1
|
Hou S, Yan X, Gao X, Jockusch S, Gibson KM, Shan Z, Bi L. Enhancing Cardiomyocyte Resilience to Ischemia-Reperfusion Injury: The Therapeutic Potential of an Indole-Peptide-Tempo Conjugate (IPTC). ACS OMEGA 2024; 9:39401-39418. [PMID: 39346824 PMCID: PMC11425819 DOI: 10.1021/acsomega.4c02725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 10/01/2024]
Abstract
Ischemia/reperfusion (I/R) injury leads to apoptosis and extensive cellular and mitochondrial damage, triggered by the early generation and subsequent accumulation of mitochondrial reactive oxygen species (mtROS). This condition not only contributes to the pathology of I/R injury itself but is also implicated in a variety of other diseases, especially within the cardiovascular domain. Addressing mitochondrial oxidative stress thus emerges as a critical therapeutic target. In this context, our study introduces an indole-peptide-tempo conjugate (IPTC), a compound designed with dual functionalities: antioxidative properties and the ability to modulate autophagy. Our findings reveal that IPTC effectively shields H9C2 cardiomyocytes against hypoxia/reoxygenation (H/R) damage, primarily through counteracting mtROS overproduction linked to impaired mitophagy and mitochondrial dysfunction. We propose that IPTC operates by simultaneously reducing mtROS levels and inducing mitophagy, highlighting its potential as a novel therapeutic strategy for mitigating mitochondrial oxidative damage and, by extension, easing I/R injury and potentially other related cardiovascular conditions.
Collapse
Affiliation(s)
- Shanshan Hou
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiang Gao
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Steffen Jockusch
- Center of Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Lanrong Bi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
2
|
Huang J, Liu M, Chen H, Zhang J, Xie X, Jiang L, Zhang S, Jiang C, Zhang J, Zhang Q, Yang G, Chi H, Tian G. Elucidating the Influence of MPT-driven necrosis-linked LncRNAs on immunotherapy outcomes, sensitivity to chemotherapy, and mechanisms of cell death in clear cell renal carcinoma. Front Oncol 2023; 13:1276715. [PMID: 38162499 PMCID: PMC10757362 DOI: 10.3389/fonc.2023.1276715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Background Clear cell renal carcinoma (ccRCC) stands as the prevailing subtype among kidney cancers, making it one of the most prevalent malignancies characterized by significant mortality rates. Notably,mitochondrial permeability transition drives necrosis (MPT-Driven Necrosis) emerges as a form of cell death triggered by alterations in the intracellular microenvironment. MPT-Driven Necrosis, recognized as a distinctive type of programmed cell death. Despite the association of MPT-Driven Necrosis programmed-cell-death-related lncRNAs (MPTDNLs) with ccRCC, their precise functions within the tumor microenvironment and prognostic implications remain poorly understood. Therefore, this study aimed to develop a novel prognostic model that enhances prognostic predictions for ccRCC. Methods Employing both univariate Cox proportional hazards and Lasso regression methodologies, this investigation distinguished genes with differential expression that are intimately linked to prognosis.Furthermore, a comprehensive prognostic risk assessment model was established using multiple Cox proportional hazards regression. Additionally, a thorough evaluation was conducted to explore the associations between the characteristics of MPTDNLs and clinicopathological features, tumor microenvironment, and chemotherapy sensitivity, thereby providing insights into their interconnectedness.The model constructed based on the signatures of MPTDNLs was verified to exhibit excellent prediction performance by Cell Culture and Transient Transfection, Transwell and other experiments. Results By analyzing relevant studies, we identified risk scores derived from MPTDNLs as an independent prognostic determinant for ccRCC, and subsequently we developed a Nomogram prediction model that combines clinical features and associated risk assessment. Finally, the application of experimental techniques such as qRT-PCR helped to compare the expression of MPTDNLs in healthy tissues and tumor samples, as well as their role in the proliferation and migration of renal clear cell carcinoma cells. It was found that there was a significant correlation between CDK6-AS1 and ccRCC results, and CDK6-AS1 plays a key role in the proliferation and migration of ccRCC cells. Impressive predictive results were generated using marker constructs based on these MPTDNLs. Conclusions In this research, we formulated a new prognostic framework for ccRCC, integrating mitochondrial permeability transition-induced necrosis. This model holds significant potential for enhancing prognostic predictions in ccRCC patients and establishing a foundation for optimizing therapeutic strategies.
Collapse
Affiliation(s)
- Jinbang Huang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengtao Liu
- Pediatric Surgery, Guiyang Matemal and Child Health Care Hospital, Guiyang Children’s Hospital, Guiyang, China
| | - Haiqing Chen
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qinhong Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, GA, United States
| | - Hao Chi
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
3
|
Liu J, Zhang M, Sun Q, Qin X, Gao T, Xu Y, Han S, Zhang Y, Guo Z. Construction of a novel MPT-driven necrosis-related lncRNAs signature for prognosis prediction in laryngeal squamous cell carcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26996-1. [PMID: 37249774 DOI: 10.1007/s11356-023-26996-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/09/2023] [Indexed: 05/31/2023]
Abstract
Mitochondrial permeability transition (MPT)-driven necrosis, a type of programmed cell death, has recently gained much attention in a variety of tumor types. Few studies have been performed to explore the role of MPT-driven necrosis-related lncRNAs (MPTDNRlncRNAs) in laryngeal squamous cell carcinoma (LSCC). The purpose of our study is to screen MPTDNRlncRNAs with prognostic value and to explore their potential roles in LSCC. The RNA-sequencing data and the corresponding clinical data of LSCC patients were obtained from the TCGA database, and those MPT-driven necrosis-related genes were extracted from the Gene Set Enrichment Analysis (GSEA) database. We identified MPTDNRlncRNAs differentially expressed in LSCC. Also, we gained MPT-driven necrosis-related prognostic lncRNAs by univariate cox regression analysis. A novel MPTDNRlncRNAs signature was constructed by LASSO-COX. The accuracy and utility of the MPTDNRlncRNAs signature were evaluated via a variety of statistical methods. Multiple bioinformatics tools were used to explore the underlying difference in biological functions and signaling pathways between the different risk groups. The expressions levels of MPTDNRlncRNAs were analyzed using RT-qPCR in LSCC cell line. Finally, we identified A 5 MPTDNRlncRNAs signature in LSCC. Our prognostic model demonstrated an efficient ability to predict outcomes. The proportion difference of immune cells in the subgroups were significant, such as M0 macrophage and T follicular helper cells. The in vitro experiments suggested that our MPTDNRlncRNAs were significantly different. This 5 MPTDNRlncRNAs signature is a prognostic biomarker for LSCC. More importantly, the novel biologic prognostic model can be utilized for personalized immunotherapy in LSCC patients.
