1
|
Luo X. Nanobiotechnology-based strategies in alleviation of chemotherapy-mediated cardiotoxicity. ENVIRONMENTAL RESEARCH 2023; 238:116989. [PMID: 37633635 DOI: 10.1016/j.envres.2023.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The cardiovascular diseases have been among the most common malignancies and the first leading cause of death, even higher than cancer. The cardiovascular diseases can be developed as a result of cardiac dysfunction and damages to heart tissue. Exposure to toxic agents and chemicals that induce cardiac dysfunction has been of interest in recent years. The chemotherapy drugs are commonly used for cancer therapy and in these patients, cardiovascular diseases have been widely observed that is due to negative impact of chemotherapy drugs on the heart. These drugs increase oxidative damage and inflammation, and mediate apoptosis and cardiac dysfunction. Hence, nanotechnological approaches have been emerged as new strategies in attenuation of chemotherapy-mediated cardiotoxicity. The first advantage of nanoparticles can be explored in targeted and selective delivery of drugs to reduce their accumulation in heart tissue. Nanostructures can deliver bioactive and therapeutic compounds in reducing cardiotoxicity and alleviation toxic impacts of chemotherapy drugs. The functionalization of nanostructures increases their selectivity against tumor cells and reduces accumulation of drugs in heart tissue. The bioplatforms such as chitosan and alginate nanostructures can also deliver chemotherapy drugs and reduce their cardiotoxicity. The function of nanostructures is versatile in reduction of cardiotoxicity by chemotherapy drugs and new kind of platforms is hydrogels that can mediate sustained release of drug to reduce its toxic impacts on heart tissue. The various kinds of nanoplatforms have been developed for alleviation of cardiotoxicity and their future clinical application depends on their biocompatibility. High concentration level of chitosan nanoparticles can stimulate cardiotoxicity. Therefore, if nanotechnology is going to be deployed for drug delivery and reducing cardiotoxicity, the first pre-requirement is to lack toxicity on normal cells and have high biocompatibility.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China.
| |
Collapse
|
2
|
Novel nanotechnological approaches for treatment of skin-aging. J Tissue Viability 2022; 31:374-386. [DOI: 10.1016/j.jtv.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022]
|
3
|
Keck CM, Abdelkader A, Pelikh O, Wiemann S, Kaushik V, Specht D, Eckert RW, Alnemari RM, Dietrich H, Brüßler J. Assessing the Dermal Penetration Efficacy of Chemical Compounds with the Ex-Vivo Porcine Ear Model. Pharmaceutics 2022; 14:678. [PMID: 35336052 PMCID: PMC8951478 DOI: 10.3390/pharmaceutics14030678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The ex vivo porcine ear model is often used for the determination of the dermal penetration efficacy of chemical compounds. This study investigated the influence of the post-slaughter storage time of porcine ears on the dermal penetration efficacy of chemical compounds. (2) Methods: Six different formulations (curcumin and different fluorescent dyes in different vehicles and/or nanocarriers) were tested on ears that were (i) freshly obtained, (ii) stored for 24 or 48 h at 4 °C after slaughter before use and (iii) freshly frozen and defrosted 12 h before use. (3) Results: Results showed that porcine ears undergo post-mortem changes. The changes can be linked to rigor mortis and all other well-described phenomena that occur with carcasses after slaughter. The post-mortem changes modify the skin properties of the ears and affect the penetration efficacy. The onset of rigor mortis causes a decrease in the water-holding capacity of the ears, which leads to reduced penetration of chemical compounds. The water-holding capacity increases once the rigor is released and results in an increased penetration efficacy for chemical compounds. Despite different absolute penetration values, no differences in the ranking of penetration efficacies between the different formulations were observed between the differently aged ears. (4) Conclusions: All different types of ears can be regarded to be suitable for dermal penetration testing of chemical compounds. The transepidermal water loss (TEWL) and/or skin hydration of the ears were not correlated with the ex vivo penetration efficacy because both an impaired skin barrier and rigor mortis cause elevated skin hydration and TEWL values but an opposite penetration efficacy. Other additional values (for example, pH and/or autofluorescence of the skin) should, therefore, be used to select suitable and non-suitable skin areas for ex vivo penetration testing. Finally, data from this study confirmed that smartFilms and nanostructured lipid carriers (NLC) represent superior formulation strategies for efficient dermal and transdermal delivery of curcumin.
Collapse
Affiliation(s)
- Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.A.); (O.P.); (S.W.); (V.K.); (D.S.); (R.W.E.); (R.M.A.); (H.D.); (J.B.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Graff P, Hönzke S, Joshi AA, Yealland G, Fleige E, Unbehauen M, Schäfer-Korting M, Hocke A, Haag R, Hedtrich S. Preclinical Testing of Dendritic Core-Multishell Nanoparticles in Inflammatory Skin Equivalents. Mol Pharm 2022; 19:1795-1802. [PMID: 35266720 DOI: 10.1021/acs.molpharmaceut.1c00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.
Collapse
Affiliation(s)
- Patrick Graff
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany
| | - Stefan Hönzke
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Aaroh Anand Joshi
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Guy Yealland
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Emanuel Fleige
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sarah Hedtrich
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Lipid Nanomaterials for Targeted Delivery of Dermocosmetic Ingredients: Advances in Photoprotection and Skin Anti-Aging. NANOMATERIALS 2022; 12:nano12030377. [PMID: 35159721 PMCID: PMC8840400 DOI: 10.3390/nano12030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Despite the health benefits of the sun, overexposure to solar radiation without proper precautions can cause irreversible damage to exposed skin. In the search for balance between the risks and benefits of exposure to solar radiation in human health, a technological alternative was found, the incorporation of photoprotective products in lipid nanoparticulate systems for topical application. These nanometric systems have demonstrated several advantages when used as adjuvants in photoprotection compared to chemical and/or physical sunscreens alone. The increase in the sun protection factor (SPF), photostability and UV action spectrum are parameters that have benefited from the application of these systems in order to increase the effectiveness and safety of photoprotective formulations containing organic and/or inorganic sunscreens.
