1
|
Zheng C, Sarin KY. Unveiling the genetic landscape of hereditary melanoma: From susceptibility to surveillance. Cancer Treat Res Commun 2024; 40:100837. [PMID: 39137473 DOI: 10.1016/j.ctarc.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
The multifactorial etiology underlying melanoma development involves an array of genetic, phenotypic, and environmental factors. Genetic predisposition for melanoma is further influenced by the complex interplay between high-, medium-, and low-penetrance genes, each contributing to varying degrees of susceptibility. Within this network, high-penetrance genes, including CDKN2A, CDK4, BAP1, and POT1, are linked to a pronounced risk for disease, whereas medium- and low-penetrance genes, such as MC1R, MITF, and others, contribute only moderately to melanoma risk. Notably, these genetic factors not only heighten the risk of melanoma but may also increase susceptibility towards internal malignancies, such as pancreatic cancer, renal cell cancer, or neural tumors. Genetic testing and counseling hold paramount importance in the clinical context of suspected hereditary melanoma, facilitating risk assessment, personalized surveillance strategies, and informed decision-making. As our understanding of the genomic landscape deepens, this review paper aims to comprehensively summarize the genetic underpinnings of hereditary melanoma, as well as current screening and management strategies for the disease.
Collapse
Affiliation(s)
- Chenming Zheng
- Stanford University Department of Dermatology, Redwood City, CA, USA
| | - Kavita Y Sarin
- Stanford University Department of Dermatology, Redwood City, CA, USA.
| |
Collapse
|
2
|
Spagnol LW, Polettini J, Silveira DA, Wegner GRM, Paiva DFF. P16 gene promoter methylation is associated with oncogenesis and progression of gastric carcinomas: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2022; 180:103843. [DOI: 10.1016/j.critrevonc.2022.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
3
|
Zhao H, Cheng Y, Kalra A, Ma K, Zheng Y, Ziman B, Tressler C, Glunde K, Shin EJ, Ngamruengphong S, Khashab M, Singh V, Anders RA, Jit S, Wyhs N, Chen W, Li X, Lin DC, Meltzer SJ. Generation and multiomic profiling of a TP53/CDKN2A double-knockout gastroesophageal junction organoid model. Sci Transl Med 2022; 14:eabq6146. [PMID: 36449602 PMCID: PMC10026384 DOI: 10.1126/scitranslmed.abq6146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Inactivation of the tumor suppressor genes tumor protein p53 (TP53) and cyclin-dependent kinase inhibitor 2A (CDKN2A) occurs early during gastroesophageal junction (GEJ) tumorigenesis. However, because of a paucity of GEJ-specific disease models, cancer-promoting consequences of TP53 and CDKN2A inactivation at the GEJ have not been characterized. Here, we report the development of a wild-type primary human GEJ organoid model and a CRISPR-edited transformed GEJ organoid model. CRISPR-Cas9-mediated TP53 and CDKN2A knockout (TP53/CDKN2AKO) in GEJ organoids induced morphologic dysplasia and proneoplastic features in vitro and tumor formation in vivo. Lipidomic profiling identified several platelet-activating factors (PTAFs) among the most up-regulated lipids in CRISPR-edited organoids. PTAF/PTAF receptor (PTAFR) abrogation by siRNA knockdown or a pharmacologic inhibitor (WEB2086) reduced proliferation and other proneoplastic features of TP53/CDKN2AKO GEJ organoids in vitro and tumor formation in vivo. In addition, murine xenografts of Eso26, an established human esophageal adenocarcinoma cell line, were suppressed by WEB2086. Mechanistically, TP53/CDKN2A dual inactivation disrupted both the transcriptome and the DNA methylome, likely mediated by key transcription factors, particularly forkhead box M1 (FOXM1). FOXM1 activated PTAFR transcription by binding to the PTAFR promoter, further amplifying the PTAF-PTAFR pathway. Together, these studies established a robust model system for investigating early GEJ neoplastic events, identified crucial metabolic and epigenomic changes occurring during GEJ model tumorigenesis, and revealed a potential cancer therapeutic strategy. This work provides insights into proneoplastic mechanisms associated with TP53/CDKN2A inactivation in early GEJ neoplasia, which may facilitate early diagnosis and prevention of GEJ neoplasms.
Collapse
Affiliation(s)
- Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, Shaanxi, China
| | - Yulan Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Andrew Kalra
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ke Ma
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Einstein Healthcare Network, Philadelphia, PA 19136, USA
| | - Yueyuan Zheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Caitlin Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eun Ji Shin
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Saowanee Ngamruengphong
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mouen Khashab
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vikesh Singh
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Simran Jit
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicolas Wyhs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wei Chen
- Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an 710061, Shaanxi, China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephen J. Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
5
|
SLC26A9 deficiency causes gastric intraepithelial neoplasia in mice and aggressive gastric cancer in humans. Cell Oncol (Dordr) 2022; 45:381-398. [PMID: 35426084 PMCID: PMC9187568 DOI: 10.1007/s13402-022-00672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Solute carrier family 26 member (SLC26A9) is a Cl− uniporter with very high expression levels in the gastric mucosa. Here, we describe morphological and molecular alterations in gastric mucosa of slc26a9−/− mice and in selective parietal cell-deleted slc26a9fl/fl/Atp4b-Cre mice and correlate SLC26A9 expression levels with morphological and clinical parameters in a cohort of gastric cancer (GC) patients. Methods The expression patterns of genes related to transport and enzymatic function, proliferation, apoptosis, inflammation, barrier integrity, metaplasia and neoplasia development were studied by immunohistochemistry (IHC), quantitative RT-PCR, in situ hybridization and RNA microarray analysis. SLC26A9 expression and cellular/clinical phenotypes were studied in primary human GC tissues and GC cell lines. Results We found that both complete and parietal cell-selective Slc26a9 deletion in mice caused spontaneous development of gastric premalignant and malignant lesions. Dysregulated differentiation of gastric stem cells in an inflammatory environment, activated Wnt signaling, cellular hyperproliferation, apoptosis inhibition and metaplasia were observed. Analysis of human gastric precancerous and cancerous tissues revealed that SLC26A9 expression progressively decreased from atrophic gastritis to GC, and that downregulation of SLC26A9 was correlated with patient survival. Exogenous expression of SLC26A9 in GC cells induced upregulation of the Cl−/HCO3− exchanger AE2, G2/M cell cycle arrest and apoptosis and suppressed their proliferation, migration and invasion. Conclusions Our data indicate that SLC26A9 deletion in parietal cells is sufficient to trigger gastric metaplasia and the development of neoplastic lesions. In addition, we found that SLC26A9 expression decreases during human gastric carcinogenesis, and that exogenous SLC26A9 expression in GC cells reduces their malignant behavior. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13402-022-00672-x.
