1
|
Fuxjager MJ, Ryder TB, Moody NM, Alfonso C, Balakrishnan CN, Barske J, Bosholn M, Boyle WA, Braun EL, Chiver I, Dakin R, Day LB, Driver R, Fusani L, Horton BM, Kimball RT, Lipshutz S, Mello CV, Miller ET, Webster MS, Wirthlin M, Wollman R, Moore IT, Schlinger BA. Systems biology as a framework to understand the physiological and endocrine bases of behavior and its evolution-From concepts to a case study in birds. Horm Behav 2023; 151:105340. [PMID: 36933440 DOI: 10.1016/j.yhbeh.2023.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA.
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Nicole M Moody
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA
| | - Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Mariane Bosholn
- Animal Behavior Lab, Ecology Department, National Institute for Amazon Research, Manaus, Amazonas, Brazil
| | - W Alice Boyle
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ioana Chiver
- GIGA Neurosciences, University of Liège, Liege, Belgium
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Robert Driver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Leonida Fusani
- Department of Behavioral and Cognitive Biology, University of Vienna, and Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sara Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Michael S Webster
- Cornell Lab of Ornithology, Ithaca, NY 14853, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Morgan Wirthlin
- Computational Biology Department, Carnegie Melon University, Pittsburgh, PA 15213, USA
| | - Roy Wollman
- Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Barney A Schlinger
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA; Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
2
|
Alfonso C, Jones BC, Vernasco BJ, Moore IT. Integrative Studies of Sexual Selection in Manakins, a Clade of Charismatic Tropical Birds. Integr Comp Biol 2021; 61:1267-1280. [PMID: 34251421 DOI: 10.1093/icb/icab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
The neotropical manakins (family Pipridae) provide a great opportunity for integrative studies of sexual selection as nearly all of the 51 species are lek-breeding, an extreme form of polygyny, and highly sexually dimorphic both in appearance and behavior. Male courtship displays are often elaborate and include auditory cues, both vocal and mechanical, as well as visual elements. In addition, the displays are often extremely rapid, highly acrobatic, and, in some species, multiple males perform coordinated displays that form the basis of long-term coalitions. Male manakins also exhibit unique neuroendocrine, physiological, and anatomical adaptations to support the performance of these complex displays and the maintenance of their intricate social systems. The Manakin Genomics Research Coordination Network (Manakin RCN, https://www.manakinsrcn.org) has brought together researchers (many in this symposium and this issue) from across disciplines to address the implications of sexual selection on evolution, ecology, behavior, and physiology in manakins. The objective of this paper is to present some of the most pertinent and integrative manakin research as well as introducing the papers presented in this issue. The results discussed at the manakin symposium, part of the 2021 Society for Integrative and Comparative Biology Conference, highlight the remarkable genomic, behavioral, and physiological adaptations as well as the evolutionary causes and consequences of strong sexual selection pressures that are evident in manakins.
Collapse
Affiliation(s)
- Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Blake C Jones
- Science and Mathematics, Bennington College, 1 College Dr., Bennington, VT 05201, USA
| | - Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Day LB, Helmhout W, Pano G, Olsson U, Hoeksema JD, Lindsay WR. Correlated evolution of acrobatic display and both neural and somatic phenotypic traits in manakins (Pipridae). Integr Comp Biol 2021; 61:1343-1362. [PMID: 34143205 DOI: 10.1093/icb/icab139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
Brightly colored manakin (Aves: Pipridae) males are known for performing acrobatic displays punctuated by non-vocal sounds (sonations) in order to attract dull colored females. The complexity of the display sequence and assortment of display elements involved (e.g., sonations, acrobatic maneuvers, and cooperative performances) varies considerably across manakin species. Species-specific display elements coevolve with display-distinct specializations of the neuroanatomical, muscular, endocrine, cardiovascular, and skeletal systems in the handful of species studied. Conducting a broader comparative study, we previously found positive associations between display complexity and both brain mass and body mass across 8 manakin genera, indicating selection for neural and somatic expansion to accommodate display elaboration. Whether this gross morphological variation is due to overall brain and body mass expansion (concerted evolution) versus size increases in only functionally relevant brain regions and growth of particular body ("somatic") features (mosaic evolution) remains to be explored. Here we test the hypothesis that cross-species variation in male brain mass and body mass is driven by mosaic evolution. We predicted positive associations between display complexity and variation in the volume of the cerebellum and sensorimotor arcopallium, brain regions which have roles in sensorimotor processes, and learning and performance of precisely timed and sequenced thoughts and movements, respectively. In contrast, we predicted no associations between the volume of a limbic arcopallial nucleus or a visual thalamic nucleus and display complexity as these regions have no-specific functional relationship to display behavior. For somatic features, we predicted that the relationship between body mass and complexity would not include contributions of tarsus length based on a recent study suggesting selection on tarsus length is less labile than body mass. We tested our hypotheses in males from 12 manakin species and a closely related flycatcher. Our analyses support mosaic evolution of neural and somatic features functionally relevant to display and indicate sexual selection for acrobatic complexity may increase the capacity for procedural learning via cerebellar enlargement and maneuverability via a reduction in tarsus length in species with lower overall complexity scores.