Collapse
|
6
|
Nanodelivery Strategies for Skin Diseases with Barrier Impairment: Focusing on Ceramides and Glucocorticoids. NANOMATERIALS 2022; 12:nano12020275. [PMID: 35055292 PMCID: PMC8779445 DOI: 10.3390/nano12020275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
Abstract
The human epidermis has a characteristic lipidic composition in the stratum corneum, where ceramides play a crucial role in the skin barrier homeostasis and in water-holding capacity. Several skin diseases, such as atopic dermatitis and psoriasis, exhibit a dysfunction in the lipid barrier with altered ceramide levels and increased loss of transepidermal water. Glucocorticoids are normally employed in the therapeutical management of these pathologies. However, they have shown a poor safety profile and reduced treatment efficiency. The main objective of this review is to, within the framework of the limitations of the currently available therapeutical approaches, establish the relevance of nanocarriers as a safe and efficient delivery strategy for glucocorticoids and ceramides in the topical treatment of skin disorders with barrier impairment.
Collapse
|
7
|
Encapsulated Activated Grape Seed Extract: A Novel Formulation with Anti-Aging, Skin-Brightening, and Hydration Properties. COSMETICS 2021. [DOI: 10.3390/cosmetics9010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a master regulatory protein that plays a critical role in oxidative stress signaling. A novel, proprietary grape seed extract called Activated Grape Seed Extract (AGSE), enriched for PP2A-activating flavonoids, was recently developed and demonstrated to have antioxidant and anti-inflammatory activities. AGSE is a purple-colored powder, with limited solubility restricting its use in a broad range of formulations. Our aim was to develop a formulation that reduced the color and increased the solubility of AGSE, allowing its skin-health-enhancing properties to be utilized in a wider array of products, and to test it clinically. Encapsulation was performed utilizing a liposome and hydroxypropyl-β-cyclodextrin, (HPCD)-based approach to produce Encapsulated AGSE (E-AGSE). Human dermal fibroblasts and epidermal keratinocytes were used to determine expression levels of aging and dermal–epidermal junction (DEJ) markers. EpiDerm™ was UVB-irradiated to measure the effects against cytokine release, DNA damage, apoptosis, and skin barrier. Human melanocytes were used to determine melanin production and mushroom tyrosinase was used for inhibitory activity. A 4-week, 31-subject sensitive-skin clinical was performed with 2% E-AGSE Essence to assess its activity on human skin. We demonstrated that E-AGSE inhibits PP2A demethylation, increases key anti-aging (collagen I, III, elastin) and DEJ markers, protects against UVB-induced DNA damage, reduces inflammation, and promotes filaggrin in vitro. Moreover, E-AGSE reduces melanin production via tyrosinase inhibition. Clinical assessment of E-AGSE showed that it reduces the appearance of wrinkles, brightens the skin, and boosts hydration. E-AGSE is a novel grape seed extract formulation enriched for PP2A-activating flavonoids that is clinically effective in sensitive skin, providing several benefits.
Collapse
|
8
|
Lipid Nanocarriers for Hyperproliferative Skin Diseases. Cancers (Basel) 2021; 13:cancers13225619. [PMID: 34830774 PMCID: PMC8615830 DOI: 10.3390/cancers13225619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Different drugs, including antiproliferative and corticosteroids in general, are recommended for the treatment of hyperproliferative skin diseases (HSD). The effectiveness of many of these drugs is limited due to their low solubility in water and low penetration in the skin. The loading of these drugs in lipid nanocarriers, such as lipid nanoparticles and liposomes, has been considered as a successful solution to improve the drug bioavailability through the skin, to control their release kinetics and thus reduce the risk of potential side effects. In this work, we discuss the use of lipid nanocarriers loading drugs against HSD. Abstract Hyperproliferative skin diseases (HSD) are a group of diseases that include cancers, pre-cancerous lesions and diseases of unknown etiology that present different skin manifestations in terms of the degree and distribution of the injuries. Anti-proliferative agents used to treat these diseases are so diverse, including 5-aminolevulinic acid, 5-fluorouracil, imiquimod, methotrexate, paclitaxel, podophyllotoxin, realgar, and corticosteroids in general. These drugs usually have low aqueous solubility, which consequently decreases skin permeation. Thus, their incorporation in lipid nanocarriers has been proposed with the main objective to increase the effectiveness of topical treatment and reduce side effects. This manuscript aims to describe the advantages of using lipid nanoparticles and liposomes that can be used to load diversity of chemically different drugs for the treatment of HSD.
Collapse
|
9
|
Sguizzato M, Esposito E, Cortesi R. Lipid-Based Nanosystems as a Tool to Overcome Skin Barrier. Int J Mol Sci 2021; 22:8319. [PMID: 34361084 PMCID: PMC8348303 DOI: 10.3390/ijms22158319] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Skin may be affected by many disorders that can be treated by topical applications of drugs on the action site. With the advent of nanotechnologies, new efficient delivery systems have been developed. Particularly, lipid-based nanosystems such as liposomes, ethosomes, transferosomes, solid lipid nanoparticles, nanostructured lipid carriers, cubosomes, and monoolein aqueous dispersions have been proposed for cutaneous application, reaching in some cases the market or clinical trials. This review aims to provide an overview of the different lipid-based nanosystems, focusing on their use for topical application. Particularly, biocompatible nanosystems able to dissolve lipophilic compounds and to control the release of carried drug, possibly reducing side effects, are described. Notably, the rationale to topically administer antioxidant molecules by lipid nanocarriers is described. Indeed, the structural similarity between the nanosystem lipid matrix and the skin lipids allows the achievement of a transdermal effect. Surely, more research is required to better understand the mechanism of interaction between lipid-based nanosystems and skin. However, this attempt to summarize and highlight the possibilities offered by lipid-based nanosystems could help the scientific community to take advantage of the benefits derived from this kind of nanosystem.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (E.E.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (E.E.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (E.E.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
10
|
Shetty K, Sherje AP. Nano intervention in topical delivery of corticosteroid for psoriasis and atopic dermatitis-a systematic review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:88. [PMID: 34331599 PMCID: PMC8325647 DOI: 10.1007/s10856-021-06558-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/07/2021] [Indexed: 05/03/2023]
Abstract
Atopic dermatitis (AD) and psoriasis are highly prevalent, complex, chronic inflammatory skin diseases that immensly affect the patient's quality of life. While there is no definitive cure for these conditions, suppressive medications aim at managing the symptoms of these diseases. The application of emollients accompanied by symptomatic anti-inflammatory therapy consisting of topical corticosteroids (TCS) is extensively employed for controlling the symptoms among general practitioners making this therapeutic class an indispensable pillar of dermatotherapeutics. The first TCS, hydrocortisone (HC) introduced in the early 1950s led to the development of different steroidal moieties of varying potencies by inducing chemical modifications to the basic steroid structure. The wide spectrum of the available range of formulations and potency provides flexibility to treat all patient groups, different phases of the diseases, and different anatomical sites. Conventional TCS therapy suffers from drawbacks such as low drug permeation and retention rate. Thus, novel nanoformulations have been developed to overcome these problems. This review provides an insight into the current state of nanocarrier-mediated topical delivery of corticosteroids monotherapy and combination therapy with special emphasis on targeting psoriasis and AD.