Collapse
Affiliation(s)
- Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Min Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan, 41000, People's Republic of China
| | - Qing Sun
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Xuemei Qin
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Tianle Gao
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yinwei Xu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Shuhui Han
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yujie Zhang
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Zhiqiang Guo
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Affilated to Fudan University, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
4
|
Endlicher R, Drahota Z, Štefková K, Červinková Z, Kučera O. The Mitochondrial Permeability Transition Pore-Current Knowledge of Its Structure, Function, and Regulation, and Optimized Methods for Evaluating Its Functional State. Cells 2023; 12:cells12091273. [PMID: 37174672 PMCID: PMC10177258 DOI: 10.3390/cells12091273] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrial permeability transition pore (MPTP) is a calcium-dependent, ion non-selective membrane pore with a wide range of functions. Although the MPTP has been studied for more than 50 years, its molecular structure remains unclear. Short-term (reversible) opening of the MPTP protects cells from oxidative damage and enables the efflux of Ca2+ ions from the mitochondrial matrix and cell signaling. However, long-term (irreversible) opening induces processes leading to cell death. Ca2+ ions, reactive oxygen species, and changes in mitochondrial membrane potential regulate pore opening. The sensitivity of the pore to Ca2+ ions changes as an organism ages, and MPTP opening plays a key role in the pathogenesis of many diseases. Most studies of the MPTP have focused on elucidating its molecular structure. However, understanding the mechanisms that will inhibit the MPTP may improve the treatment of diseases associated with its opening. To evaluate the functional state of the MPTP and its inhibitors, it is therefore necessary to use appropriate methods that provide reproducible results across laboratories. This review summarizes our current knowledge of the function and regulation of the MPTP. The latter part of the review introduces two optimized methods for evaluating the functional state of the pore under standardized conditions.
Collapse
Affiliation(s)
- René Endlicher
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- Department of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Zdeněk Drahota
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Kateřina Štefková
- Department of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Otto Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Mauerhofer C, Grumet L, Schemmer P, Leber B, Stiegler P. Combating Ischemia-Reperfusion Injury with Micronutrients and Natural Compounds during Solid Organ Transplantation: Data of Clinical Trials and Lessons of Preclinical Findings. Int J Mol Sci 2021; 22:10675. [PMID: 34639016 PMCID: PMC8508760 DOI: 10.3390/ijms221910675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although extended donor criteria grafts bear a higher risk of complications such as graft dysfunction, the exceeding demand requires to extent the pool of potential donors. The risk of complications is highly associated with ischemia-reperfusion injury, a condition characterized by high loads of oxidative stress exceeding antioxidative defense mechanisms. The antioxidative properties, along with other beneficial effects like anti-inflammatory, antiapoptotic or antiarrhythmic effects of several micronutrients and natural compounds, have recently emerged increasing research interest resulting in various preclinical and clinical studies. Preclinical studies reported about ameliorated oxidative stress and inflammatory status, resulting in improved graft survival. Although the majority of clinical studies confirmed these results, reporting about improved recovery and superior organ function, others failed to do so. Yet, only a limited number of micronutrients and natural compounds have been investigated in a (large) clinical trial. Despite some ambiguous clinical results and modest clinical data availability, the vast majority of convincing animal and in vitro data, along with low cost and easy availability, encourage the conductance of future clinical trials. These should implement insights gained from animal data.
Collapse
Affiliation(s)
- Christina Mauerhofer
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Lukas Grumet
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Peter Schemmer
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Bettina Leber
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Philipp Stiegler
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| |
Collapse
|
6
|
Deng B, Tang X, Wang Y. Role of microRNA-129 in cancer and non-cancerous diseases (Review). Exp Ther Med 2021; 22:918. [PMID: 34335879 PMCID: PMC8290460 DOI: 10.3892/etm.2021.10350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies indicate that microRNAs (miRNAs/miRs) are involved in diverse biological signaling pathways and play important roles in the progression of various diseases, including both oncological and non-oncological diseases. These small non-coding RNAs can block translation, resulting in a low expression level of target genes. miR-129 is an miRNA that has been the focus of considerable research in recent years. A growing body of evidence shows that the miR-129 family not only functions in cancer, including osteosarcoma, nasopharyngeal carcinoma, and ovarian, prostate, lung, breast and colon cancer, but also in non-cancerous diseases, including heart failure (HF), epilepsy, Alzheimer's disease (AD), obesity, diabetes and intervertebral disc degeneration (IVDD). It is therefore necessary to summarize current research progress on the role of miR-129 in different diseases. The present review includes an updated summary of the mechanisms of the miR-129 family in oncological and non-oncological diseases. To the best of our knowledge, this is the first review focusing on the role of miR-129 in non-cancerous diseases such as obesity, HF, epilepsy, diabetes, IVDD and AD.
