing is unknown. We used circulating postnatal serum glial fibrillary acidic protein as a measure of acute perinatal brain injury in neonates with CHD. Glial fibrillary acidic protein was measured on admission and daily for the first 4 days of life in case and control groups; we included two control groups in this study - non-brain-injured newborns and brain-injured newborns. Comparisons were performed using the Kruskal-Wallis test with Dunn's multiple comparisons, Student's t-test, and χ2 test of independence where appropriate. In aggregate, there were no significant differences in overall glial fibrillary acidic protein levels between CHD patients (n=56) and negative controls (n=23) at any time point. By day 4 of life, 7/56 (12.5%) CHD versus 0/23 (0%) normal controls had detectable glial fibrillary acidic protein levels. Although not statistically significant, the 5/10 (50%) left heart obstruction group versus 1/17 (6%) conoventricular, 0/13 (0%) right heart, and 1/6 (17%) septal defect patients trended towards elevated levels of glial fibrillary acidic protein at day 4 of life. Overall, glial fibrillary acidic protein reflected no evidence for significant peripartum brain injury in neonates with CHD, but there was a trend for elevation by postnatal day 4 in neonates with left heart obstruction. This pilot study suggests that methods such as monitoring glial fibrillary acidic protein levels may provide new tools to optimise preoperative care and neuroprotection in high-risk neonates with specific types of CHD.
Collapse
|
7
|
Rappold T, Laflam A, Hori D, Brown C, Brandt J, Mintz CD, Sieber F, Gottschalk A, Yenokyan G, Everett A, Hogue CW. Evidence of an association between brain cellular injury and cognitive decline after non-cardiac surgery. Br J Anaesth 2016; 116:83-9. [PMID: 26675953 DOI: 10.1093/bja/aev415] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is common after non-cardiac surgery, but the mechanism is unclear. We hypothesized that decrements in cognition 1 month after non-cardiac surgery would be associated with evidence of brain injury detected by elevation of plasma concentrations of S100β, neuron-specific enolase (NSE), and/or the brain-specific protein glial fibrillary acid protein (GFAP). METHODS One hundred and forty-nine patients undergoing shoulder surgery underwent neuropsychological testing before and then 1 month after surgery. Plasma was collected before and after anaesthesia. We determined the relationship between plasma biomarker concentrations and individual neuropsychological test results and a composite cognitive functioning score (mean Z-score). RESULTS POCD (≥-1.5 sd decrement in Z-score from baseline) was present in 10.1% of patients 1 month after surgery. There was a negative relationship between higher plasma GFAP concentrations and lower postoperative composite Z-scores {estimated slope=-0.14 [95% confidence interval (CI) -0.24 to -0.04], P=0.005} and change from baseline in postoperative scores on the Rey Complex Figure Test copy trial (P=0.021), delayed recall trial (P=0.010), and the Symbol Digit Modalities Test (P=0.004) after adjustment for age, sex, history of hypertension and diabetes. A similar relationship was not observed with S100β or NSE concentrations. CONCLUSIONS Decline in cognition 1 month after shoulder surgery is associated with brain cellular injury as demonstrated by elevated plasma GFAP concentrations.
Collapse
Affiliation(s)
- T Rappold
- Medical Student, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Laflam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Hori
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Brandt
- Departments of Psychiatry and Behavioral Sciences and Neurology, Johns Hopkins University School of Medicine and the Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - C D Mintz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Sieber
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Gottschalk
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G Yenokyan
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Everett
- Department of Pediatrics, Johns Hopkins University School of Medicine, Johns Hopkins Children's Center, Baltimore, MD, USA
| | - C W Hogue
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans, Zayed 6208B, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Hori D, Everett AD, Lee JK, Ono M, Brown CH, Shah AS, Mandal K, Price JE, Lester LC, Hogue CW. Rewarming Rate During Cardiopulmonary Bypass Is Associated With Release of Glial Fibrillary Acidic Protein. Ann Thorac Surg 2015; 100:1353-8. [PMID: 26163357 DOI: 10.1016/j.athoracsur.2015.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Rewarming from hypothermia during cardiopulmonary bypass (CPB) may compromise cerebral oxygen balance, potentially resulting in cerebral ischemia. The purpose of this study was to evaluate whether CPB rewarming rate is associated with cerebral ischemia assessed by the release of the brain injury biomarker glial fibrillary acidic protein (GFAP). METHODS Blood samples were collected from 152 patients after anesthesia induction and after CPB for the measurement of plasma GFAP levels. Nasal temperatures were recorded every 15 min. A multivariate estimation model for postoperative plasma GFAP level was determined that included the baseline GFAP levels, rewarming rate, CPB duration, and patient age. RESULTS The mean rewarming rate during CPB was 0.21° ± 0.11°C/min; the maximal temperature was 36.5° ± 1.0°C (range, 33.1°C to 38.0°C). Plasma GFAP levels increased after compared with before CPB (median, 0.022 ng/mL versus 0.035 ng/mL; p < 0.001). Rewarming rate (p = 0.001), but not maximal temperature (p = 0.77), was associated with higher plasma GFAP levels after CPB. In the adjusted estimation model, rewarming rate was positively associated with postoperative plasma log GFAP levels (coefficient, 0.261; 95% confidence intervals, 0.132 to 0.390; p < 0.001). Six patients (3.9%) experienced a postoperative stroke. Rewarming rate was higher (0.3° ± 0.09°C/min versus 0.2° ± 0.11°C/min; p = 0.049) in the patients with stroke compared with those without a stroke. CONCLUSIONS Rewarming rate during CPB was correlated with evidence of brain cellular injury documented with plasma GFAP levels. Modifying current practices of patient rewarming might provide a strategy to reduce the frequency of neurologic complications after cardiac surgery.