Collapse
Affiliation(s)
- Lainy B Day
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA.,Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Wilson Helmhout
- Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Glendin Pano
- Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Urban Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413-90 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Willow R Lindsay
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA.,Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413-90 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
4
|
Schlinger BA, Chiver I. Behavioral Sex Differences and Hormonal Control in a Bird with an Elaborate Courtship Display. Integr Comp Biol 2021; 61:1319-1328. [PMID: 33885763 DOI: 10.1093/icb/icab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gonadal hormones can activate performance of reproductive behavior in adult animals, but also organize sex-specific neural circuits developmentally. Few studies have examined the hormonal basis of sex differences in the performance of elaborate, physically complex and energetic male courtship displays. Here we describe our studies over more than 20 years examining sex difference and hormonal control of courtship in Golden-collared manakins (Manacus vitellinus) of Panamaian rainforests. Our recent studies of birds studied in an artificial "lek" in a rainforest aviary provide many new insights. Wild and captive males and females differ markedly in their performance of male-typical behaviors. Testosterone (T) treatment augments performance of virtually all of these behaviors in juvenile males with low levels of circulating T. By contrast, T-treatment of females (with low circulating T) either failed to activate some behaviors or activated male behaviors weakly or strongly. These results are discussed within a framework of our appreciation for hormonal vs genetic basis for sex differences in behavior with speculation about the neural mechanisms producing these patterns of hormonal activation.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095.,Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
5
|
Janisch J, Perinot E, Fusani L. Behavioural flexibility in the courtship dance of golden-collared manakins, Manacus vitellinus. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Ronald KL, Fernández-Juricic E, Lucas JR. Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences. Proc Biol Sci 2019; 285:rspb.2018.0713. [PMID: 29769366 DOI: 10.1098/rspb.2018.0713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 01/27/2023] Open
Abstract
A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird (Molothrus ater) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive.
Collapse
Affiliation(s)
- Kelly L Ronald
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA .,Department of Biological Sciences, Purdue University, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| | - Esteban Fernández-Juricic
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Jeffrey R Lucas
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Evolution of the androgen-induced male phenotype. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:81-92. [DOI: 10.1007/s00359-017-1215-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
|
8
|
|
9
|
Day LB, Lindsay WR. Associations between Manakin Display Complexity and Both Body and Brain Size Challenge Assumptions of Allometric Correction: A Response to Gutierrez-Ibanez et al. (2016). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:227-31. [DOI: 10.1159/000446341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Lucon-Xiccato T, Bisazza A. Male and female guppies differ in speed but not in accuracy in visual discrimination learning. Anim Cogn 2016; 19:733-44. [PMID: 26920920 DOI: 10.1007/s10071-016-0969-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 02/03/2023]
Abstract
In many species, males and females have different reproductive roles and/or differ in their ecological niche. Since in these cases the two sexes often face different cognitive challenges, selection may promote some degree of cognitive differentiation, an issue that has received relatively little attention so far. We investigated the existence of sex differences in visual discrimination learning in the guppy, Poecilia reticulata, a fish species in which females show complex mate choice based on male colour pattern. We tested males and females for their ability to learn a discrimination between two different shapes (experiment 1) and between two identical figures with a different orientation (experiment 2). In experiment 3, guppies were required to select an object of the odd colour in a group of five objects. Colours changed daily, and therefore, the solution for this task was facilitated by concept learning. We found males' and females' accuracy practically overlapped in the three experiments, suggesting that the two sexes have similar discrimination learning abilities. Yet, males showed faster decision time than females without any evident speed-accuracy trade-off. This result indicates the existence of consistent between-sex differences in decision speed perhaps due to impulsivity rather than speed in information processing. Our results align with previous literature, indicating that sex differences in cognitive abilities are the exception rather than the rule, while sex differences in cognitive style, i.e. the way in which an individual faces a cognitive task, are much more common.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy.