Collapse
Affiliation(s)
- Bingpeng Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
7
|
Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells 2021; 10:cells10061417. [PMID: 34200413 PMCID: PMC8229792 DOI: 10.3390/cells10061417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may lead to primary graft dysfunction (PGD). PGD is a significant cause of morbidity and mortality post-LTx. Research into preservation strategies that decrease the risk of LIRI and PGD is needed, and ex-situ lung perfusion (ESLP) is the foremost technological advancement in this field. This review addresses three major topics in the field of LTx: first, we review the clinical manifestation of LIRI post-LTx; second, we discuss the pathophysiology of LIRI that leads to pulmonary endothelial inflammation and PGD; and third, we present the role of ESLP as a therapeutic vehicle to mitigate this physiologic insult, increase the rates of donor organ utilization, and improve patient outcomes.
Collapse
|
8
|
Yu C, Cai X, Liu X, Liu J, Zhu N. Betulin Alleviates Myocardial Ischemia-Reperfusion Injury in Rats via Regulating the Siti1/NLRP3/NF-κB Signaling Pathway. Inflammation 2021; 44:1096-1107. [PMID: 33392937 DOI: 10.1007/s10753-020-01405-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
To study the effects of betulin (BE) on myocardial ischemia-reperfusion (I/R) injury in rats, electrocardiogram (ECG) was detected by an electrocardiograph; myocardial infarction was evaluated by triphenyltetrazolium (TTC) staining, serum biochemical indicators myocardial enzymes creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), serum superoxide dismutase (SOD), glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA); and inflammatory cytokines were tested by using commercial kits. The expression of the Siti1/NLRP3/NF-κB signaling pathway was detected by western blotting and immunohistochemistry experiments. BE improved ECG; reduced myocardial infarction area; decreased CK, LDH, AST, MDA, NO, and inflammatory cytokines; and increased SOD and GSH in I/R rats. In addition, BE also increased Siti1 and decreased the NLRP3/NF-κB signaling pathway in I/R rats. This study shows that the protection of BE is associated with changes in the Siti1/NLRP3/NF-κB pathway.
Collapse
Affiliation(s)
- Chenchen Yu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Xixi Cai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Xuejiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Jianlong Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| | - Na Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| |
Collapse
|
9
|
Ohsawa I. Biological Responses to Hydrogen Molecule and its Preventive Effects on Inflammatory Diseases. Curr Pharm Des 2021; 27:659-666. [PMID: 32981496 DOI: 10.2174/1381612826666200925123510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Because multicellular organisms do not have hydrogenase, H2 has been considered to be biologically inactive in these species, and enterobacteria to be largely responsible for the oxidation of H2 taken into the body. However, we showed previously that inhalation of H2 markedly suppresses brain injury induced by focal ischemia-reperfusion by buffering oxidative stress. Although the reaction constant of H2 with hydroxyl radical in aqueous solution is two to three orders of magnitude lower than that of conventional antioxidants, we showed that hydroxyl radical generated by the Fenton reaction reacts with H2 at room temperature without a catalyst. Suppression of hydroxyl radical by H2 has been applied in ophthalmic surgery. However, many of the anti- inflammatory and other therapeutic effects of H2 cannot be completely explained by its ability to scavenge reactive oxygen species. H2 administration is protective in several disease models, and preculture in the presence of H2 suppresses oxidative stress-induced cell death. Specifically, H2 administration induces mitochondrial oxidative stress and activates Nrf2; this phenomenon, in which mild mitochondrial stress leaves the cell less susceptible to subsequent perturbations, is called mitohormesis. Based on these findings, we conclude that crosstalk between antioxidative stress pathways and the anti-inflammatory response is the most important molecular mechanism involved in the protective function of H2, and that regulation of the immune system underlies H2 efficacy. For further medical applications of H2, it will be necessary to identify the biomolecule on which H2 first acts.
Collapse
Affiliation(s)
- Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
10
|
Zhang Z, Qin X, Wang Z, Li Y, Chen F, Chen R, Li C, Zhang W, Zhang M. Oxymatrine pretreatment protects H9c2 cardiomyocytes from hypoxia/reoxygenation injury by modulating the PI3K/Akt pathway. Exp Ther Med 2021; 21:556. [PMID: 33850528 PMCID: PMC8027759 DOI: 10.3892/etm.2021.9988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) plays an important role in myocardial damage, which has been widely recognized as a key procedure in the cardiovascular disease. A hypoxia/reoxygenation (H/R) model was established using H9c2 cardiomyocytes to investigate the possible positive effect of oxymatrine (OMT), an alkaloid originating from the traditional Chinese herb Sophora flavescens Aiton, on cardiomyocytes exposed to H/R injury and the underlying molecular mechanisms. Cell viability was measured using the MTT assay, lactate dehydrogenase release measurements and hematoxylin and eosin staining. Oxidative stress was detected by measuring cellular malondialdehyde (MDA) content, as well as superoxide dismutase (SOD) and catalase (CAT) activities. Apoptosis was detected using TUNEL staining and flow cytometric analysis, and the underlying mechanism was investigated using reverse transcription-quantitative PCR and western blot analyses. The results revealed that OMT increased the viability of H9c2 cardiomyocytes exposed to H/R. The OMT pretreatment decreased the production of MDA by reactive oxygen species and increased the activities of SOD and CAT. Furthermore, the OMT pretreatment reduced the expression of Bax and caspase-3, while inducing Bcl-2 expression. In addition, the protective effect of OMT was shown to be associated with the PI3K/Akt signaling pathway, and the PI3K inhibitor LY294002 attenuated the effects of OMT on the H9c2 cardiomyocytes exposed to H/R. These findings indicate that OMT could be a potential therapeutic candidate for the treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhongbai Zhang