Collapse
Affiliation(s)
- Kshitya Shetty
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
11
|
Izza N, Suga K, Okamoto Y, Watanabe N, Bui TT, Wibisono Y, Fadila CR, Umakoshi H. Systematic Characterization of Nanostructured Lipid Carriers from Cetyl Palmitate/Caprylic Triglyceride/Tween 80 Mixtures in an Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4284-4293. [PMID: 33797256 DOI: 10.1021/acs.langmuir.1c00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostructured lipid carriers (NLCs) are gaining attention as the new generation of lipid vehicles. These carriers consist of saturated lipids with small drops of liquid oil dispersed into the inner lipid matrix and are stabilized by a surfactant. Conventionally, NLC-based drug delivery systems have been widely studied, and many researchers are looking into the composition of NLC properties to improve the performance of NLCs. The membrane fluidity and polarity of self-assembling lipids are also essential properties that must be affected by membrane compositions; however, such fundamental characteristics have not been studied yet. In this study, NLCs were prepared from cetyl palmitate (CP), caprylic triglyceride (CaTG), and Tween 80 (T80). Structural properties, such as particle size and ζ-potential of the CP/CaTG/T80 ternary mixtures, were investigated. Then, the systematic characterization of self-assembly properties using fluorescence-based analysis was applied for the first time to the NLC system. As a final step, the ternary diagram was developed based on the self-assembly properties to summarize the possible structures formed at different compositions. The results showed four states: micelle-like, oil-in-water (O/W) emulsion-like, solid lipid nanoparticle-like, and intermediate (solid-liquid coexistence). For the purpose of making the lipid matrix more liquified, the heterogeneous state and the disordered state of the O/W emulsion-like structure might fulfill the criteria of NLCs. Finally, the ternary diagram provides new information about the assembly state of NLC constituents that could become an important reference for developing high-performance NLCs.
Collapse
Affiliation(s)
- Ni'matul Izza
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
- Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145 East Java, Indonesia
| | - Keishi Suga
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8579, Miyagi, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Tham Thi Bui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Yusuf Wibisono
- Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145 East Java, Indonesia
| | - Cut Rifda Fadila
- Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145 East Java, Indonesia
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| |
Collapse
|
12
|
Pinto F, Fonseca LP, Souza S, Oliva A, de Barros DP. Topical distribution and efficiency of nanostructured lipid carriers on a 3D reconstructed human epidermis model. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Saleem S, Iqubal MK, Garg S, Ali J, Baboota S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: an enticing approach to offset psoriasis. Expert Opin Drug Deliv 2020; 17:817-838. [PMID: 32315216 DOI: 10.1080/17425247.2020.1758665] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Psoriasis is identified as an inflammatory, chronic, auto-immune disease requiring long-term treatment, imposing an unnecessary burden on the patient. A significant impediment for the treatment of dermatological disorders via transdermal route is the inability of drug molecules to cross the stratum corneum (SC), as the larger size of drug molecules inhibits them to pervade into the skin, thus hampering their absorption. Some drugs exhibit systemic side-effects, which curbs patient compliance, resulting in treatment discontinuation. AREAS COVERED This review aims to describe the detailed study such as demographic status, molecular factors of psoriasis, treatment with emerging combination therapy and role of nanotechnology tools in the treatment of psoriasis. EXPERT OPINION To overcome problems related to the conventional drug delivery system, several nanotechnology-based formulations have been devised to enhance bioavailability, drug permeation and accumulation in the skin. Nano-formulations provide better permeation, targeted delivery and enhanced efficacy, thus gaining enormous popularity for cutaneous disorders. This pervasive review provides an overview of the pathophysiology of the disease, its molecular targets and the available herbal, synthetic and combination treatment modalities. The review also systematizes recent works utilizing nano-carriers to improve the treatment denouement of psoriasis.
Collapse
Affiliation(s)
- Sadaf Saleem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia (UniSA) , Adelaide, SA, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Kumar M, Amandeep, Bhatt S, Devi S, Upadhyay P, Saini V, Mittal A, Mehan N, Saini A. Recent advances in the development of the nanostructured lipid carriers for the topical fungal infections. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2020. [DOI: 10.4103/jrptps.jrptps_99_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Brouers F, Al-Musawi TJ. The use of the Brouers–Sotolongo fractal kinetic equation for the study of drug release. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00183-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Foerster AC, Neubert RHH. Dermal Peptide Delivery Using Enhancer Molecules and Colloidal Carrier Systems - Part IV: Search for an Alternative Model Membrane for Future ATR Permeation Studies Using PKEK as the Model Substance. Skin Pharmacol Physiol 2019; 32:151-161. [PMID: 30943494 DOI: 10.1159/000495991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022]
Abstract
The main barrier of the human skin is the stratum corneum (SC). Its properties (also depending on the health and age of the individual) and its influence on improved penetration of active ingredients into the skin are the subject of many research projects. Since the availability of human skin, as the ideal model membrane, is limited, the aim of this study was to find a suitable alternative model membrane from the animal kingdom. The alternative model membrane should be used in subsequent permeation experiments with the Teflon diffusion cell instead of human SC. Previous studies have already investigated the permeation properties of pig, snake, and human skin, but not in a Teflon diffusion cell using ATR. Therefore, it first had to be proven that comparable results can be achieved with animal membranes even under these measurement conditions. This is the precondition for meaningful future permeation experiments with potential enhancers. For this purpose, permeation experiments on various model membranes (human isolated SC, sunburned SC, pig isolated SC, and shed snake skin) by means of FTIR-ATR in a Teflon diffusion cell containing the acceptor and the donor compartment as well as the model membrane were conducted and concentration-time courses of the model peptide PKEK determined. These concentration-time courses were used to calculate and compare the pharmacokinetic parameters (permeation coefficients, lag time, and flux). The starting point was a 10% PKEK solution in D2O. It turned out that snake skin is the appropriate alternative model membrane for this type of permeation test.