Collapse
|
6
|
Allameh A, Moazeni-Roodi A, Harirchi I, Ravanshad M, Motiee-Langroudi M, Garajei A, Hamidavi A, Mesbah-Namin SA. Promoter DNA Methylation and mRNA Expression Level of p16 Gene in Oral Squamous Cell Carcinoma: Correlation with Clinicopathological Characteristics. Pathol Oncol Res 2018; 25:1535-1543. [PMID: 30511108 DOI: 10.1007/s12253-018-0542-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the relationship between p16 methylation and its expression in oral squamous cell carcinoma (OSCC). Also the contribution of clinicopathological factors, HPV infection and smoking in p16 expression and promoter methylation has been investigated. In this study 67 consecutive OSCC patients and 59 normal individuals were enrolled. All patients were candidates for surgery of oral cavity and fresh tumor biopsies were collected and processed for DNA and RNA extraction. Normal gingival tissues were collected from individuals referred to dentistry clinic and considered as controls. All the cases and controls were checked for HPV infection and then promoter methylation and expression of p16 gene were determined using Methylation-specific PCR (MSP) and real-time PCR (QPCR), respectively. Methylation of p16 in tumors and normal tissues were 59.7 and 38.9%, respectively. Most of hypermethylated samples (>82%) were in high grades. P16 methylation was comparable in HPV+ and HPV- patients or smokers. P16 was overexpressed (~3 fold; p = 0.044) in HPV+ tumors, but it was significantly down-regulated in smoker patients (40% of all tumors). Comparison of P16 expression in OSCC tumors with different degrees of promoter methylation further suggest the relationship of methylation rate and down-regulation of P16 expression. The p16 methylation and expression was differentially affected in patients with HPV infection and the smoker cases. Regardless of the influence of environmental factors, it appears that P16 status is useful for classifying patients with OSCC and for influencing treatment strategies in accordance with this classification. Moreover, targeting the upregulation of p16 could be a promising therapeutic option.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
| | - Abdolkarim Moazeni-Roodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.,Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Iraj Harirchi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Maziar Motiee-Langroudi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ata Garajei
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Department of Oral and Maxillofacial Surgery, School of Dentistry and Department of Head and Neck Surgical Oncology and Reconstructive Surgery, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Hamidavi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| |
Collapse
|
7
|
do Rosário Pinheiro D, Harada ML, Rodriguez Burbano RM, do Nascimento Borges B. COX-2 gene expression and methylation profile in Sapajus apella as an experimental model for gastric adenocarcinoma. Genet Mol Biol 2018; 41:496-501. [PMID: 29767663 PMCID: PMC6082229 DOI: 10.1590/1678-4685-gmb-2016-0329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 10/19/2017] [Indexed: 11/27/2022] Open
Abstract
Gastric cancer (GC) remains one of the main causes of cancer-related death worldwide. There are two distinct histological types of GC: diffuse and intestinal. The latter is characterized by the presence of pre-neoplastic lesions. One of the most frequently altered enzymes in intestinal GC is COX-2, an important lesion marker. This work aimed to study COX-2 methylation and expression in N-methyl-N-Nitrosurea (MNU)-induced intestinal GC in six Sapajus apella animals. The partial promoter sequence of S. apella COX-2 gene was obtained and used to identify transcription factors and cis-regulatory element binding sites. The COX-2 methylation pattern was assessed using Methylation-Specific PCR (MSP), and expression was analyzed by immunohistochemistry (IHQ). A total of 20 samples were obtained. A 675 bp fragment of the S. apella COX-2 promoter region was obtained, and it was 99.2% and 68.2% similar to H. sapiens and S. boliviensis, respectively. Similar to humans, several transcription factors and cis-regulatory element binding sites were identified in the S. apella sequence. MSP revealed that all samples were methylated. However, IHQ results demonstrated positive COX-2 expression in all pre-neoplastic and tumoral samples. The results suggest that the analyzed fragment is not crucial in COX-2 regulation of GC in S. apella.