- The Fourth Detachment, Armed Police and Coastal Police Corps, Wenchang, Hainan 571300, P.R. China
| | - Xueting Qin
- Department of Cardiology, The Third People's Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Zhenghui Wang
- Department of Human Morphology Section, Logistics University of People's Armed Police Force, Tianjin 300162, P.R. China
| | - Yanchun Li
- Department of Pharmacy, Heilongjiang Municipal Corps Hospital of Chinese People's Armed Police Force, Harbin, Heilongjiang 150076, P.R. China
| | - Fei Chen
- Department of Health Service, The Second Mobile Corps Hospital of Chinese People's Armed Police Force, Wuxi, Jiangsu 214000, P.R. China
| | - Rundu Chen
- Department of Cardiac Thoracic Surgery, Characteristic Medical Center of People's Armed Police Force, Tianjin 300309, P.R. China
| | - Chuang Li
- Department of Cardiac Thoracic Surgery, Characteristic Medical Center of People's Armed Police Force, Tianjin 300309, P.R. China
| | - Wencheng Zhang
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Characteristic Medical Center of People's Armed Police Force, Tianjin 300162, P.R. China
| | - Mei Zhang
- Department of Cardiac Thoracic Surgery, Characteristic Medical Center of People's Armed Police Force, Tianjin 300309, P.R. China
| |
Collapse
|
11
|
Ruan Y, Zeng J, Jin Q, Chu M, Ji K, Wang Z, Li L. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Exp Ther Med 2020; 20:268. [PMID: 33199993 PMCID: PMC7664614 DOI: 10.3892/etm.2020.9398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Although acute myocardial infarction is one of the most common fatal diseases worldwide, the understanding of its underlying pathogenesis continues to develop. Myocardial ischemia/reperfusion (I/R) can restore myocardial oxygen and nutrient supply. However, a large number of studies have demonstrated that recovery of blood perfusion after acute ischemia causes reperfusion injury to the heart. With progress made in the understanding of the underlying mechanisms of myocardial I/R and oxidative stress, a novel area of research that merits greater study has been identified, that of I/R-induced endoplasmic reticulum (ER) stress (ERS). Cardiac I/R can alter the function of the ER, leading to the accumulation of unfolded/misfolded proteins. The resulting ERS then induces the activation of signal transduction pathways, which in turn contribute to the development of I/R injury. The mechanism of I/R injury, and the causal relationship between I/R and ERS are reviewed in the present article.
Collapse
Affiliation(s)
- Yongxue Ruan
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jingjing Zeng
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qike Jin
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhongyu Wang
- Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
12
|
Li Q, Qin M, Tan Q, Li T, Gu Z, Huang P, Ren L. MicroRNA-129-1-3p protects cardiomyocytes from pirarubicin-induced apoptosis by down-regulating the GRIN2D-mediated Ca 2+ signalling pathway. J Cell Mol Med 2020; 24:2260-2271. [PMID: 31957170 PMCID: PMC7011137 DOI: 10.1111/jcmm.14908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Pirarubicin (THP), an anthracycline anticancer drug, is a first‐line therapy for various solid tumours and haematologic malignancies. However, THP can cause dose‐dependent cumulative cardiac damage, which limits its therapeutic window. The mechanisms underlying THP cardiotoxicity are not fully understood. We previously showed that MiR‐129‐1‐3p, a potential biomarker of cardiovascular disease, was down‐regulated in a rat model of THP‐induced cardiac injury. In this study, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses to determine the pathways affected by miR‐129‐1‐3p expression. The results linked miR‐129‐1‐3p to the Ca2+ signalling pathway. TargetScan database screening identified a tentative miR‐129‐1‐3p‐binding site at the 3′‐UTR of GRIN2D, a subunit of the N‐methyl‐D‐aspartate receptor calcium channel. A luciferase reporter assay confirmed that miR‐129‐1‐3p directly regulates GRIN2D. In H9C2 (rat) and HL‐1 (mouse) cardiomyocytes, THP caused oxidative stress, calcium overload and apoptotic cell death. These THP‐induced changes were ameliorated by miR‐129‐1‐3p overexpression, but exacerbated by miR‐129‐1‐3p knock‐down. In addition, miR‐129‐1‐3p overexpression in cardiomyocytes prevented THP‐induced changes in the expression of proteins that are either key components of Ca2+ signalling or important regulators of intracellular calcium trafficking/balance in cardiomyocytes including GRIN2D, CALM1, CaMKⅡδ, RyR2‐pS2814, SERCA2a and NCX1. Together, these bioinformatics and cell‐based experiments indicate that miR‐129‐1‐3p protects against THP‐induced cardiomyocyte apoptosis by down‐regulating the GRIN2D‐mediated Ca2+ pathway. Our results reveal a novel mechanism underlying the pathogenesis of THP‐induced cardiotoxicity. The miR‐129‐1‐3p/Ca2+ signalling pathway could serve as a target for the development of new cardioprotective agents to control THP‐induced cardiotoxicity.