Collapse
Affiliation(s)
- Ann-Christin Foerster
- Hospital Pharmacy, Carl-von-Basedow-Klinikum Saalekreis gGmbH, Merseburg, Germany.,Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany, .,Institute of Applied Dermatopharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany,
| |
Collapse
|
17
|
pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release 2019; 295:214-222. [DOI: 10.1016/j.jconrel.2018.12.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
|
18
|
Differential Scanning Calorimetry Analyses of Idebenone-Loaded Solid Lipid Nanoparticles Interactions with a Model of Bio-Membrane: A Comparison with In Vitro Skin Permeation Data. Pharmaceuticals (Basel) 2018; 11:ph11040138. [PMID: 30558360 PMCID: PMC6316718 DOI: 10.3390/ph11040138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 11/26/2022] Open
Abstract
Differential scanning calorimetry (DSC) has emerged as a helpful technique both to characterize drug delivery systems and to study their interactions with bio-membranes. In this work, we compared idebenone (IDE)-loaded solid lipid nanoparticle (SLN) interactions with bio-membranes assessed by DSC with previous in vitro skin penetration data to evaluate the feasibility of predicting IDE skin penetration using DSC analyses. In vitro interactions experiments were performed using multi-lamellar liposomes as a model of bio-membrane. Enthalpy changes (ΔH) and transition temperature (Tm) were assessed during nine repeated DSC scans to evaluate IDE-loaded SLN–bio-membrane interactions over time. Analyzing ΔH and Tm values for each scan, we observed that the difference of ΔH and Tm values between the first and the last scan seemed to be related to SLN ability to locate IDE in the epidermis and in the stratum corneum, respectively. Therefore, the results of this study suggest the possibility of qualitatively predicting in vitro IDE skin penetration from IDE-loaded SLN utilizing the calorimetric parameters obtained from interaction experiments between the carriers under investigation and a model of bio-membrane.
Collapse
|
19
|
Fallacara A, Marchetti F, Pozzoli M, Citernesi UR, Manfredini S, Vertuani AS. Formulation and Characterization of Native and Crosslinked Hyaluronic Acid Microspheres for Dermal Delivery of Sodium Ascorbyl Phosphate: A Comparative Study. Pharmaceutics 2018; 10:E254. [PMID: 30513791 PMCID: PMC6321467 DOI: 10.3390/pharmaceutics10040254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/14/2023] Open
Abstract
The present work evaluates for the first time the use of urea-crosslinked hyaluronic acid (HA-CL), a novel derivative of native hyaluronic acid (HA), to produce microspheres (MS) by emulsification-solvent evaporation, for dermal delivery of sodium ascorbyl phosphate (SAP). As the term of comparison, HA MS were prepared. A pre-formulation study-investigation of the effects of polymers solutions properties (pH, viscosity) and working conditions-led to the - production of optimized HA-CL MS and HA-CL-SAP MS with: almost unimodal size distributions; mean diameter of 13.0 ± 0.7 and 9.9 ± 0.8 µm, respectively; spherical shape and rough surface; high yield, similar to HA MS and HA⁻SAP MS (≈ 85%). SAP was more efficiently encapsulated into HA-CL MS (78.8 ± 2.6%) compared to HA MS (69.7 ± 4.6%). Physical state, thermal properties, relative moisture stability of HA-CL MS and HA-CL⁻SAP MS were comparable to those of HA MS and HA⁻SAP MS. However, HA-CL⁻SAP MS exhibited an extended drug release compared to HA⁻SAP MS, despite the same kinetic mechanism-contemporaneous drug diffusion and polymer swelling/dissolution. Therefore, HA-CL formulation showed a greater potential as microcarrier (for encapsulation efficiency and release kinetic), that could be improved, in future, using suitable excipients.
Collapse
Affiliation(s)
- Arianna Fallacara
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara (FE), Italy.
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
- I.R.A. Istituto Ricerche Applicate s.r.l., Via Del Lavoro 4a/6, 20865 Usmate-Velate (MB), Italy.
| | - Filippo Marchetti
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara (FE), Italy.
| | - Michele Pozzoli
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Ugo Raffaello Citernesi
- I.R.A. Istituto Ricerche Applicate s.r.l., Via Del Lavoro 4a/6, 20865 Usmate-Velate (MB), Italy.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara (FE), Italy.
- Ambrosialab Srl, Via Mortara 171, 44121 Ferrara (FE), Italy.
| | - And Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara (FE), Italy.
- Ambrosialab Srl, Via Mortara 171, 44121 Ferrara (FE), Italy.
| |
Collapse
|
20
|
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv 2018; 15:771-785. [DOI: 10.1080/17425247.2018.1504018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
21
|
Abstract
In many mucocutaneous disorders, corticosteroids therapy is currently central. Systemic therapy is restricted to severe disorders whereas topical applications are considered as the first-line treatment. The oral cavity environment, the medication form and other factors related to the delivery method are key factors for the therapy efficiency and effectiveness. Current marketed medications are not able to avoid wrong drug exposure and scarce patients' compliance. Innovative in situ delivery systems are able to prolong the drug retention time on the mucosa and to avoid the drawbacks of conventional formulations. This review is intended to give a general overview of oral mucocutaneous pathologies and highlight the potential of new technologies in designing innovative delivery systems able to release corticosteroids in situ for the treatment of various oral cavity disorders.
Collapse
|
22
|
Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery. J Colloid Interface Sci 2017; 504:247-256. [DOI: 10.1016/j.jcis.2017.05.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 11/21/2022]
|
23
|
Ephrem E, Elaissari H, Greige-Gerges H. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge. Int J Pharm 2017; 526:50-68. [DOI: 10.1016/j.ijpharm.2017.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
24
|
Yamamoto K, Klossek A, Flesch R, Rancan F, Weigand M, Bykova I, Bechtel M, Ahlberg S, Vogt A, Blume-Peytavi U, Schrade P, Bachmann S, Hedtrich S, Schäfer-Korting M, Rühl E. Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy. Eur J Pharm Biopharm 2016; 118:30-37. [PMID: 27998691 DOI: 10.1016/j.ejpb.2016.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/27/2022]
Abstract
The penetration of dexamethasone into human skin ex vivo is reported. X-ray microscopy is used for label-free probing of the drug and quantification of the local drug concentration with a spatial resolution reaching 70±5nm. This is accomplished by selective probing the dexamethasone by X-ray absorption. Varying the penetration time between 10min and 1000min provides detailed information on the penetration process. In addition, the stratum corneum has been damaged by tape-stripping in order to determine the importance of this barrier regarding temporally resolved drug penetration profiles. Dexamethasone concentrations distinctly vary, especially close to the border of the stratum corneum and the viable epidermis, where a local minimum in drug concentration is observed. Furthermore, near the basal membrane the drug concentration strongly drops. High spatial resolution studies along with a de-convolution procedure reveal the spatial distribution of dexamethasone in the interspaces between the corneocytes consisting of stratum corneum lipids. These results on local drug concentrations are interpreted in terms of barriers affecting the drug penetration in human skin.
