1
|
Byrne AS, Bissonnette N, Tahlan K. Mechanisms and implications of phenotypic switching in bacterial pathogens. Can J Microbiol 2025; 71:1-19. [PMID: 39361974 DOI: 10.1139/cjm-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment, and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.
Collapse
Affiliation(s)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
2
|
Fang WW, Kong XL, Yang JY, Tao NN, Li YM, Wang TT, Li YY, Han QL, Zhang YZ, Hu JJ, Li HC, Liu Y. PE/PPE mutations in the transmission of Mycobacterium tuberculosis in China revealed by whole genome sequencing. BMC Microbiol 2024; 24:206. [PMID: 38858614 PMCID: PMC11163795 DOI: 10.1186/s12866-024-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/26/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.
Collapse
Affiliation(s)
- Wei-Wei Fang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xiang-Long Kong
- Shandong Artificial Intelligence Institute, Qilu University of Technology & Shandong Academy of Sciences, Jinan, Shandong, PR China
| | - Jie-Yu Yang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ning-Ning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ya-Meng Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Ting-Ting Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ying-Ying Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Qi-Lin Han
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yu-Zhen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jin-Jiang Hu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Huai-Chen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
3
|
The Mycobacterium tuberculosis PE_PGRS Protein Family Acts as an Immunological Decoy to Subvert Host Immune Response. Int J Mol Sci 2022; 23:ijms23010525. [PMID: 35008950 PMCID: PMC8745494 DOI: 10.3390/ijms23010525] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.
Collapse
|
4
|
Ssekitoleko J, Ojok L, Abd El Wahed A, Erume J, Amanzada A, Eltayeb E, Eltom KH, Okuni JB. Mycobacterium avium subsp. paratuberculosis Virulence: A Review. Microorganisms 2021; 9:2623. [PMID: 34946224 PMCID: PMC8707695 DOI: 10.3390/microorganisms9122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
To propose a solution for control of Mycobacterium avium subsp. paratuberculosis (MAP) infections in animals as well as in humans, and develop effective prevention, diagnostic and treatment strategies, it is essential to understand the molecular mechanisms of MAP pathogenesis. In the present review, we discuss the mechanisms utilised by MAP to overcome the host defense system to achieve the virulence status. Putative MAP virulence genes are mentioned and their probable roles in view of other mycobacteria are discussed. This review provides information on MAP strain diversity, putative MAP virulence factors and highlights the knowledge gaps regarding MAP virulence mechanisms that may be important in control and prevention of paratuberculosis.
Collapse
Affiliation(s)
- Judah Ssekitoleko
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
- Department of Livestock Health Research, Rwebitaba Zonal Agricultural Research and Development Institute, National Agricultural Research Organisation, Entebbe P. O. Box 295, Uganda
| | - Lonzy Ojok
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
- Department of Pathology, Faculty of Medicine, Gulu University, Gulu P. O. Box 166, Uganda
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, D-04103 Leipzig, Germany
| | - Joseph Erume
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
| | - Ahmad Amanzada
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, D-37075 Goettingen, Germany;
| | - ElSagad Eltayeb
- Ibn Sina Specialised Hospital, Mohammed Najeeb St., Khartoum 11560, Sudan;
- Faculty of Medicine, Al Neelain University, 52nd St., Khartoum 11112, Sudan
| | - Kamal H. Eltom
- Unit of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, Khartoum North 13314, Sudan;
| | - Julius Boniface Okuni
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
| |
Collapse
|
5
|
Sharma S, Sharma M. Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) proteins of Mycobacterium tuberculosis: The multifaceted immune-modulators. Acta Trop 2021; 222:106035. [PMID: 34224720 DOI: 10.1016/j.actatropica.2021.106035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The PE/PPE proteins encoded by seven percent (7%) of Mycobacterium tuberculosis (Mtb) genome are the chief constituents to pathogen's virulence reservoir. The fact that these genes have evolved along ESX secretory system in pathogenic Mtb strains make their investigation very intriguing. There is lot of speculation about the prominent role of these proteins at host pathogen interface and in disease pathogenesis. Nevertheless, the exact function of PE/PPE proteins still remains a mystery which calls for further research targeting these proteins. This article is an effort to document all the facts known so far with regard to these unique proteins which involves their origin, evolution, transcriptional control, and most important their role as host immune-modulators. Our understanding strongly points towards the versatile nature of these PE/PPE proteins as Mtb's host immune sensors and as decisive factors in shaping the outcome of infection. Further investigation on these proteins will surely pave way for newer and effective vaccines and therapeutics to control Tuberculosis (TB).