Collapse
Affiliation(s)
- Qi Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China.,The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Qi Tan
- The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China.,Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Tengteng Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zehui Gu
- The Third Hospital Affiliated of Jinzhou Medical University, Jinzhou, China.,Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
13
|
Liu X, Wu Y, Zhou Z, Huang M, Deng W, Wang Y, Zhou X, Chen L, Li Y, Zeng T, Wang G, Fu B. Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis. Int J Mol Med 2019; 44:683-693. [PMID: 31198976 PMCID: PMC6605707 DOI: 10.3892/ijmm.2019.4241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Celecoxib, a selective cyclooxygenase-2 inhibitor, has chemo-preventive activity against different cancer types, including bladder cancer (BC). However, the mechanisms by which celecoxib exerts its cancer preventative effects have yet to be completely understood. In the present study, the effect of celecoxib on the epithelial-to-mesenchymal transition (EMT) of BC cells and its potential molecular mechanisms were investigated. The results of the present study demonstrated that celecoxib inhibited the proliferation, migration, invasion and EMT of BC cells. Further investigation of the underlying mechanism revealed that celecoxib inhibited EMT by upregulating microRNA (miR)-145 and downregulating the expression of transforming growth factor β receptor 2 and SMAD family member 3. Furthermore, the combination of celecoxib with miR-145 mimics demonstrated an additive migration and invasion-inhibitory effect in BC cell lines.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanlong Wu
- Department of Gynaecology and Obstetrics, The People's Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mingchuan Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Zeng
- Department of Urology, The People's Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
14
|
Fang Y, Zhao C, Xiang H, Zhao X, Zhong R. Melatonin Inhibits Formation of Mitochondrial Permeability Transition Pores and Improves Oxidative Phosphorylation of Frozen-Thawed Ram Sperm. Front Endocrinol (Lausanne) 2019; 10:896. [PMID: 31969863 PMCID: PMC6960123 DOI: 10.3389/fendo.2019.00896] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Structural and functional damages to mitochondria of frozen-thawed sperm are a typical cryoinjury, with mitochondrial permeability transition pore (MPTP) formation being the hallmark change. Mitochondria are both a primary synthesis site and principle target for melatonin; this compound can directly inhibit MPTP formation and therefore confer protection at a mitochondrial level. The objective was to determine effects of melatonin on MPTP opening, viability, motility, and oxidative phosphorylation (OXPHOS) of frozen-thawed ram sperm. Ram semen was diluted in glucose-egg yolk buffer with 0 or 10-7 M melatonin (frozen and frozen + melatonin groups, respectively) and slow frozen, with fresh semen as Control. In frozen-thawed sperm, melatonin inhibited MPTP opening and lactate concentrations and improved sperm viability, motility, acetyl-CoA concentration and adenosine triphosphate (ATP) production. With regard to the underlying physiological mechanism, melatonin suppressed movement of citrate synthase, isocitrate dehydrogenase, oxoglutarate dehydrogenase complex, and F0F1-ATP synthase permeability from mitochondrial to cytosolic fractions induced by MPTP opening; furthermore, it increased mRNA expressions of respiratory chain complex components and activities of complexes I, II, III, and IV and thereby improved oxygen consumption capacity in frozen-thawed sperm. In conclusion, melatonin improved OXPHOS of frozen-thawed ram sperm, attributed to inhibition of cryopreservation-induced MPTP opening.
Collapse
|
15
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
16
|
Abstract
The tolerance to adriamycin of cancer as a common and stubborn obstacle occurred during curing breast cancer patients needs to be overcome. In the present study, we explored whether inhibiting the glucose transporter 1 (GLUT1) could restore the activity of adriamycin in breast cancer cell line MCF-7 resistant to adriamycin and the possible underlying mechanisms. Adriamycin-resistant cell line MCF-7/ADR was selected stepwise from the parental MCF-7 cells and the level of GLUT1 was measured. Then, the MCF-7/ADR cells were incubated with adriamycin, WZB117 (a specific GLUT1 inhibitor), or both. The viability, proliferation and apoptosis of cells and the level of glucose and lactate were measured, respectively. Finally, the cytosolic and mitochondrial proteins were isolated and the activity of the adenosine monophosphate-activated protein kinase (AMPK)/phosphorylated AMPK, mammalian target of rapamycin (mTOR)/phosphorylated mTOR, and apoptotic-related protein BCL-2-associated X protein (BAX), Bcl-2 was assayed by western blot. We found that WZB117 resensitized MCF-7/ADR to adriamycin and increased BAX translocated to mitochondria, which through activation of AMPK and inhibition of mTOR in a high probability. Inhibition of the GLUT1 could partially restore the antineoplastic effects of adriamycin in the adriamycin-resistant MCF-7 cell line possibly through activating the AMPK, downregulating the mTOR pathway, and increasing the BAX translocation to mitochondria.
Collapse
|
17
|
Javadov S, Jang S, Parodi-Rullán R, Khuchua Z, Kuznetsov AV. Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell Mol Life Sci 2017; 74:2795-2813. [PMID: 28378042 PMCID: PMC5977999 DOI: 10.1007/s00018-017-2502-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia-reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia-reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Rebecca Parodi-Rullán
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Zaza Khuchua
- Cincinnati Children's Research Foundation, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, 54229, USA
| | - Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
18
|
Kuznetsov AV, Javadov S, Saks V, Margreiter R, Grimm M. Synchronism in mitochondrial ROS flashes, membrane depolarization and calcium sparks in human carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:418-431. [PMID: 28279675 DOI: 10.1016/j.bbabio.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 02/02/2023]
Abstract
Mitochondria are major producers of reactive oxygen species (ROS) in many cells including cancer cells. However, complex interrelationships between mitochondrial ROS (mitoROS), mitochondrial membrane potential (ΔΨm) and Ca2+ are not completely understood. Using human carcinoma cells, we further highlight biphasic ROS dynamics: - gradual mitoROS increase followed by mitoROS flash. Also, we demonstrate heterogeneity in rates of mitoROS generation and flash initiation time. Comparing mitochondrial and near-extra-mitochondrial signals, we show that mechanisms of mitoROS flashes in single mitochondria, linked to mitochondrial permeability transition pore opening (ΔΨm collapse) and calcium sparks, may involve flash triggering by certain levels of external ROS released from the same mitochondria. In addition, mitochondria-mitochondria interactions can produce wave propagations of mitoROS flashes and ΔΨm collapses in cancer cells similar to phenomena of ROS-induced ROS release (RIRR). Our data suggest that in cancer cells RIRR, activation of mitoROS flashes and mitochondrial depolarization may involve participation of extramitochondrial-ROS produced either by individual mitochondria and/or by neighboring mitochondria. This could represent general mechanisms in ROS-ROS signaling with suggested role in both mitochondrial and cellular physiology and signaling.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Laboratory, Department of Heart Surgery, Medical University of Innsbruck, Innsbruck A-6020, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U884, University Joseph Fourier, Grenoble, France
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Cardiac Surgery Laboratory, Department of Heart Surgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
19
|
Yang M, Wang B, Gao J, Zhang Y, Xu W, Tao L. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells. CHEMOSPHERE 2017; 169:155-161. [PMID: 27870937 DOI: 10.1016/j.chemosphere.2016.11.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/22/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release.