Collapse
Affiliation(s)
- K Yamamoto
- Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - A Klossek
- Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - R Flesch
- Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - F Rancan
- Klinisches Forschungszentrum für Haut- und Haarforschung, Charité Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - M Weigand
- Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, 70569 Stuttgart, Germany
| | - I Bykova
- Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, 70569 Stuttgart, Germany
| | - M Bechtel
- Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, 70569 Stuttgart, Germany
| | - S Ahlberg
- Klinisches Forschungszentrum für Haut- und Haarforschung, Charité Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - A Vogt
- Klinisches Forschungszentrum für Haut- und Haarforschung, Charité Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - U Blume-Peytavi
- Klinisches Forschungszentrum für Haut- und Haarforschung, Charité Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - P Schrade
- Abteilung für Elektronenmikroskopie at Campus Virchow Klinikum (CVK), Charité Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - S Bachmann
- Abteilung für Elektronenmikroskopie at Campus Virchow Klinikum (CVK), Charité Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - S Hedtrich
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - M Schäfer-Korting
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - E Rühl
- Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
25
|
Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J Control Release 2016; 243:323-332. [PMID: 27793686 DOI: 10.1016/j.jconrel.2016.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 11/21/2022]
Abstract
In this paper we present a comprehensive study for the ability of thermoresponsive nanogels (tNG) to act as cutaneous penetration enhancers. Given the unique properties of such molecular architectures with regard to their chemical composition and thermoresponsive properties, we propose a particular mode of penetration enhancement mechanism, i.e. hydration of the stratum corneum. Different tNG were fabricated using dendritic polyglycerol as a multifunctional crosslinker and three different kinds of thermoresponsive polymers as linear counterpart: poly(N-isopropylacrylamide) (pNIPAM), p(di(ethylene glycol) methyl ether methacrylate - co - oligo ethylene glycol methacrylate) (DEGMA-co-OEGMA475), and poly(glycidyl methyl ether - co - ethyl glycidyl ether) (tPG). Excised human skin was investigated by means of fluorescence microscopy, which enabled the detection of significant increment in the penetration of tNG as well as the encapsulated fluorescein. The morphology of the treated skin samples was thoroughly investigated by transmission electron microscopy and stimulated Raman spectromicroscopy. We found that tNG can perturbate the organization of both proteins and lipids in the skin barrier, which was attributed to tNG hydration effects. Interestingly, different drug delivery properties were detected and the ability of each investigated tNG to enhance skin penetration correlated well with the degree of induced stratum corneum hydration. The differences in the penetration enhancements could be attributed to the chemical structures of the nanogels used in this study. The most effective stratum corneum hydration was detected for nanogels having additional or more exposed polyether structure in their chemical composition.
Collapse
|
26
|
Döge N, Hönzke S, Schumacher F, Balzus B, Colombo M, Hadam S, Rancan F, Blume-Peytavi U, Schäfer-Korting M, Schindler A, Rühl E, Skov PS, Church MK, Hedtrich S, Kleuser B, Bodmeier R, Vogt A. Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers. J Control Release 2016; 242:25-34. [PMID: 27394682 DOI: 10.1016/j.jconrel.2016.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 11/28/2022]
Abstract
Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin.
Collapse
Affiliation(s)
- Nadine Döge
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Stefan Hönzke
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Fabian Schumacher
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.
| | - Benjamin Balzus
- College of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Miriam Colombo
- College of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Monika Schäfer-Korting
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Anke Schindler
- Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Freie Universität Berlin, Berlin, Germany.
| | - Eckart Rühl
- Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Freie Universität Berlin, Berlin, Germany.
| | - Per Stahl Skov
- RefLab, Copenhagen, Denmark; Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Martin K Church
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sarah Hedtrich
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Burkhard Kleuser
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
27
|
Sala M, Elaissari A, Fessi H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J Control Release 2016; 239:182-202. [PMID: 27381248 DOI: 10.1016/j.jconrel.2016.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/26/2022]
Abstract
Psoriasis is a chronic inflammatory disease affecting mainly the skin but which can be complicated by psoriatic arthritis (PsA).This autoimmune skin disorder concerns 2-5% of the world population. To date, the physiopathology of psoriasis is not still completely elucidated but many researches are ongoing which have led for example to the discovery of the Th17/Th22 pathway. The conventional therapeutic approaches (local or systemic route) appeal to various classes of drugs with complex mechanisms of action and non-negligible side effects. Although there is no therapy capable to cure psoriasis, the current goal is to relieve symptoms as longer as possible with a good benefit/risk ratio. That is one of the principal limits of conventional antipsoriatic drugs. New formulations based on nanoencapsulation are a promising opportunity to answer to this limit by offering an optimization of the conventional antipsoriatic drug use (higher activity, lower side effects and frequency of application, etc.). Herein, we tried to put in perspective the mechanistic insights (histological and immunological views) proposed into scientific literature these last years in order to have a better comprehension of psoriasis physiopathology resulting in skin lesions and PsA. The therapeutic armamentarium and the different strategies in the management of psoriasis are discussed in greater details. To finish, the field of encapsulation in nanoparticles is broached in order to put forward recent advances in innovative skin drug delivery systems (ISDDSs) of antipsoriatic active agents for a better efficacy, safety and compliance.
Collapse
Affiliation(s)
- M Sala
- University Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés, CNRS, UMR 5007, LAGEP-CPE-308G, 43 bd. du 11 Nov.1918, F-69622 Villeurbanne, France; Pharmacie centrale, Hospices Civils de Lyon, 57, Rue Francisque Darcieux, 69563 Saint Genis Laval, France
| | - A Elaissari
- University Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés, CNRS, UMR 5007, LAGEP-CPE-308G, 43 bd. du 11 Nov.1918, F-69622 Villeurbanne, France
| | - H Fessi
- University Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés, CNRS, UMR 5007, LAGEP-CPE-308G, 43 bd. du 11 Nov.1918, F-69622 Villeurbanne, France.
| |
Collapse
|
28
|
Hönzke S, Gerecke C, Elpelt A, Zhang N, Unbehauen M, Kral V, Fleige E, Paulus F, Haag R, Schäfer-Korting M, Kleuser B, Hedtrich S. Tailored dendritic core-multishell nanocarriers for efficient dermal drug delivery: A systematic top-down approach from synthesis to preclinical testing. J Control Release 2016; 242:50-63. [PMID: 27349353 DOI: 10.1016/j.jconrel.2016.06.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester- and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNFα supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications.