Collapse
Affiliation(s)
- Danilo do Rosário Pinheiro
- Universidade Federal do
ParáUniversidade Federal do ParáInstituto de Ciências
BiológicasMolecular Biology LaboratoryBelémPABrazilMolecular Biology Laboratory, Instituto de
Ciências Biológicas. Universidade Federal do Pará, Belém, PA,
Brazil
| | - Maria Lucia Harada
- Universidade Federal do
ParáUniversidade Federal do ParáInstituto de Ciências
BiológicasMolecular Biology LaboratoryBelémPABrazilMolecular Biology Laboratory, Instituto de
Ciências Biológicas. Universidade Federal do Pará, Belém, PA,
Brazil
| | - Rommel Mario Rodriguez Burbano
- Universidade Federal do
ParáUniversidade Federal do ParáInstituto de Ciências
BiológicasHuman Cytogenetics LaboratoryBelémPABrazilHuman Cytogenetics Laboratory, Instituto de
Ciências Biológicas. Universidade Federal do Pará, Belém, PA,
Brazil
| | - Barbara do Nascimento Borges
- Universidade Federal do
ParáUniversidade Federal do ParáInstituto de Ciências
BiológicasMolecular Biology LaboratoryBelémPABrazilMolecular Biology Laboratory, Instituto de
Ciências Biológicas. Universidade Federal do Pará, Belém, PA,
Brazil
| |
Collapse
|
8
|
Shen S, Chen X, Li H, Sun L, Yuan Y. MLH1 Promoter Methylation and Prediction/Prognosis of Gastric Cancer: A Systematic Review and Meta and Bioinformatic Analysis. J Cancer 2018; 9:1932-1942. [PMID: 29896277 PMCID: PMC5995951 DOI: 10.7150/jca.23284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background: The promoter methylation of MLH1 gene and gastric cancer (GC)has been investigated previously. To get a more credible conclusion, we performed a systematic review and meta and bioinformatic analysis to clarify the role of MLH1 methylation in the prediction and prognosis of GC. Methods: Eligible studies were targeted after searching the PubMed, Web of Science, Embase, BIOSIS, CNKI and Wanfang Data to collect the information of MLH1 methylation and GC. The link strength between the two was estimated by odds ratio with its 95% confidence interval. The Newcastle-Ottawa scale was used for quantity assessment. Subgroup and sensitivity analysis were conducted to explore sources of heterogeneity. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were employed for bioinformatics analysis on the correlation between MLH1 methylation and GC risk, clinicopathological behavior as well as prognosis. Results: 2365 GC and 1563 controls were included in the meta-analysis. The pooled OR of MLH1 methylation in GC was 4.895 (95% CI: 3.149-7.611, P<0.001), which considerably associated with increased GC risk. No significant difference was found in relation to Lauren classification, tumor invasion, lymph node/distant metastasis and tumor stage in GC. Analysis based on GEO and TCGA showed that high MLH1 methylation enhanced GC risk but might not related with GC clinicopathological features and prognosis. Conclusion:MLH1 methylation is an alive biomarker for the prediction of GC and it might not affect GC behavior. Further study could be conducted to verify the impact of MLH1 methylation on GC prognosis.
Collapse
Affiliation(s)
- Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Xiaohui Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Hao Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| |
Collapse
|
9
|
Ye P, Shi Y, Li A. Association Between hMLH1 Promoter Methylation and Risk of Gastric Cancer: A Meta-Analysis. Front Physiol 2018; 9:368. [PMID: 29719511 PMCID: PMC5914280 DOI: 10.3389/fphys.2018.00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Human mutL homolog 1 (hMLH1) is located on chromosome 3q21-23. As a classic tumor suppressor gene, many researchers have studied the association between hMLH1 promoter methylation and gastric cancer, but their conclusions were not always consistent. Therefore, we performed a meta-analysis to make a more integrated and precise estimate of the associations. Method: PubMed, EMBASE, and Cochrane Library were retrieved without language restrictions. Data were analyzed by Review Manager 5.2 and Stata 12.0 software. Odds ratio (OR) with 95% confidence interval (95%CI) was used to assess the statistical associations. Result: A total of 39 studies published before January 20, 2018 were included in this study. The results indicated that the frequency of hMLH1 promoter methylation in gastric cancers was substantially higher than that in non-cancer controls (OR = 7.94, 95%CI = 4.32–14.58, P < 0.001). Furthermore, hMLH1 promoter methylation had considerable associations with lymph node metastasis, microsatellite instability (MSI), and low expression of hMLH1 protein (OR = 1.53, 95%CI = 1.04–2.26, P = 0.03; OR = 15.33, 95%CI = 9.26–25.36, P < 0.001; OR = 37.86, 95%CI = 18.03–79.50, P < 0.001, respectively). No association was found between hMLH1 promoter methylation and Lauren classification or Helicobacter pylori (HP) infection status. Conclusion: The present study provides evidence that promoter methylation of hMLH1 is a major causative event in the occurrence and development of human gastric cancer.