Collapse
Affiliation(s)
- Mingjun Yang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yang Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
20
|
Ischémie–reperfusion. Liquides de conservation et machines de perfusion en transplantation rénale. Prog Urol 2016; 26:964-976. [DOI: 10.1016/j.purol.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
|
21
|
Regulation of Bcl-xL-ATP Synthase Interaction by Mitochondrial Cyclin B1-Cyclin-Dependent Kinase-1 Determines Neuronal Survival. J Neurosci 2015; 35:9287-301. [PMID: 26109654 DOI: 10.1523/jneurosci.4712-14.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The survival of postmitotic neurons needs continuous degradation of cyclin B1, a mitotic protein accumulated aberrantly in the damaged brain areas of Alzheimer's disease and stroked patients. Degradation of cyclin B1 takes place in the proteasome after ubiquitylation by the anaphase-promoting complex/cyclosome (APC/C)-cadherin 1 (Cdh1), an E3 ubiquitin ligase that is highly active in neurons. However, during excitotoxic damage-a hallmark of neurological disorders-APC/C-Cdh1 is inactivated, causing cyclin B1 stabilization and neuronal death through an unknown mechanism. Here, we show that an excitotoxic stimulus in rat cortical neurons in primary culture promotes cyclin B1 accumulation in the mitochondria, in which it binds to, and activates, cyclin-dependent kinase-1 (Cdk1). The cyclin B1-Cdk1 complex in the mitochondria phosphorylates the anti-apoptotic protein B-cell lymphoma extra-large (Bcl-xL), leading to its dissociation from the β subunit of F1Fo-ATP synthase. The subsequent inhibition of ATP synthase activity causes complex I oxidative damage, mitochondrial inner membrane depolarization, and apoptotic neuronal death. These results unveil a previously unrecognized role for mitochondrial cyclin B1 in the oxidative damage associated with neurological disorders.
Collapse
|
22
|
Abstract
Ischemia reperfusion injury occurs in the kidney when blood supply is interrupted in clinical settings such as kidney transplantation or nephron sparing surgery for renal tumors. These lesions lead to acute kidney injury (AKI) a detrimental situation associated with impaired short-term allograft function (delayed graft function or primary non function) but also long-term transplant survival through the onset of chronic allograft nephropathy. The present review details the cellular and molecular consequences of ischemia reperfusion in a native kidney as well as in a kidney graft after cold ischemia time, giving a comprehensive description of biological pathways involved during the phase of ischemia and during the reperfusion period where the rapid return to normoxia leads to a large burst of reactive oxygen species along with a dramatic reduction in antioxidant defenses. This work also focuses on the distinct susceptibilities of kidney cells to ischemia (endothelial vs epithelial) and the outcome of acute kidney injury.
Collapse
|
23
|
Jiang ZC, Liang CH, Wang HL, Chen Y, Zheng J, Yu SN, Jiang JY. Effect of N-acetylserotonin on hepatocyte apoptosis after liver ischemia-reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:1387-1394. [DOI: 10.11569/wcjd.v23.i9.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of N-acetylserotonin (NAS) on hepatocyte apoptosis after liver ischemia-reperfusion (I/R) injury in rats.
METHODS: Adult male SD rats weighting 200-250 g were used. The afferent vessels of the left and median lobes were occluded by a microvascular bulldog clamp and then reperfused after 60 min with or without NAS. The morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) staining and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, respectively. The expression of Bcl-2, Bax and activated Caspase3 was evaluated by immunohistochemistry.
RESULTS: The hepatocytes exhibited marked ballooning hydropic degeneration and focal necrosis in the I/R group. NAS pretreatment rescued the morphological damage. Compared with the sham operation group, the expression of cleaved Caspase3, Bcl-2 and Bax in the liver tissue was increased, and the ratio of Bcl-2/Bax was decreased in the I/R group (P < 0.01). The apoptosis index (AI) and expression of cleaved Caspase3 and Bax were decreased in the NAS intervention group compared with the I/R group (P < 0.01), and the expression of Bcl-2 and Bcl-2/Bax ratio were increased (P < 0.01).
CONCLUSION: NAS could attenuate hepatocyte apoptosis after liver I/R injury via mechanisms possibly associated with induction of Bcl-2 protein expression and inhibition of Bax protein expression in hepatocytes.