Collapse
Affiliation(s)
- Stefan Hönzke
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Christian Gerecke
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Germany
| | - Anja Elpelt
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Nan Zhang
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Vivian Kral
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | | | - Florian Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | | | - Burkhard Kleuser
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Germany
| | - Sarah Hedtrich
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany.
| |
Collapse
|
29
|
Nassiri-Kashani M, Namdar R, Nafisi S, Maibach HI. Improved Voriconazole Topical Delivery by Nanoparticles (Minireview). Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1401-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm 2016; 507:12-20. [PMID: 27130364 DOI: 10.1016/j.ijpharm.2016.03.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022]
Abstract
For an improved understanding of the relevant particle features for cutaneous use, we studied the effect of the surface charge of acrylic nanocapsules (around 150nm) and the effect of a chitosan gel vehicle on the particle penetration into normal and stripped human skin ex vivo as well as local tolerability (cytotoxicity and irritancy). Rhodamin-tagged nanocapsules penetrated and remained in the stratum corneum. Penetration of cationic nanocapsules exceeded the penetration of anionic nanocapsules. When applied on stripped skin, however, the fluorescence was also recorded in the viable epidermis and dermis. Cationic surface charge and embedding the particles into chitosan gel favored access to deeper skin. Keratinocytes took up the nanocapsules rapidly. Cytotoxicity (viability<80%), following exposure for ≥24h, appears to be due to the surfactant polysorbate 80, used for nanocapsuleś stabilization. Uptake by fibroblasts was low and no cytotoxicity was observed. No irritant reactions were detected in the HET-CAM test. In conclusion, the surface charge and chitosan vehicle, as well as the skin barrier integrity, influence the skin penetration of acrylic nanocapsules. Particle localization in the intact stratum corneum of normal skin and good tolerability make the nanocapsules candidates for topical use on the skin, provided that the polymer wall allows the release of the active encapsulated substance.
Collapse
|
31
|
Cai XJ, Woods A, Mesquida P, Jones SA. Assessing the Potential for Drug–Nanoparticle Surface Interactions To Improve Drug Penetration into the Skin. Mol Pharm 2016; 13:1375-84. [DOI: 10.1021/acs.molpharmaceut.6b00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X. J. Cai
- Institute of Pharmaceutical Science, School of Life Sciences & Medicine, Franklin-Wilkins Building, Kings College London, London, SE1 9NH U.K
| | - A. Woods
- Institute of Pharmaceutical Science, School of Life Sciences & Medicine, Franklin-Wilkins Building, Kings College London, London, SE1 9NH U.K
| | - P. Mesquida
- Institute of Pharmaceutical Science, School of Life Sciences & Medicine, Franklin-Wilkins Building, Kings College London, London, SE1 9NH U.K
| | - S. A. Jones
- Institute of Pharmaceutical Science, School of Life Sciences & Medicine, Franklin-Wilkins Building, Kings College London, London, SE1 9NH U.K
| |
Collapse
|
32
|
Lademann J, Richter H, Knorr F, Patzelt A, Darvin M, Rühl E, Cheung K, Lai K, Renneberg R, Mak W. Triggered release of model drug from AuNP-doped BSA nanocarriers in hair follicles using IRA radiation. Acta Biomater 2016; 30:388-396. [PMID: 26621698 DOI: 10.1016/j.actbio.2015.11.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Recent advances in the field of dermatotherapy have resulted in research efforts focusing on the use of particle-based drug delivery systems for the stimuli-responsive release of drugs in the skin and skin appendages, i.e. hair follicles and sebaceous glands. However, effective and innocuous trigger mechanisms which result in the release of the drugs from the nanocarriers upon reaching the target structures are still lacking. For the first time, the present study demonstrated the photo-activated release of the model drug fluorescein isothiocyanate (FITC) from topically applied gold nanoparticle-doped bovine serum albumin (AuNPs-doped BSA) particles (approx. 545nm) using water-filtered infrared A (IRA) radiation in the hair follicles of an ex vivo porcine skin model. The IRA radiation-induced plasmonic heating of the AuNPs results in the partial decomposition or opening of the albumin particles and release the model drug, while control particles without AuNPs show insignificant release. The results demonstrate the feasibility of using IRA radiation to induce release of encapsulated drugs from plasmonic nanocarriers for the targeting of follicular structures. However, the risk of radiation-induced skin damage subsequent to repeated applications of high infrared dosages may be significant. Future studies should aim at determining the suitability of lower infrared A dosages, such as for medical treatment regimens which may necessitate repeated exposure to therapeutics. STATEMENT OF SIGNIFICANCE Follicular targeting using nanocarriers is of increasing importance in the prophylaxis and treatment of dermatological or other diseases. For the first time, the present study demonstrated the photo-activated release of the model drug fluorescein isothiocyanate (FITC) from topically applied gold nanoparticle-doped bovine serum albumin (AuNPs-doped BSA) particles using water-filtered infrared A (IRA) radiation in the hair follicles of an ex vivo porcine skin model. The results demonstrate the feasibility of using wIRA radiation to induce release of encapsulated drugs for the targeting of follicular structures, and provide a new vision on the development of optically addressable delivery systems for controlled release of drugs in the skin and skin appendages, i.e. hair follicles and sebaceous glands.