Collapse
Affiliation(s)
- Daijiro Hori
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Allen D Everett
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masahiro Ono
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashish S Shah
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kaushik Mandal
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joel E Price
- Division of Cardiac Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laeben C Lester
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles W Hogue
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
9
|
Shoulder surgery in the beach chair position is associated with diminished cerebral autoregulation but no differences in postoperative cognition or brain injury biomarker levels compared with supine positioning: the anesthesia patient safety foundation beach chair study. Anesth Analg 2015; 120:176-185. [PMID: 25268397 DOI: 10.1213/ane.0000000000000455] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although controversial, failing to consider the gravitational effects of head elevation on cerebral perfusion is speculated to increase susceptibility to rare, but devastating, neurologic complications after shoulder surgery in the beach chair position (BCP). We hypothesized that patients in the BCP have diminished cerebral blood flow autoregulation than those who undergo surgery in the lateral decubitus position (LDP). A secondary aim was to examine whether there is a relationship between patient positioning during surgery and postoperative cognition or serum brain injury biomarker levels. METHODS Patients undergoing shoulder surgery in the BCP (n = 109) or LDP (n = 109) had mean arterial blood pressure (MAP) and regional cerebral oxygen saturation (rScO2) monitored with near-infrared spectroscopy. A continuous, moving Pearson correlation coefficient was calculated between MAP and rScO2, generating the variable cerebral oximetry index (COx). When MAP is in the autoregulated range, COx approaches zero because there is no correlation between cerebral blood flow and arterial blood pressure. In contrast, when MAP is below the limit of autoregulation, COx is higher because there is a direct relationship between lower arterial blood pressure and lower cerebral blood flow. Thus, diminished autoregulation would be manifest as higher COx. Psychometric testing was performed before surgery and then 7 to 10 days and 4 to 6 weeks after surgery. A composite cognitive outcome was determined as the Z-score. Serum S100β, neuron-specific enolase, and glial fibrillary acidic protein were measured at baseline, after surgery, and on postoperative day 1. RESULTS After adjusting for age and history of hypertension, COx (P = 0.035) was higher and rScO2 lower (P < 0.0001) in the BCP group than in the LDP group. After adjusting for baseline composite cognitive outcome, there was no difference in Z-score 7 to 10 days (P = 0.530) or 4 to 6 weeks (P = 0.202) after surgery between the BCP and the LDP groups. There was no difference in serum biomarker levels between the 2 position groups CONCLUSIONS : Compared with patients in the LDP, patients undergoing shoulder surgery in the BCP are more likely to have higher COx indicating diminished cerebral autoregulation and lower rScO2. There were no differences in the composite cognitive outcome between the BCP and the LDP groups after surgery after accounting for baseline Z-score.
Collapse
|
10
|
Lance EI, Casella JF, Everett AD, Barron-Casella E. Proteomic and biomarker studies and neurological complications of pediatric sickle cell disease. Proteomics Clin Appl 2014; 8:813-27. [PMID: 25290359 DOI: 10.1002/prca.201400069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/20/2014] [Accepted: 09/30/2014] [Indexed: 01/27/2023]
Abstract
Biomarker analysis and proteomic discovery in pediatric sickle cell disease has the potential to lead to important discoveries and improve care. The aim of this review article is to describe proteomic and biomarker articles involving neurological and developmental complications in this population. A systematic review was conducted to identify relevant research publications. Articles were selected for children under the age of 21 years with the most common subtypes of sickle cell disease. Included articles focused on growth factors (platelet-derived growth factor), intra and extracellular brain proteins (glial fibrillary acidic protein, brain-derived neurotrophic factor), and inflammatory and coagulation markers (interleukin-1β, l-selectin, thrombospondin-1, erythrocyte, and platelet-derived microparticles). Positive findings include increases in plasma brain-derived neurotrophic factor and platelet-derived growth factor with elevated transcranial Dopplers velocities, increases in platelet-derived growth factor isoform AA with overt stroke, and increases in glial fibrillary acidic protein with acute brain injury. These promising potential neuro-biomarkers provide insight into pathophysiologic processes and clinical events, but their clinical utility is yet to be established. Additional proteomics research is needed, including broad-based proteomic discovery of plasma constituents and blood cell proteins, as well as urine and cerebrospinal fluid components, before, during and after neurological and developmental complications.
Collapse
Affiliation(s)
- Eboni I Lance
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Division of Hematology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
11
|
Huang W, Besar K, LeCover R, Dulloor P, Sinha J, Martínez Hardigree JF, Pick C, Swavola J, Everett AD, Frechette J, Bevan M, Katz HE. Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer. Chem Sci 2014. [DOI: 10.1039/c3sc52638k] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|