Collapse
|
24
|
Liu D, Yi B, Liao Z, Tang L, Yin D, Zeng S, Yao J, He M. 14-3-3γ protein attenuates lipopolysaccharide-induced cardiomyocytes injury through the Bcl-2 family/mitochondria pathway. Int Immunopharmacol 2014; 21:509-15. [PMID: 24957688 DOI: 10.1016/j.intimp.2014.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Previous studies have indicated that 14-3-3γ is upregulated by stress in LPS-induced cardiovascular injury. In this study, we investigated the interaction of 14-3-3γ and Bcl-2 family members in the control of the mitochondrial permeability transition (MPT) to test the hypothesis that abundant levels of 14-3-3γ can protect against LPS-induced injury via a Bcl-2 family/mitochondria pathway. The cardiomyocytes were treated with LPS (1mg l(-1)) for 6h; the interaction between 14-3-3γ and phospho-Bad(S112) was detected by co-immunoprecipitation (co-IP); the levels of Bcl-2 family members in the cytosolic and mitochondrial fractions were examined by Western blot; the apoptosis and mitochondrial membrane potential (ΔΨm) were detected by flow cytometry; and the mitochondrial permeability transition pore (mPTP) opening was tested by mitochondrial swelling. Our results revealed that LPS treatment results in cardiomyocyte injury, and these effects were significantly attenuated by pFLAG-14-3-3γ. Moreover, LPS treatment induced Bax translocation to the mitochondria, ΔΨm loss, mitochondrial swelling, and cytochrome c release, and pFLAG-14-3-3γ reversed these effects induced by LPS. Moreover, overexpressed 14-3-3γ protein could assist Bad(S112) phosphorylation and interact with it to form a complex, which might result in the disassociation of Bcl-2 from the Bad/Bcl-2 complex and its translocation from the cytosol to the mitochondria. Our data firstly confirmed that a high level of 14-3-3γ protects against LPS-induced cardiomyocyte injury likely through a pathway associated with the regulation of the subcellular localizations of Bcl-2 and Bad that results in the prevention of mPTP opening, the maintenance of ΔΨm, and ultimately the inhibition of apoptosis.
Collapse
Affiliation(s)
- Dan Liu
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Bo Yi
- 2nd Abdominal Surgery Department of JiangXi province tumor Hospital,Nanchang 330029, PR China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Lei Tang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang 330006, PR China
| | - Shu Zeng
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Jianguo Yao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China.
| |
Collapse
|
25
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
26
|
Mitochondrial ion channels as oncological targets. Oncogene 2014; 33:5569-81. [DOI: 10.1038/onc.2013.578] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
|
27
|
Teng CC, Kuo HC, Sze CI. Quantitative proteomic analysis of the inhibitory effects of CIL-102 on viability and invasiveness in human glioma cells. Toxicol Appl Pharmacol 2013; 272:579-90. [DOI: 10.1016/j.taap.2013.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 02/02/2023]
|
28
|
Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013; 4:227. [PMID: 24027528 PMCID: PMC3759743 DOI: 10.3389/fphys.2013.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 02/02/2023] Open
Abstract
Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Pedersen SF, Hoffmann EK, Novak I. Cell volume regulation in epithelial physiology and cancer. Front Physiol 2013; 4:233. [PMID: 24009588 PMCID: PMC3757443 DOI: 10.3389/fphys.2013.00233] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/09/2013] [Indexed: 12/21/2022] Open
Abstract
The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed.
Collapse
Affiliation(s)
- Stine F Pedersen
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
30
|
Olszewska A, Szewczyk A. Mitochondria as a pharmacological target: magnum overview. IUBMB Life 2013; 65:273-81. [PMID: 23441041 DOI: 10.1002/iub.1147] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/14/2012] [Indexed: 12/30/2022]
Abstract
Mitochondria, responsible for energy metabolism within the cell, act as signaling organelles. Mitochondrial dysfunction may lead to cell death and oxidative stress and may disturb calcium metabolism. Additionally, mitochondria play a pivotal role in cardioprotective phenomena and a variety of neurodegenerative disorders ranging from Parkinson's to Alzheimer's disease. Mitochondrial DNA mutations may lead to impaired respiration. Hence, targeting the mitochondria with drugs offers great potential for new therapeutic approaches. The purpose of this overview is to present the recent state of knowledge concerning the interactions of various substances with mitochondria.
Collapse
Affiliation(s)
- Anna Olszewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
31
|
Fauconnier J, Roberge S, Saint N, Lacampagne A. Type 2 ryanodine receptor: A novel therapeutic target in myocardial ischemia/reperfusion. Pharmacol Ther 2013; 138:323-32. [DOI: 10.1016/j.pharmthera.2013.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
32
|
Štěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, Šimůnek T. Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal 2013; 18:899-929. [PMID: 22794198 PMCID: PMC3557437 DOI: 10.1089/ars.2012.4795] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Anthracyclines (doxorubicin, daunorubicin, or epirubicin) rank among the most effective anticancer drugs, but their clinical usefulness is hampered by the risk of cardiotoxicity. The most feared are the chronic forms of cardiotoxicity, characterized by irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be complex, the pivotal role has been traditionally attributed to the iron-mediated formation of reactive oxygen species (ROS). In clinics, the bisdioxopiperazine agent dexrazoxane (ICRF-187) reduces the risk of anthracycline cardiotoxicity without a significant effect on response to chemotherapy. The prevailing concept describes dexrazoxane as a prodrug undergoing bioactivation to an iron-chelating agent ADR-925, which may inhibit anthracycline-induced ROS formation and oxidative damage to cardiomyocytes. RECENT ADVANCES A considerable body of evidence points to mitochondria as the key targets for anthracycline cardiotoxicity, and therefore it could be also crucial for effective cardioprotection. Numerous antioxidants and several iron chelators have been tested in vitro and in vivo with variable outcomes. None of these compounds have matched or even surpassed the effectiveness of dexrazoxane in chronic anthracycline cardiotoxicity settings, despite being stronger chelators and/or antioxidants. CRITICAL ISSUES The interpretation of many findings is complicated by the heterogeneity of experimental models and frequent employment of acute high-dose treatments with limited translatability to clinical practice. FUTURE DIRECTIONS Dexrazoxane may be the key to the enigma of anthracycline cardiotoxicity, and therefore it warrants further investigation, including the search for alternative/complementary modes of cardioprotective action beyond simple iron chelation.