Collapse
|
33
|
In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2041-50. [DOI: 10.1016/j.nano.2015.07.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/18/2022]
|
34
|
Firooz A, Nafisi S, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm 2015; 495:599-607. [DOI: 10.1016/j.ijpharm.2015.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
35
|
Nanotechnology, Inflammation and the Skin Barrier: Innovative Approaches for Skin Health and Cosmesis. COSMETICS 2015. [DOI: 10.3390/cosmetics2020177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Yamamoto K, Flesch R, Ohigashi T, Hedtrich S, Klossek A, Patoka P, Ulrich G, Ahlberg S, Rancan F, Vogt A, Blume-Peytavi U, Schrade P, Bachmann S, Schäfer-Korting M, Kosugi N, Rühl E. Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy. Anal Chem 2015; 87:6173-9. [DOI: 10.1021/acs.analchem.5b00800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- K. Yamamoto
- Physikalische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Takustrasse
3, Germany
| | - R. Flesch
- Physikalische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Takustrasse
3, Germany
| | - T. Ohigashi
- Institute for Molecular Science, Myodaiji,
Okazaki 444-8585, Japan
| | - S. Hedtrich
- Institut
für Pharmazie, Freie Universität Berlin, 14195 Berlin, Germany
| | - A. Klossek
- Physikalische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Takustrasse
3, Germany
| | - P. Patoka
- Physikalische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Takustrasse
3, Germany
| | - G. Ulrich
- Physikalische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Takustrasse
3, Germany
| | - S. Ahlberg
- Klinisches
Forschungszentrum für Haut-und Haarforschung, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - F. Rancan
- Klinisches
Forschungszentrum für Haut-und Haarforschung, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - A. Vogt
- Klinisches
Forschungszentrum für Haut-und Haarforschung, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - U. Blume-Peytavi
- Klinisches
Forschungszentrum für Haut-und Haarforschung, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - P. Schrade
- Abteilung für
Elektronenmikroskopie at CVK, 13353 Berlin, Germany
| | - S. Bachmann
- Abteilung für
Elektronenmikroskopie at CVK, 13353 Berlin, Germany
| | | | - N. Kosugi
- Institute for Molecular Science, Myodaiji,
Okazaki 444-8585, Japan
| | - E. Rühl
- Physikalische
Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Takustrasse
3, Germany
| |
Collapse
|
37
|
Enhanced epidermal localization of topically applied steroids using SPACE™ peptide. Drug Deliv Transl Res 2015; 5:523-30. [PMID: 25939432 DOI: 10.1007/s13346-015-0232-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The balance of efficacy and safety of topical corticosteroids (TCs) depends on their ability to penetrate into and be retained within the skin. Here, we evaluated the ability of SPACE™ peptide to enhance epidermal delivery and localization of three model TCs. In vitro and in vivo skin penetration studies were performed to evaluate penetration of TCs into and across the skin in the presence of various formulations of SPACE™ peptide. Topical formulations of corticosterone containing free SPACE™ peptide produced significantly enhanced epidermal penetration and localization. Ratio of drug deposition in the skin and receiver (efficacy/safety, indicative of ratio of local to systemic uptake) exhibited higher values for SPACE™ peptide-based formulation as compared to aqueous and hydroethanolic solutions and Cortizone™ cream. Mass spectrometry analysis showed that SPACE™ peptide associates with corticosterone, which may explain its enhanced retention effect. SPACE™ peptide also enhanced dermal retention of two more TCs (hydrocortisone and triamcinolone acetonide) compared to the vehicle control. An in vivo study in mice further established the ability of SPACE™ peptide to enhance skin retention of hydrocortisone without producing elevated blood concentrations. These results show that SPACE™ peptide is an effective additive to the formulation for enhanced skin localization of topical steroids.
Collapse
|
38
|
Lohan SB, Bauersachs S, Ahlberg S, Baisaeng N, Keck CM, Müller RH, Witte E, Wolk K, Hackbarth S, Röder B, Lademann J, Meinke MC. Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. Eur J Pharm Biopharm 2015; 89:201-7. [DOI: 10.1016/j.ejpb.2014.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
39
|
Badihi A, Debotton N, Frušić-Zlotkin M, Soroka Y, Neuman R, Benita S. Enhanced cutaneous bioavailability of dehydroepiandrosterone mediated by nano-encapsulation. J Control Release 2014; 189:65-71. [PMID: 24956487 DOI: 10.1016/j.jconrel.2014.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/11/2014] [Accepted: 06/14/2014] [Indexed: 01/15/2023]
Abstract
Polymeric nanocarriers, especially nanospheres (NSs) and nanocapsules (NCs), can promote the penetration of their cargo through the skin barrier, towards improved cutaneous bioavailability. Dehydroepiandrosterone (DHEA), an endogenous hormone exhibiting poor aqueous solubility, was shown to be effective in modulating skin-aging processes following topical application. In this study, we designed adequate DHEA preparations, in an attempt to enable local delivery of the active ingredient to the viable skin layers. In addition, the potential efficiency of DHEA NCs on dermal collagen synthesis was evaluated. Cryo-TEM observations and thermal analysis indicated that DHEA was successfully incorporated within a stable NC-based delivery system. Moreover, higher [(3)H]-DHEA levels were recorded in the viable skin layers following different incubation periods of NCs on excised pig skin specimens as compared to DHEA oil solution (free molecule). Furthermore, significantly higher (4-fold) skin flux values were observed for the DHEA NCs as compared to the values elicited by the oil control solution. Finally, collagen synthesis in human skin organ culture, assessed by the incorporation of [(3)H]-proline, was up to 42% higher for DHEA NCs 48h post-topical application than for the untreated specimens. Overall, these results suggest that poly lactic-co-glycolic acid (PLGA)-based NCs have promising potential to be used topically for various skin disorders.
Collapse
Affiliation(s)
- Amit Badihi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Nir Debotton
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Marina Frušić-Zlotkin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yoram Soroka
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Rami Neuman
- Department of Cosmetic Surgery, Hadassah Hospital Ein Kerem, Jerusalem 9112102, Israel
| | - Simon Benita
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
40
|
Ali-von Laue C, Zoschke C, Do N, Lehnen D, Küchler S, Mehnert W, Blaschke T, Kramer KD, Plendl J, Weindl G, Korting HC, Hoeller Obrigkeit D, Merk HF, Schäfer-Korting M. Improving topical non-melanoma skin cancer treatment: In vitro efficacy of a novel guanosine-analog phosphonate. Skin Pharmacol Physiol 2014; 27:173. [PMID: 24503861 DOI: 10.1159/000354118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 07/01/2013] [Indexed: 11/19/2022]
Abstract
Actinic keratosis, a frequent carcinoma in situ of non-melanoma skin cancer (NMSC), can transform into life-threatening cutaneous squamous cell carcinoma. Current treatment is limited due to low complete clearance rates and asks for novel therapeutic concepts; the novel purine nucleotide analogue OxBu may be an option. In order to enhance skin penetration, solid lipid nanoparticles (SLN, 136-156 nm) were produced with an OxBu entrapment efficiency of 96.5 ± 0.1%. For improved preclinical evaluation, we combined tissue engineering with clinically used keratin-18 quantification. Three doses of 10(-3) mol/l OxBu, dissolved in phosphate-buffered saline as well as loaded to SLN, were effective on reconstructed NMSC. Tumour response and apoptosis induction were evaluated by an increase in caspase-cleaved fragment of keratin-18, caspase-7 activation as well as by reduced expression of matrix metallopeptidase-2 and Ki-67. OxBu efficacy was superior to equimolar 5-fluorouracil solution, and thus the drug should be subjected to the next step in preclinical evaluation.