Collapse
Affiliation(s)
- Sadhna Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
6
|
PE_PGRS33, an Important Virulence Factor of Mycobacterium tuberculosis and Potential Target of Host Humoral Immune Response. Cells 2021; 10:cells10010161. [PMID: 33467487 PMCID: PMC7830552 DOI: 10.3390/cells10010161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/16/2023] Open
Abstract
PE_PGRS proteins are surface antigens of Mycobacterium tuberculosis (Mtb) and a few other pathogenic mycobacteria. The PE_PGRS33 protein is among the most studied PE_PGRSs. It is known that the PE domain of PE_PGRS33 is required for the protein translocation through the mycobacterial cell wall, where the PGRS domain remains available for interaction with host receptors. Interaction with Toll like receptor 2 (TLR2) promotes secretion of inflammatory chemokines and cytokines, which are key in the immunopathogenesis of tuberculosis (TB). In this review, we briefly address some key challenges in the development of a TB vaccine and attempt to provide a rationale for the development of new vaccines aimed at fostering a humoral response against Mtb. Using PE_PGRS33 as a model for a surface-exposed antigen, we exploit the availability of current structural data using homology modeling to gather insights on the PGRS domain features. Our study suggests that the PGRS domain of PE_PGRS33 exposes four PGII sandwiches on the outer surface, which, we propose, are directly involved through their loops in the interactions with the host receptors and, as such, are promising targets for a vaccination strategy aimed at inducing a humoral response.
Collapse
|
7
|
Genomic Polymorphism Associated with the Emergence of Virulent Isolates of Mycobacterium bovis in the Nile Delta. Sci Rep 2019; 9:11657. [PMID: 31406159 PMCID: PMC6690966 DOI: 10.1038/s41598-019-48106-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium bovis is responsible for bovine tuberculosis in both animals and humans. Despite being one of the most important global zoonotic disease, data related to the ecology and pathogenicity of bovine tuberculosis is scarce, especially in developing countries. In this report, we examined the dynamics of M. bovis transmission among dairy cattle in the Nile Delta of Egypt. Animals belonging to 27 herds from 7 governorates were tested by the Single Intradermal Comparative Skin Tuberculin (SICST), as a preliminary screen for the presence of bovine tuberculosis. Positive SICST reactors were identified in 3% of the animals spread among 40% of the examined herds. Post-mortem examination of slaughtered reactors confirmed the presence of both pulmonary and/or digestive forms of tuberculosis in > 50% of the examined animals. Targeted and whole-genome analysis of M. bovis isolates indicated the emergences of a predominant spoligotype (SB0268) between 2013–2015, suggesting a recent clonal spread of this isolate within the Nile Delta. Surprisingly, 2 isolates belonged to M. bovis BCG group, which are not allowed for animal vaccination in Egypt, while the rest of isolates belonged to the virulent M. bovis clonal complex European 2 present in Latin America and several European countries. Analysis of strain virulence in the murine model of tuberculosis indicated the emergence of a more virulent strain (MBE4) with a specific genotype. More analysis is needed to understand the molecular basis for successful spread of virulent isolates of bovine tuberculosis among animals and to establish genotype/phenotype association.