Collapse
Affiliation(s)
- Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Olga Popelová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Anna Vávrová
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Petra Kovaříková
- Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimír Geršl
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
33
|
Li R, Yan G, Li Q, Sun H, Hu Y, Sun J, Xu B. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H₂O₂)-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS One 2012; 7:e44907. [PMID: 23028672 PMCID: PMC3445575 DOI: 10.1371/journal.pone.0044907] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/09/2012] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondrial pathway. Quantitative real-time PCR (qPCR) demonstrated that the expression of miR-145 in either ischemia/reperfused mice myocardial tissues or H2O2-treated neonatal rat ventricle myocytes (NRVMs) was markedly down-regulated. Over-expression of miR-145 significantly inhibited the H2O2-induced cellular apoptosis, ROS production, mitochondrial structure disruption as well as the activation of key signaling proteins in mitochondrial apoptotic pathway. These protective effects of miR-145 were abrogated by over-expression of Bnip3, an initiation factor of the mitochondrial apoptotic pathway in cardiomyocytes. Finally, we utilized both luciferase reporter assay and western blot analysis to identify Bnip3 as a direct target of miR-145. Our results suggest miR-145 plays an important role in regulating mitochondrial apoptotic pathway in heart challenged with oxidative stress. MiR-145 may represent a potential therapeutic target for treatment of oxidative stress-associated cardiovascular diseases, such as myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ruotian Li
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Guijun Yan
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qiaoling Li
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Haixiang Sun
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yali Hu
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennslyvania, The United States of America
- * E-mail: (BX); (JS)
| | - Biao Xu
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- * E-mail: (BX); (JS)
| |
Collapse
|
34
|
Davis RE, Williams M. Mitochondrial function and dysfunction: an update. J Pharmacol Exp Ther 2012; 342:598-607. [PMID: 22700430 DOI: 10.1124/jpet.112.192104] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the current explosion of knowledge on the role of mitochondrial dysfunction in the genesis of various human disease states, there is an increased interest in targeting mitochondrial processes, pathways, and proteins for drug discovery efforts in cancer and cardiovascular, metabolic, and central nervous system diseases, the latter including autism and neurodegenerative diseases. We provide an update on understanding the central role of the mitochondrion in ATP and reactive oxygen species production and in controlling cell death pathways.
Collapse
Affiliation(s)
- Robert E Davis
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
35
|
Mitochondria death/survival signaling pathways in cardiotoxicity induced by anthracyclines and anticancer-targeted therapies. Biochem Res Int 2012; 2012:951539. [PMID: 22482055 PMCID: PMC3318211 DOI: 10.1155/2012/951539] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 01/27/2023] Open
Abstract
Anthracyclines remain the cornerstone of treatment in many malignancies but these agents have a cumulative dose relationship with cardiotoxicity. Development of cardiomyopathy and congestive heart failure induced by anthracyclines are typically dose-dependent, irreversible, and cumulative. Although past studies of cardiotoxicity have focused on anthracyclines, more recently interest has turned to anticancer drugs that target many proteins kinases, such as tyrosine kinases. An attractive model to explain the mechanism of this cardiotoxicity could be myocyte loss through cell death pathways. Inhibition of mitochondrial transition permeability is a valuable tool to prevent doxorubicin-induced cardiotoxicity. In response to anthracycline treatment, activation of several protein kinases, neuregulin/ErbB2 signaling, and transcriptional factors modify mitochondrial functions that determine cell death or survival through the modulation of mitochondrial membrane permeability. Cellular response to anthracyclines is also modulated by a myriad of transcriptional factors that influence cell fate. Several novel targeted chemotherapeutic agents have been associated with a small but worrying risk of left ventricular dysfunction. Agents such as trastuzumab and tyrosine kinase inhibitors can lead to cardiotoxicity that is fundamentally different from that caused by anthracyclines, whereas biological effects converge to the mitochondria as a critical target.
Collapse
|
36
|
Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. International Quality of Life Assessment. PPAR Res 1998; 2016:9282087. [PMID: 27051413 PMCID: PMC4802016 DOI: 10.1155/2016/9282087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Activated AMPK protects the heart from cardiac ischemia-reperfusion (IR) injury and is associated with inhibition of mitochondrial permeability transition pore (PTP) opening. On the other hand, pharmacological inhibition of the PTP reduces infarct size and improves cardiac function. However, it is unclear whether beneficial effects of AMPK are mediated through the PTP and, if they are not, whether simultaneous activation of AMPK and inhibition of the PTP exert synergistic protective effects against cardiac IR injury. Here, we examined the effects of the AMPK activator, A-769662 in combination with the PTP inhibitor, sanglifehrin A (SfA) on in vivo cardiac IR. Cardiac dysfunction following IR injury was associated with decreased activity of the mitochondrial electron transport chain (ETC) and increased mitochondrial ROS and PTP opening. Administration of A-769662 or SfA individually upon reperfusion improved cardiac function, reduced infarction size, and inhibited ROS production and PTP opening. However, simultaneous administration of SfA and A-769662 did not provide synergistic improvement of postischemic recovery of cardiac and mitochondrial function, though both compounds disrupted IR-induced interaction between PPARα and CyP-D. In conclusion, A-769662 or SfA prevents PPARα interaction with CyP-D, improving cardiac outcomes and increasing mitochondrial function, and simultaneous administration of the drugs does not provide synergistic effects.
Collapse
|