Collapse
Affiliation(s)
- C Ali-von Laue
- Institute for Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Comparison of the skin penetration of Garcinia mangostana extract in particulate and non-particulate form. Eur J Pharm Biopharm 2014; 86:307-13. [DOI: 10.1016/j.ejpb.2013.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022]
|
42
|
Kim JH, Ko JA, Kim JT, Cha DS, Cho JH, Park HJ, Shin GH. Preparation of a capsaicin-loaded nanoemulsion for improving skin penetration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:725-732. [PMID: 24417234 DOI: 10.1021/jf404220n] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Capsaicin o/w nanoemulsions with enhanced skin permeation were successfully prepared by controlling the ratios of the surfactant mixtures, oleoresin capsicum as the oil phase, and aqueous phase. Oleoresin capsicum contains 22.67 mg/g of capsaicin, which is an active and oil-soluble ingredient. Nonionic surfactants, Tween 80 and Span 80, were used to optimize the weight ratio of surfactant mixtures (85.98:14.02) by calculating the hydrophile-lipophile balance (HLB) value. The optimal processing conditions for stable nanoemulsions were investigated by using a ternary phase diagram. The mean droplet size of nanoemulsions ranged from 20 to 62 nm. Skin permeation studies were performed using a Franz diffusion cell. The permeation profiles and confocal laser scanning microscopy (CLSM) images supported that capsaicin nanoemulsion could well permeate all skin layers from the stratum corneum to the dermis. The selected nanoemulsions showed great potential as transdermal delivery carriers for enhancing the permeation of core materials.
Collapse
Affiliation(s)
- Jee Hye Kim
- College of Life Sciences & Biotechnology, Korea University , Anam-dong, Seongbuk-gu, Seoul 136-701, Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Leite-Silva VR, de Almeida MM, Fradin A, Grice JE, Roberts MS. Delivery of drugs applied topically to the skin. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.32] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Bätz FM, Klipper W, Korting HC, Henkler F, Landsiedel R, Luch A, von Fritschen U, Weindl G, Schäfer-Korting M. Esterase activity in excised and reconstructed human skin – Biotransformation of prednicarbate and the model dye fluorescein diacetate. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Raposo SC, Simões SD, Almeida AJ, Ribeiro HM. Advanced systems for glucocorticoids' dermal delivery. Expert Opin Drug Deliv 2013; 10:857-77. [DOI: 10.1517/17425247.2013.778824] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Schwarz JC, Baisaeng N, Hoppel M, Löw M, Keck CM, Valenta C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm 2013; 447:213-7. [DOI: 10.1016/j.ijpharm.2013.02.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 12/01/2022]
|
47
|
Lunter D, Daniels R. In vitro skin permeation and penetration of nonivamide from novel film-forming emulsions. Skin Pharmacol Physiol 2013; 26:139-46. [PMID: 23549242 DOI: 10.1159/000348464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to develop film-forming emulsions (FFE) facilitating long-term treatment of chronic pruritus with capsaicinoids. To this end, oil-in-water emulsions, which comprise dispersions of sustained-release polymers, were examined. Such emulsions form a film when applied to the skin and encapsulate the oily drug solution in a dry polymeric matrix. Permeation of the antipruritic drug nonivamide (NVA) is controlled by the matrix. Permeation rates of NVA from FFE and its concentration in the skin are equivalent to those achieved with a conventional semisolid formulation, but can be maintained for a longer period of time. FFE may therefore improve the treatment of chronic pruritus with capsaicinoids by enhancing patient compliance by means of a sustained-release regimen.
Collapse
Affiliation(s)
- D Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | |
Collapse
|
48
|
Lademann J, Meinke MC, Schanzer S, Richter H, Darvin ME, Haag SF, Fluhr JW, Weigmann HJ, Sterry W, Patzelt A. In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier. Int J Cosmet Sci 2012; 34:551-9. [PMID: 22957937 DOI: 10.1111/j.1468-2494.2012.00750.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/14/2012] [Indexed: 01/21/2023]
Abstract
The efficacy of a drug is characterized by its action mechanism and its ability to pass the skin barrier. In this article, different methods are discussed, which permit this penetration process to be analysed non-invasively. Providing qualitative and quantitative information, tape stripping is one of the oldest procedures for penetration studies. Although single cell layers of corneocytes are removed from the skin surface, this procedure is considered as non-invasive and is applicable exclusively to the stratum corneum. Recently, optical and spectroscopic methods have been used to investigate the penetration process. Fluorescence-labelled drugs can be easily detected in the skin by laser scanning microscopy. This method has the disadvantage that the dye labelling changes the molecular structures of the drug and consequently might influence the penetration properties. The penetration process of non-fluorescent substances can be analysed by Raman spectroscopy, electron paramagnetic resonance, CARS and multiphoton microscopic measurements. Using these methods, the concentration of the topically applied formulations in different depths of the stratum corneum can be detected by moving the laser focus from the skin surface deeper into the stratum corneum. The advantages and disadvantages of these methods will be discussed in this article.
Collapse
Affiliation(s)
- J Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology-CCP, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:142-7. [PMID: 22374141 DOI: 10.1097/med.0b013e3283520fe6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Puglia C, Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin Drug Deliv 2012; 9:429-41. [PMID: 22394125 DOI: 10.1517/17425247.2012.666967] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lipid nanoparticles are innovative carrier systems developed as an alternative to traditional vehicles such as emulsions, liposomes and polymeric nanoparticles. Solid lipid nanoparticles (SLN) and the newest nanostructured lipid carriers (NLC) show important advantages for dermal application of cosmetics and pharmaceuticals. AREA COVERED This article focuses on the main features of lipid nanoparticles, in terms of their preparation and recent advancements. A detailed review of the literature is presented, introducing the importance of these systems in the topical delivery of drugs and active substances. EXPERT OPINION Lipid nanoparticles are able to enhance drug penetration into the skin, allowing increased targeting to the epidermis and consequently increasing treatment efficiency and reducing the systemic absorption of drugs and cosmetic actives. The complete biodegradation of lipid nanoparticles and their biocompatible chemical nature have secured them the title of 'nanosafe carriers.' SLN and NLC represent a new technological era, which has been taken over by the cosmetic and pharmaceutical industry, which will open new channels for effective topical delivery of substances.
Collapse
Affiliation(s)
- Carmelo Puglia
- University of Catania, Carmelo Puglia, Department of Drug Sciences, Faculty of Pharmacy, Catania, Italy.
| | | |
Collapse
|