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| |
Collapse
|
11
|
Krilow JM, Iwaniuk AN. Seasonal Variation in Forebrain Region Sizes in Male Ruffed Grouse (Bonasa umbellus). BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:189-202. [PMID: 25997574 DOI: 10.1159/000381277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
The song system of songbirds has provided significant insight into the underlying mechanisms and behavioural consequences of seasonal neuroplasticity. The extent to which seasonal changes in brain region volumes occur in non-songbird species has, however, remained largely untested. Here, we tested whether brain region volumes varied with season in the ruffed grouse (Bonasa umbellus), a gallinaceous bird that produces a unique wing-beating display known as 'drumming' as its primary form of courtship behaviour. Using unbiased stereology, we measured the sizes of the cerebellum, nucleus rotundus, telencephalon, mesopallium, hippocampal formation, striatopallidal complex and arcopallium across spring males, fall males and fall females. The majority of these brain regions did not vary significantly across these three groups. The two exceptions were the striatopallidal complex and arcopallium, both of which were significantly larger in spring males that are actively drumming. These seasonal changes in volume strongly implicate the striatopallidal complex and arcopallium as key structures in the production and/or modulation of the ruffed grouse drumming display and represent the first evidence of seasonal plasticity in the telencephalon underlying a non-vocal courtship behaviour. Our findings also suggest that seasonal plasticity in the striatopallidal complex and arcopallium might be a trait that is shared across many bird species and that both structures are related to the production of multiple forms of courtship and not just learned song.
Collapse
Affiliation(s)
- Justin M Krilow
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alta., Canada
| | | |
Collapse
|
12
|
Lindsay WR, Houck JT, Giuliano CE, Day LB. Acrobatic Courtship Display Coevolves with Brain Size in Manakins (Pipridae). BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:29-36. [DOI: 10.1159/000369244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022]
Abstract
Acrobatic display behaviour is sexually selected in manakins (Pipridae) and can place high demands on many neural systems. Manakin displays vary across species in terms of behavioural complexity, differing in number of unique motor elements, production of mechanical sounds, cooperation between displaying males, and construction of the display site. Historically, research emphasis has been placed on neurological specializations for vocal aspects of courtship, and less is known about the control of physical, non-vocal displays. By examining brain evolution in relation to extreme acrobatic feats such as manakin displays, we can vastly expand our knowledge of how sexual selection acts on motor behaviour. We tested the hypothesis that sexual selection for complex motor displays has selected for larger brains across the Pipridae. We found that display complexity positively predicts relative brain weight (adjusted for body size) after controlling for phylogeny in 12 manakin species and a closely related flycatcher. This evidence suggests that brain size has evolved in response to sexual selection to facilitate aspects of display such as motor, sensorimotor, perceptual, and cognitive abilities. We show, for the first time, that sexual selection for acrobatic motor behaviour can drive brain size evolution in avian species and, in particular, a family of suboscine birds.