Collapse
Affiliation(s)
- Peng Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Shi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anling Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Pirini F, Noazin S, Jahuira-Arias MH, Rodriguez-Torres S, Friess L, Michailidi C, Cok J, Combe J, Vargas G, Prado W, Soudry E, Pérez J, Yudin T, Mancinelli A, Unger H, Ili-Gangas C, Brebi-Mieville P, Berg DE, Hayashi M, Sidransky D, Gilman RH, Guerrero-Preston R. Early detection of gastric cancer using global, genome-wide and IRF4, ELMO1, CLIP4 and MSC DNA methylation in endoscopic biopsies. Oncotarget 2018; 8:38501-38516. [PMID: 28418867 PMCID: PMC5503549 DOI: 10.18632/oncotarget.16258] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 12/15/2022] Open
Abstract
Clinically useful molecular tools to triage gastric cancer patients are not currently available. We aimed to develop a molecular tool to predict gastric cancer risk in endoscopy-driven biopsies obtained from high-risk gastric cancer clinics in low resource settings. We discovered and validated a DNA methylation biomarker panel in endoscopic samples obtained from 362 patients seen between 2004 and 2009 in three high-risk gastric cancer clinics in Lima, Perú, and validated it in 306 samples from the Cancer Genome Atlas project (“TCGA”). Global, epigenome wide and gene-specific DNA methylation analyses were used in a Phase I Biomarker Development Trial to identify a continuous biomarker panel that combines a Global DNA Methylation Index (GDMI) and promoter DNA methylation levels of IRF4, ELMO1, CLIP4 and MSC. We observed an inverse association between the GDMI and histological progression to gastric cancer, when comparing gastritis patients without metaplasia (mean = 5.74, 95% CI, 4.97−6.50), gastritis patients with metaplasia (mean = 4.81, 95% CI, 3.77−5.84), and gastric cancer cases (mean = 3.38, 95% CI, 2.82−3.94), respectively (p < 0.0001). Promoter methylation of IRF4 (p < 0.0001), ELMO1 (p < 0.0001), CLIP4 (p < 0.0001), and MSC (p < 0.0001), is also associated with increasing severity from gastritis with no metaplasia to gastritis with metaplasia and gastric cancer. Our findings suggest that IRF4, ELMO1, CLIP4 and MSC promoter methylation coupled with a GDMI>4 are useful molecular tools for gastric cancer risk stratification in endoscopic biopsies.
Collapse
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sassan Noazin
- The Johns Hopkins University, Bloomberg School of Public Health, Department of International Health, Baltimore, MD, USA
| | - Martha H Jahuira-Arias
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sebastian Rodriguez-Torres
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Leah Friess
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Christina Michailidi
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Jaime Cok
- Hospital Nacional Cayetano Heredia, Pathology Department, Lima, Perú
| | - Juan Combe
- Instituto Nacional de Enfermedades Neoplásicas, Gastroenterology Department, Lima, Perú
| | - Gloria Vargas
- Hospital Nacional Arzobispo Loayza, Gastroenterology Department, Lima, Perú
| | - William Prado
- Hospital Nacional Dos de Mayo, Gastroenterology Department, Lima, Perú
| | - Ethan Soudry
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Jimena Pérez
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Tikki Yudin
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Andrea Mancinelli
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Helen Unger
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Carmen Ili-Gangas
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Priscilla Brebi-Mieville
- Laboratory of Molecular Pathology, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Douglas E Berg
- Washington University Medical School, Department of Molecular Microbiology, St Louis, MO, USA.,University of California San Diego, Department of Medicine, La Jolla, CA, USA
| | - Masamichi Hayashi
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David Sidransky
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA
| | - Robert H Gilman
- The Johns Hopkins University, Bloomberg School of Public Health, Department of International Health, Baltimore, MD, USA.,Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rafael Guerrero-Preston
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, MD, USA.,University of Puerto Rico School of Medicine, Department of Obstetrics and Gynecology, San Juan, Puerto Rico
| |
Collapse
|
11
|
Moron RA, Jacob CE, Bresciani CJC, Simões K, Alves VAF, Irya K, Gama-Rodrigues J, Cecconello I, Longatto-Filho A, Zilberstein B. Characterization of oncogene suppressor marker expression in patients with submucosal gastric carcinoma. Mol Clin Oncol 2018; 8:477-482. [PMID: 29468062 DOI: 10.3892/mco.2017.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/06/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the clinical significance of p53 and p21ras p21wafl, p27kip1 and p16ink4a expression in cases of early gastric cancer. A total of 81 patients who had undergone gastrectomy with D2 lymphadenectomy between 1971 and 2004 were retrospectively investigated. The immunohistochemical expression of p21ras, p53, p21waf1/cip1, p27kip1 and p16ink4a in the tissues was evaluated. In normal, metaplastic and tumoral mucosa, p53 was positive in 53, 87.3, and 87.1% of the cases, respectively. In the same tissues, p21ras was positivE in 85.3, 86 and 96.8%, respectively. Positivity FOR p16ink4a was DETECTED IN 46.3, 91.1 and 86% OF THE CASES, respectively, WHEREAS p27kip1 WAS positiVE IN 60, 94.7 and 95.3%, and p21wafl/cip1 WAS positivE IN 32.4, 72.7 and 71.4% OF THE CASES, respectively. All THE tumors WERE positive for p53. Tumors with lymph node invasion presented WITH OVERexpression (+4) of p53 in 47% of the cases VS. 17% OF patients who DID not HAVE lymph node involvement. THEREFORE, higher expression of p53, p21ras and p21wafl/cip1 IN the tumor exhibited a statistically significant association with lymph node involvement.
Collapse
Affiliation(s)
- Roberson A Moron
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | - Carlos Eduardo Jacob
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | | | - Kleber Simões
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | | | - Kyoshi Irya
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | - Joaquim Gama-Rodrigues
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | - Ivan Cecconello
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | - Adhemar Longatto-Filho
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil.,Department of Laboratory of Medical Investigation (LIM) 14, Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Zilberstein
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| |
Collapse
|
12
|
Guo J, Yu W, Su H, Pang X. Genomic landscape of gastric cancer: molecular classification and potential targets. SCIENCE CHINA-LIFE SCIENCES 2016; 60:126-137. [PMID: 27460193 DOI: 10.1007/s11427-016-0034-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Gastric cancer imposes a considerable health burden worldwide, and its mortality ranks as the second highest for all types of cancers. The limited knowledge of the molecular mechanisms underlying gastric cancer tumorigenesis hinders the development of therapeutic strategies. However, ongoing collaborative sequencing efforts facilitate molecular classification and unveil the genomic landscape of gastric cancer. Several new drivers and tumorigenic pathways in gastric cancer, including chromatin remodeling genes, RhoA-related pathways, TP53 dysregulation, activation of receptor tyrosine kinases, stem cell pathways and abnormal DNA methylation, have been revealed. These newly identified genomic alterations await translation into clinical diagnosis and targeted therapies. Considering that loss-of-function mutations are intractable, synthetic lethality could be employed when discussing feasible therapeutic strategies. Although many challenges remain to be tackled, we are optimistic regarding improvements in the prognosis and treatment of gastric cancer in the near future.