Collapse
|
8
|
Li W, Deng W, Xie J. Expression and regulatory networks of Mycobacterium tuberculosis PE/PPE family antigens. J Cell Physiol 2018; 234:7742-7751. [PMID: 30478834 DOI: 10.1002/jcp.27608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023]
Abstract
PE/PPE family antigens are distributed mainly in pathogenic mycobacteria and serve as potential antituberculosis (TB) vaccine components. Some PE/PPE family antigens can regulate the host innate immune response, interfere with macrophage activation and phagolysosome fusion, and serve as major sources of antigenic variation. PE/PPE antigens have been associated with mycobacteria pathogenesis; pe/ppe genes are mainly found in pathogenic mycobacteria and are differentially expressed between Mtb and Mycobacterium bovis. PE/PPE proteins were essential for the growth of Mtb, and PE/PPE proteins were differentially expressed under a variety of conditions. Multiple mycobacterial-virulence-related transcription factors, sigma factors, the global transcriptional regulation factor Lsr2, MprAB, and PhoPR two-component regulatory systems, and cyclic adenine monophosphate-dependent regulators, regulate the expression of PE/PPE family antigens. Multiple-scale integrative analysis revealed the expression and regulatory networks of PE/PPE family antigens underlying the virulence and pathogenesis of Mtb, providing important clues for the discovery of new anti-TB measures.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, China
| | - Wanyan Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
9
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
10
|
The PGRS Domain of Mycobacterium tuberculosis PE_PGRS Protein Rv0297 Is Involved in Endoplasmic Reticulum Stress-Mediated Apoptosis through Toll-Like Receptor 4. mBio 2018; 9:mBio.01017-18. [PMID: 29921671 PMCID: PMC6016250 DOI: 10.1128/mbio.01017-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The genome of Mycobacterium tuberculosis, the causal organism of tuberculosis (TB), encodes a unique protein family known as the PE/PPE/PGRS family, present exclusively in the genus Mycobacterium and nowhere else in the living kingdom, with largely unexplored functions. We describe the functional significance of the PGRS domain of Rv0297, a member of this family. In silico analyses revealed the presence of intrinsically disordered stretches and putative endoplasmic reticulum (ER) localization signals in the PGRS domain of Rv0297 (Rv0297PGRS). The PGRS domain aids in ER localization, which was shown by infecting macrophage cells with M. tuberculosis and by overexpressing the protein by transfection in macrophage cells followed by activation of the unfolded protein response, as evident from increased expression of GRP78/GRP94 and CHOP/ATF4, leading to disruption of intracellular Ca2+ homeostasis and increased nitric oxide (NO) and reactive oxygen species (ROS) production. The consequent activation of the effector caspase-8 resulted in apoptosis of macrophages, which was Toll-like receptor 4 (TLR4) dependent. Administration of recombinant Rv0297PGRS (rRv0297PGRS) also exhibited similar effects. These results implicate a hitherto-unknown role of the PGRS domain of the PE_PGRS protein family in ER stress-mediated cell death through TLR4. Since this protein is already known to be present at later stages of infection in human granulomas it points to the possibility of it being employed by M. tuberculosis for its dissemination via an apoptotic mechanism. Apoptosis is generally thought to be a defense mechanism in protecting the host against Mycobacterium tuberculosis in early stages of infection. However, apoptosis during later stages in lung granulomas may favor the bacterium in disseminating the disease. ER stress has been found to induce apoptosis in TB granulomas, in zones where apoptotic macrophages accumulate in mice and humans. In this study, we report ER stress-mediated apoptosis of host cells by the Rv0297-encoded PE_PGRS5 protein of M. tuberculosis exceptionally present in the pathogenic Mycobacterium genus. The PGRS domain of Rv0297 aids the protein in localizing to the ER and induces the unfolded protein response followed by apoptosis of macrophages. The effect of the Rv0297PGRS domain was found to be TLR4 dependent. This study presents novel insights on the strategies employed by M. tuberculosis to disseminate the disease.