Collapse
|
13
|
Fusani L, Donaldson Z, London SE, Fuxjager MJ, Schlinger BA. Expression of androgen receptor in the brain of a sub-oscine bird with an elaborate courtship display. Neurosci Lett 2014; 578:61-5. [PMID: 24954076 PMCID: PMC4359618 DOI: 10.1016/j.neulet.2014.06.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 01/12/2023]
Abstract
Sex steroids control vertebrate behavior by modulating neural circuits specialized for sex steroid sensitivity. In birds, receptors for androgens (AR) and estrogens (ERα) show conserved expression in neural circuits controlling copulatory and vocal behaviors. Male golden-collared manakins have become a model for evaluating hormonal control of complex physical courtship displays. These birds perform visually and acoustically elaborate displays involving considerable neuromuscular coordination. Androgens activate manakin courtship and AR are expressed widely in spinal circuits and peripheral muscles utilized in courtship. Using in situ hybridization, we report here the distributions of AR and ERα mRNA in the brains of golden-collared manakins. Overall patterns of AR and ERα mRNA expression resemble what has been observed in non-vocal learning species. Notably, however, we detected a large area of AR expression in the arcopallium, a forebrain region that contains a crucial premotor song nucleus in vocal learning species. These results support the idea that AR signaling both centrally and peripherally is responsible for the activation of male manakin courtship, and the arcopallium is likely a premotor site for AR-mediated displays.
Collapse
Affiliation(s)
- Leonida Fusani
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Zoe Donaldson
- Division of Integrative Neuroscience, Department of Psychiatry, Columbia University, New York, NY 10023, USA
| | - Sarah E London
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Matthew J Fuxjager
- Departments of Integrative Biology and Physiology, Ecology and Evolutionary Biology and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| | - Barney A Schlinger
- Departments of Integrative Biology and Physiology, Ecology and Evolutionary Biology and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Fusani L, Barske J, Day LD, Fuxjager MJ, Schlinger BA. Physiological control of elaborate male courtship: female choice for neuromuscular systems. Neurosci Biobehav Rev 2014; 46 Pt 4:534-46. [PMID: 25086380 DOI: 10.1016/j.neubiorev.2014.07.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Males of many animal species perform specialized courtship behaviours to gain copulations with females. Identifying physiological and anatomical specializations underlying performance of these behaviours helps clarify mechanisms through which sexual selection promotes the evolution of elaborate courtship. Our knowledge about neuromuscular specializations that support elaborate displays is limited to a few model species. In this review, we focus on the physiological control of the courtship of a tropical bird, the golden-collared manakin, which has been the focus of our research for nearly 20 years. Male manakins perform physically elaborate courtship displays that are quick, accurate and powerful. Females seem to choose males based on their motor skills suggesting that neuromuscular specializations possessed by these males are driven by female choice. Male courtship is activated by androgens and androgen receptors are expressed in qualitatively and quantitatively unconventional ways in manakin brain, spinal cord and skeletal muscles. We propose that in some species, females select males based on their neuromuscular capabilities and acquired skills and that elaborate steroid-dependent courtship displays evolve to signal these traits.
Collapse
Affiliation(s)
- Leonida Fusani
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Lainy D Day
- Department of Biology, University of Mississippi, University, MS 38677, USA.
| | - Matthew J Fuxjager
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
González-Gómez PL, Madrid-Lopez N, Salazar JE, Suárez R, Razeto-Barry P, Mpodozis J, Bozinovic F, Vásquez RA. Cognitive ecology in hummingbirds: the role of sexual dimorphism and its anatomical correlates on memory. PLoS One 2014; 9:e90165. [PMID: 24599049 PMCID: PMC3943908 DOI: 10.1371/journal.pone.0090165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/30/2014] [Indexed: 01/15/2023] Open
Abstract
In scatter-hoarding species, several behavioral and neuroanatomical adaptations allow them to store and retrieve thousands of food items per year. Nectarivorous animals face a similar scenario having to remember quality, location and replenishment schedules of several nectar sources. In the green-backed firecrown hummingbird (Sephanoides sephanoides), males are territorial and have the ability to accurately keep track of nectar characteristics of their defended food sources. In contrast, females display an opportunistic strategy, performing rapid intrusions into males territories. In response, males behave aggressively during the non-reproductive season. In addition, females have higher energetic demands due to higher thermoregulatory costs and travel times. The natural scenario of this species led us to compared cognitive abilities and hippocampal size between males and females. Males were able to remember nectar location and renewal rates significantly better than females. However, the hippocampal formation was significantly larger in females than males. We discuss these findings in terms of sexually dimorphic use of spatial resources and variable patterns of brain dimorphisms in birds.