Collapse
Affiliation(s)
- Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiwei Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hui Su
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Verma M. The Role of Epigenomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 867:59-80. [PMID: 26530360 DOI: 10.1007/978-94-017-7215-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics plays a key role in cancer development. Genetics alone cannot explain sporadic cancer and cancer development in individuals with no family history or a weak family history of cancer. Epigenetics provides a mechanism to explain the development of cancer in such situations. Alterations in epigenetic profiling may provide important insights into the etiology and natural history of cancer. Because several epigenetic changes occur before histopathological changes, they can serve as biomarkers for cancer diagnosis and risk assessment. Many cancers may remain asymptomatic until relatively late stages; in managing the disease, efforts should be focused on early detection, accurate prediction of disease progression, and frequent monitoring. This chapter describes epigenetic biomarkers as they are expressed during cancer development and their potential use in cancer diagnosis and prognosis. Based on epigenomic information, biomarkers have been identified that may serve as diagnostic tools; some such biomarkers also may be useful in identifying individuals who will respond to therapy and survive longer. The importance of analytical and clinical validation of biomarkers is discussed, along with challenges and opportunities in this field.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Suite# 4E102. 9609 Medical Center Drive, MSC 9763, Bethesda, MD, 20892-9726, USA.
| |
Collapse
|
14
|
Kupcinskaite-Noreikiene R, Ugenskiene R, Noreika A, Rudzianskas V, Gedminaite J, Skieceviciene J, Juozaityte E. Gene methylation profile of gastric cancerous tissue according to tumor site in the stomach. BMC Cancer 2016; 16:40. [PMID: 26810771 PMCID: PMC4727411 DOI: 10.1186/s12885-016-2077-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/19/2016] [Indexed: 01/05/2023] Open
Abstract
Background There is considerable information on the methylation of the promoter regions of different genes involved in gastric carcinogenesis. However, there is a lack of information on how this epigenetic process differs in tumors originating at different sites in the stomach. The aim of this study is to assess the methylation profiles of the MLH1, MGMT, and DAPK-1 genes in cancerous tissues from different stomach sites. Methods Samples were acquired from 81 patients suffering stomach adenocarcinoma who underwent surgery for gastric cancer in the Lithuanian University of Health Sciences Hospital Kaunas Clinics in 2009–2012. Gene methylation was investigated with methylation-specific PCR. The study was approved by the Lithuanian Biomedical Research Ethics Committee. Results The frequencies of methylation in cancerous tissues from the upper, middle, and lower thirds of the stomach were 11.1, 23.1, and 45.4 %, respectively, for MLH1; 22.2, 30.8, and 57.6 %, respectively, for MGMT; and 44.4, 48.7, and 51.5 %, respectively, for DAPK-1. MLH1 and MGMT methylation was observed more often in the lower third of the stomach than in the upper third (p < 0.05). In the middle third, DAPK-1 promoter methylation was related to more-advanced disease in the lymph nodes (N2–3 compared with N0–1 [p = 0.02]) and advanced tumor stage (stage III rather than stages I–II [p = 0.05]). MLH1 and MGMT methylation correlated inversely when the tumor was located in the lower third of the stomach (coefficient, –0.48; p = 0.01). DAPK-1 and MLH1 methylation correlated inversely in tumors in the middle-third of the stomach (coefficient, –0.41; p = 0.01). Conclusion Gene promoter methylation depends on the gastric tumor location.