Collapse
Affiliation(s)
- Paulina L. González-Gómez
- Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Filosofía y Ciencias de la Complejidad, Santiago, Chile
- * E-mail:
| | - Natalia Madrid-Lopez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juan E. Salazar
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Suárez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Departamento de Ecología, MIII & LINCGlobal, Centro de Estudios Avanzados en Ecología & Biodiversidad, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Vásquez
- Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Schlinger BA, Barske J, Day L, Fusani L, Fuxjager MJ. Hormones and the neuromuscular control of courtship in the golden-collared manakin (Manacus vitellinus). Front Neuroendocrinol 2013; 34:143-56. [PMID: 23624091 PMCID: PMC3995001 DOI: 10.1016/j.yfrne.2013.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022]
Abstract
Many animals engage in spectacular courtship displays, likely recruiting specialized neural, hormonal and muscular systems to facilitate these performances. Male golden-collared manakins (Manacus vitellinus) of Panamanian rainforests perform physically elaborate courtship displays that include novel forms of visual and acoustic signaling. We study the behavioral neuroendocrinology of this male's courtship, combining field behavioral observations with anatomical, biochemical and molecular laboratory-based studies. Seasonally, male courtship is activated by testosterone with little correspondence between testosterone levels and display intensity. Females prefer males whose displays are exceptionally frequent, fast and accurate. The activation of androgen receptors (AR) is crucial for optimal display performance, with AR expressed at elevated levels in several neuromuscular tissues. Apparently, courtship enlists an elaborate androgen-dependent network that includes spinal motoneurons, skeletal muscles and somatosensory systems. This work highlights the value of studying non-traditional species to illuminate physiological adaptations and, hopefully, stimulates future research on other species with complex behaviors.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
17
|
Corfield JR, Harada N, Iwaniuk AN. Aromatase expression in the brain of the ruffed grouse (Bonasa umbellus) and comparisons with other galliform birds (Aves, Galliformes). J Chem Neuroanat 2012; 47:15-27. [PMID: 23266340 DOI: 10.1016/j.jchemneu.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 10/14/2012] [Accepted: 12/09/2012] [Indexed: 10/27/2022]
Abstract
The enzyme aromatase is important for regulating sexual and aggressive behaviors during the reproductive season, including many aspects of courtship. In birds, aromatase is expressed at high levels in a number of different brain regions. Although this expression does vary among species, the extent to which the distribution of aromatase positive cells reflects species differences in courtship and other behaviors is not well established. Here, we examine the distribution of aromatase immunoreactive (ARO) neurons in the brain of a species with a unique courtship display, the ruffed grouse (Bonasa umbellus). Unlike most other galliforms, male ruffed grouse do not vocalize as part of their courtship and instead use their wings to create a non-vocal auditory signal to attract females. Because aromatase is involved in courtship behaviors in several bird species, including other galliforms, we hypothesized that aromatase distribution in the ruffed grouse would differ from that of other galliforms. We used an antibody raised against quail aromatase to examine aromatase immunoreactivity in the ruffed grouse, the closely related spruce grouse (Falcipennis canadensis) and the Japanese quail (Coturnix japonica). In all three species, ARO neurons were identified in the medial preoptic nucleus, the bed nucleus of the stria terminalis and the nucleus ventromedialis hypothalami. Both grouse species had ARO neurons in two regions of the telencephalon, the hyperpallium, and entopallium, and the ruffed grouse also in field L. ARO neurons were only found in one region in the telencephalon of the Japanese quail, the septum. In general, breeding male ruffed grouse had significantly more ARO neurons and those neurons were larger than that of both the non-breeding male and female ruffed grouse. Aromatase expression in the telencephalon of the ruffed grouse suggests that steroid hormones might modulate responses to visual and acoustic stimuli, but how this relates to species differences in courtship displays and co-expression with estrogenic receptors is yet to be determined.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| | | | | |
Collapse
|