Collapse
Affiliation(s)
| | - Rasa Ugenskiene
- Oncology Institute of the Lithuanian University of Health Sciences, Eiveniu 2, Kaunas, 50009, Lithuania
| | - Alius Noreika
- Kaunas University of Technology, Studentu 50, Kaunas, 50009, Lithuania
| | - Viktoras Rudzianskas
- Oncology Institute of the Lithuanian University of Health Sciences, Eiveniu 2, Kaunas, 50009, Lithuania
| | - Jurgita Gedminaite
- Oncology Institute of the Lithuanian University of Health Sciences, Eiveniu 2, Kaunas, 50009, Lithuania
| | - Jurgita Skieceviciene
- Laboratory of Clinical and Molecular Gastroenterology, Lithuanian University of Health Sciences, Eiveniu 2, Kaunas, 50009, Lithuania
| | - Elona Juozaityte
- Oncology Institute of the Lithuanian University of Health Sciences, Eiveniu 2, Kaunas, 50009, Lithuania
| |
Collapse
|
15
|
Niller HH, Minarovits J. Patho-epigenetics of Infectious Diseases Caused by Intracellular Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:107-130. [PMID: 26659266 DOI: 10.1007/978-3-319-24738-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multicellular eukaryotes including plants, animals and humans, epigenetic reprogramming may play a role in the pathogenesis of a wide variety of diseases. Recent studies revealed that in addition to viruses, pathogenic bacteria are also capable to dysregulate the epigenetic machinery of their target cells. In this chapter we focus on epigenetic alterations induced by bacteria infecting humans. Most of them are obligate or facultative intracellular bacteria that produce either bacterial toxins and surface proteins targeting the host cell membrane, or synthesise effector proteins entering the host cell nucleus. These bacterial products typically elicit histone modifications, i.e. alter the "histone code". Bacterial pathogens are capable to induce alterations of host cell DNA methylation patterns, too. Such changes in the host cell epigenotype and gene expression pattern may hinder the antibacterial immune response and create favourable conditions for bacterial colonization, growth, or spread. Epigenetic dysregulation mediated by bacterial products may also facilitate the production of inflammatory cytokines and other inflammatory mediators affecting the epigenotype of their target cells. Such indirect epigenetic changes as well as direct interference with the epigenetic machinery of the host cells may contribute to the initiation and progression of malignant tumors associated with distinct bacterial infections.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| |
Collapse
|
16
|
DNA methylation analysis of cancer-related genes in oral epithelial cells of healthy smokers. Arch Oral Biol 2015; 60:825-33. [PMID: 25791328 DOI: 10.1016/j.archoralbio.2015.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/18/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
AIM The aim of this study was to investigate the smoking habit influence on DNA methylation status in the promoters of the cancer related-genes MLH1, hTERT and TP53 in oral epithelial cells of healthy subjects. MATERIALS AND METHODS DNA methylation analysis was performed using methylation-sensitive restriction enzymes (MSRE) in oral epithelial cells from non-smokers, smokers and ex-smokers. RESULTS The investigated CpG dinucleotides located at HhaI and HpaII sites in the MLH1 gene promoter were observed to be fully methylated in the majority of DNA samples from the smoker group and statistical differences were found between non-smokers and smokers and between smokers and ex-smokers (p<0.05). The same was observed in the hTERT gene promoter at HhaI sites (p<0.05) and for HpaII sites the unmethylated condition was more frequent in smokers in comparison to non-smokers (p<0.05). For TP53, no differences were found among groups (p>0.05), with the fully methylated condition found to be a common event in healthy oral epithelial cells. CONCLUSION We conclude that smoking may induce changes in DNA methylation status in cancer-related genes of oral epithelial cells and that the cessation of smoking is capable of reversing this process. Based on our data, we suggest that DNA methylation status of the hTERT and MLH1 gene promoters are promising markers for screening a set of smoking-related alterations in oral cells.
Collapse
|
17
|
He D, Zhang YW, Zhang NN, Zhou L, Chen JN, Jiang Y, Shao CK. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein–Barr virus-associated gastric carcinomas. Med Oncol 2015; 32:92. [DOI: 10.1007/s12032-015-0525-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 01/17/2023]
|
18
|
Wang Y, Huang LH, Xu CX, Xiao J, Zhou L, Cao D, Liu XM, Qi Y. Connexin 32 and 43 promoter methylation in Helicobacter pylori-associated gastric tumorigenesis. World J Gastroenterol 2014; 20:11770-9. [PMID: 25206281 PMCID: PMC4155367 DOI: 10.3748/wjg.v20.i33.11770] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the mechanism of abnormal Connexin (Cx) 32 and Cx43 expression in the gastric mucosa after Helicobacter pylori (H. pylori) infection. METHODS Biopsy specimens of gastric mucosa in different gastric carcinogenesis stages with H. pylori infection, that is, non-atrophic gastritis (NAG; n = 24), chronic atrophic gastritis (CAG; n = 25), intestinal metaplasia (IM; n = 28), dysplasia (DYS; n = 24), and gastric cancer (GC; n = 30), as well as specimens of normal gastric mucosa without H. pylori infection (NGM; n = 25), were confirmed by endoscopy and pathological examination. Cx32 and Cx43 mRNA expression was detected by real-time polymerase chain reaction (PCR). Cx32 and Cx43 promoter CpG island methylation status was determined by methylation-specific PCR (MSP), bisulfite PCR sequencing (BSP) and MassArray methods. RESULTS The relative mRNA expression levels in the gastric mucosa of patients with NGM, NAG, CAG, IM, DYS and GC were 0.146 ± 0.011, 0.133 ± 0.026, 0.107 ± 0.035, 0.039 ± 0.032, 0.037 ± 0.01 and 0.03 ± 0.011 for Cx32; and 0.667 ± 0.057, 0.644 ± 0.051, 0.624 ± 0.049, 0.555 ± 0.067, 0.536 ± 0.058 and 0.245 ± 0.121 for Cx43, respectively, which were gradually decreasing and significantly different (GC vs NGM: P < 0.001 for Cx32, P < 0.001 for Cx43). The promoter methylation levels in the gastric mucosa from NGM to GC stages by MSP were 38.8% ± 9.0%, 43.1% ± 9.4%, 56.5% ± 3.1%, 64.4% ± 9.7%, 72.5% ± 4.2% and 79.6% ± 6.8% for Cx32; and 49.0% ± 3.9%, 58.1% ± 5.0%, 66.5% ± 7.9%, 74.0% ± 8.8%, 78.3% ± 3.6% and 88.7% ± 6.2% for Cx43, respectively, which were gradually increasing and significantly different (P = 0.039, P = 0.019). The promoter methylation levels by BSP and MassArray exhibited similar trends. Cx32 and Cx43 mRNA expression was negatively correlated with promoter methylation status and gastric carcinogenesis stages (P < 0.001, P = 0.016). CONCLUSION Cx32 and Cx43 mRNA expression decreased gradually during H. pylori infection-associated gastric carcinogenesis, and it is associated with hypermethylation of these genes' promoter.
Collapse
|
19
|
Chong Y, Mia-Jan K, Ryu H, Abdul-Ghafar J, Munkhdelger J, Lkhagvadorj S, Jung SY, Lee M, Ji SY, Choi E, Cho MY. DNA methylation status of a distinctively different subset of genes is associated with each histologic Lauren classification subtype in early gastric carcinogenesis. Oncol Rep 2014; 31:2535-44. [PMID: 24737029 DOI: 10.3892/or.2014.3133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/26/2014] [Indexed: 11/06/2022] Open
Abstract
DNA methylation change is known to play a crucial role in early gastric carcinogenesis. The present study aimed to identify and validate the correlation between differentially methylated regions (DMRs) and the subtypes of early gastric cancers (EGCs). Illumina Infinium methylation assay (IIMA; 450K BeadChip kit) was performed on fresh tumor and non‑tumor tissues of 12 EGCs to screen the methylation status of 450,000 CpG sites. To evaluate the significance of DNA methylation in each histologic subtype, pyrosequencing assay (PA) was performed on 38 EGCs (18 intestinal-, 12 mixed- and 8 diffuse-type) using 12 genes selected from the screening. Between tumors of the intestinal-type (n=6), and diffuse- (n=4) plus mixed-types (n=2), 169 regions showed significant differences (intensity>3,000, Δβ>0.2) in IIMA. Hierarchical clustering using the 169 DMRs revealed distinct separation between the two groups. In PA using 12 selected genes from the IIMA results, the aberrant methylation statuses of DVL2 (p=0.0186) and ETS1 (p=0.0222) were significantly related to diffuse- and mixed-types rather than the intestinal-type, while C19orf35 (p=0.019) and CNRIP1 (p=0.0473) were related to the diffuse‑type rather than intestinal‑type, and GAL3ST2 (p=0.0158) and ITGA3 (p=0.0273) were related to the mixed-type rather than the other two types. The methylation of other genes, CLIP4, XKR6, CCDC57, MAML3 and SDC2, was related with age, tumor location, or Helicobacter infection rather than the histologic subtype. Aberrant DNA methylation of certain genes may be independently involved in each histologic subtype of EGC. Furthermore, mixed-type EGCs may be a distinctive histologic subtype based on the different subset of DMRs compared to those of other subtypes.
Collapse
Affiliation(s)
- Yosep Chong
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Khalilullah Mia-Jan
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Hoon Ryu
- Department of Surgery, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Jamshid Abdul-Ghafar
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Jijgee Munkhdelger
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Sayamaa Lkhagvadorj
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - So Young Jung
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Mira Lee
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Sun-Young Ji
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Eunhee Choi
- Division of Statistics, Institute of Life Style Medicine, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| | - Mee-Yon Cho
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do, Republic of Korea
| |
Collapse
|
20
|
Mao YT, Liu JL, Wang Z, Chen YY, Chen JQ. Relationship between hMLH1 methylation, microsatellite instability and gastric cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:3954-3960. [DOI: 10.11569/wcjd.v21.i35.3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors, and its development is a very complicated process. Although great progress has been made in the understanding of gastric cancer, its exact mechanism is still unclear. The human mutL homolog 1 (hMLH1), a main member of the mismatch repair system, participates in mismatch repair during DNA replication, and plays an important role in maintaining genome stability. The reduction or loss of hMLH1 expression, which often shows as microsatellite instability (MSI), is closely related to the development, treatment and prognosis of gastric cancer, and the main reason is hMLH1 promoter methylation. In this paper, we will review the recent progress in understanding the relationship between hMLH1 methylation, MSI and development, treatment and prognosis of gastric cancer.
Collapse
|
21
|
da Costa DM, Neves-Filho EHC, Alves MKS, Rabenhorst SHB. Interleukin polymorphisms and differential methylation status in gastric cancer: an association with Helicobacter pylori infection. Epigenomics 2013; 5:167-75. [PMID: 23566094 DOI: 10.2217/epi.13.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM Interleukin polymorphisms and Helicobacter pylori infection are believed to play critical roles in DNA methylation, a process frequently associated with carcinogenesis. The aim of this study was to determine the associations between interleukin polymorphisms and methylation status of three genes related to gastric cancer. Furthermore, the influence of the H. pylori strains was evaluated. MATERIALS & METHODS 75 gastric tumor samples had the DNA extracted for interleukin polymorphisms genotyping by PCR-RFLP, promoter methylation by MS-PCR and detection and subtyping of H. pylori by PCR. RESULTS In the cardia tumors, methylation in the COX-2 promoter was associated with IL1RN*2 (p = 0.015), and the associated genotypes IL1B511T + IL1RN*2 seem to be important in the methylation of COX-2 (p = 0.013), especially in the presence of cagA(+) (p = 0.026) and vacAs1 (p = 0.025) H. pylori strains. The associated genotypes IL6 CC+TNF GG seem to be involved in the unmethylation of CDKN2A (p = 0.046), along with H. pylori cagA(+) infection. CONCLUSION DNA methylation in gastric cancer seems to be influenced by the presence of interleukin polymorphisms and by the H. pylori cagA/vacAs1m1 strains.
Collapse
Affiliation(s)
- Débora Menezes da Costa
- Universidade Federal do Ceará, Department of Pathology & Forensic Medicine, Rua Alexandre Baraúna, 949, Porangabussu, CEP 60183-630, Fortaleza, Brazil.
| | | | | | | |
Collapse
|
22
|
Hwang JY, Kim DH, Ji YI, Jin Go M, Heo L, Jin Kim Y, Sung Sohn T, Hyung Noh J, Kim S, Lee YS, Kim SY, Kim YW, Won Ryu K, Choi IJ, Lee J, Kim BJ, Han BG, Park J, Lee JY. Recapitulation of previous genome-wide association studies with two distinct pathophysiological entities of gastric cancer in the Korean population. J Hum Genet 2013; 58:233-5. [PMID: 23389241 DOI: 10.1038/jhg.2012.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gastric cancer (GC) is the most common malignancy. The incidence rates remain remarkably high in East Asians. Although genome-wide association studies in the Han Chinese and Japanese populations have so far yielded susceptibility loci for GC, these findings need to be validated in an independent ethnic group. To identify the potential heterogeneity by histological classified subtypes (intestinal and diffuse), we examined the previously reported associations in the Korean population. PRKAA1 at 5p13.1 was found to be more strongly associated with intestinal type (odds ratio, OR=1.39, 95% CI (confidence interval) =1.22-1.58, P=3.77 × 10(-7)) than diffuse type. In addition, PSCA at 8q23.3 was significantly replicated in diffuse type (OR=1.49, 95% CI=1.32-1.67, P=2.43 × 10(-11)) but far less significant in intestinal type. In conclusion, these findings could bring additional insights into the etiologic heterogeneity in gastric carcinogenesis mechanisms.
Collapse
Affiliation(s)
- Joo-Yeon Hwang
- Center for Genome Science, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fonseca AL, Kugelberg J, Starker LF, Scholl U, Choi M, Hellman P, Åkerström G, Westin G, Lifton RP, Björklund P, Carling T. Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumors. Genes Chromosomes Cancer 2012; 51:949-60. [PMID: 22733721 DOI: 10.1002/gcc.21978] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 05/10/2012] [Indexed: 12/20/2022] Open
Abstract
The molecular pathogenesis of benign and malignant adrenocortical tumors (ACT) is incompletely clarified. The role of DNA methylation in adrenocortical tumorigenesis has not been analyzed in an unbiased, systematic fashion. Using the Infinium HumanMethylation27 BeadChip, the DNA methylation levels of 27,578 CpG sites were investigated in bisulfite-modified DNA from 6 normal adrenocortical tissue samples, 27 adrenocortical adenomas (ACA), and 15 adrenocortical carcinomas (ACC). Genes involved in cell cycle regulation, apoptosis, and transcriptional regulation of known or putative importance in the development of adrenal tumors showed significant and frequent hypermethylation. Such genes included CDKN2A, GATA4, BCL2, DLEC1, HDAC10, PYCARD, and SCGB3A1/HIN1. Comparing benign versus malignant ACT, a total of 212 CpG islands were identified as significantly hypermethylated in ACC. Gene expression studies of selected hypermethylated genes (CDKN2A, GATA4, DLEC1, HDAC10, PYCARD, SCGB3A1/HIN1) in 6 normal and 16 neoplastic adrenocortical tissues (10 ACA and 6 ACC), displayed reduced gene expression in benign and malignant ACT versus normal adrenocortical tissue. Treatment with 5-aza-2'-deoxycytidine of adrenocortical cancer H-295R cells increased expression of the hypermethylated genes CDKN2A, GATA4, DLEC1, HDAC10, PYCARD, and SCGB3A1/HIN1. In conclusion, the current study represents the first unbiased, quantitative, genome-wide study of adrenocortical tumor DNA methylation. Genes with altered DNA methylation patterns were identified of putative importance to benign and malignant adrenocortical tumor development.
Collapse
Affiliation(s)
- Annabelle L Fonseca
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tan IB, Ng I, Tai WM, Tan P. Understanding the genetic basis of gastric cancer: recent advances. Expert Rev Gastroenterol Hepatol 2012; 6:335-41. [PMID: 22646255 DOI: 10.1586/egh.12.7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two major gastric cancer histological subtypes are recognized with distinct morphology, epidemiology, pathogenesis and clinical behavior. Genetically, the intestinal and diffuse subtypes are also characterized by distinct germline susceptibility patterns and somatic aberrations. Helicobacter pylori is strongly associated with both Lauren's subtypes, although the underlying carcinogenic mechanisms are unique. Risk is modulated by strain-specific virulence factors, host responses and specific host-microbe interactions. Somatic aberrations in gastric cancer are driven by three major mechanisms, namely chromosomal instability, microsatellite instability and epigenetic alterations. These processes drive carcinogenesis in both Lauren's subtypes; however, the relative contribution of these processes and the specific genes aberrated differ. Moving beyond Lauren's subtypes, next-generation techniques have identified major genomic subtypes that have prognostic impact and exhibit distinct response patterns to standard cytotoxics.
Collapse
Affiliation(s)
- Iain Beehuat Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore.
| | | | | | | |
Collapse
|
25
|
Abstract
Methylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease. DNA methylation is a crucial epigenetic modification of the genome that is involved in regulating many cellular processes. A growing number of human diseases including cancer have been found to be associated with aberrant DNA methylation. Recent advancements in the rapidly evolving field of cancer epigenetics have described extensive reprogramming of every component of the epigenetic machinery in cancer, such as DNA demethylation. In this review, we discuss the current understanding of alterations in DNA methylation composing the epigenetic landscape that occurs in gastric cancer compared with normal cells, the roles of these changes in gastric cancer initiation and progression, and the potential use of this knowledge in designing more effective treatment strategies.
Collapse
|