Collapse
|
11
|
Kumar A, Rani M, Ehtesham NZ, Hasnain SE. Commentary: Modification of Host Responses by Mycobacteria. Front Immunol 2017; 8:466. [PMID: 28503174 PMCID: PMC5408012 DOI: 10.3389/fimmu.2017.00466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Mamta Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.,Jamia Hamdard, Institute of Molecular Medicine, New Delhi, India.,Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| |
Collapse
|
12
|
Elghraoui A, Modlin SJ, Valafar F. SMRT genome assembly corrects reference errors, resolving the genetic basis of virulence in Mycobacterium tuberculosis. BMC Genomics 2017; 18:302. [PMID: 28415976 PMCID: PMC5393005 DOI: 10.1186/s12864-017-3687-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication. RESULTS Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies. PE_PPE family genes, which are intractable to commonly-used sequencing platforms because of their repetitive and GC-rich nature, are overrepresented in the set of genes in which all reported H37Ra-specific variants are contradicted. Further, one of the sequencing errors in H37Ra masks a true variant in common with the clinical strain CDC1551 which, when considered in the context of previous work, corresponds to a sequencing error in the H37Rv reference genome. CONCLUSIONS Our results constrain the set of genomic differences possibly affecting virulence by more than half, which focuses laboratory investigation on pertinent targets and demonstrates the power of SMRT sequencing for producing high-quality reference genomes.
Collapse
Affiliation(s)
- Afif Elghraoui
- Biological and Medical Informatics Research Center, San Diego State University, Campanile Drive, San Diego, 92182, USA
| | - Samuel J Modlin
- Biological and Medical Informatics Research Center, San Diego State University, Campanile Drive, San Diego, 92182, USA
| | - Faramarz Valafar
- Biological and Medical Informatics Research Center, San Diego State University, Campanile Drive, San Diego, 92182, USA.
| |
Collapse
|
13
|
Delogu G, Brennan MJ, Manganelli R. PE and PPE Genes: A Tale of Conservation and Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:191-207. [PMID: 29116636 DOI: 10.1007/978-3-319-64371-7_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PE and PPE are two large families of proteins typical of mycobacteria whose structural genes in the Mycobacterium tuberculosis complex (MTBC) occupy about 7% of the total genome. The most ancestral PE and PPE proteins are expressed by genes that belong to the same operon and in most cases are found inserted in the esx clusters, encoding a type VII secretion system. Duplication and expansion of pe and ppe genes, coupled with intragenomic and intergenomic recombination events, led to the emergence of the polymorphic pe_pgrs and ppe_mptr genes in the MTBC genome. The role and function of these proteins, and particularly of the polymorphic subfamilies, remains elusive, although it is widely accepted that PE and PPE proteins may represent a specialized collection used by MTBC to interact with the complex host immune system of mammals. In this chapter, we summarize what has been discovered since the identification of these genes in 1998, focusing on M. tuberculosis genetic variability, host-pathogen interaction and TB pathogenesis.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | | | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121, Padua, Italy
| |
Collapse
|
14
|
Chakraborty C, Bandyopadhyay S, Agoramoorthy G. India's Computational Biology Growth and Challenges. Interdiscip Sci 2016; 8:263-76. [PMID: 27465042 DOI: 10.1007/s12539-016-0179-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
India's computational science is growing swiftly due to the outburst of internet and information technology services. The bioinformatics sector of India has been transforming rapidly by creating a competitive position in global bioinformatics market. Bioinformatics is widely used across India to address a wide range of biological issues. Recently, computational researchers and biologists are collaborating in projects such as database development, sequence analysis, genomic prospects and algorithm generations. In this paper, we have presented the Indian computational biology scenario highlighting bioinformatics-related educational activities, manpower development, internet boom, service industry, research activities, conferences and trainings undertaken by the corporate and government sectors. Nonetheless, this new field of science faces lots of challenges.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India
| | | | | |
Collapse
|
15
|
Khubaib M, Sheikh JA, Pandey S, Srikanth B, Bhuwan M, Khan N, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Co-operonic PE32/PPE65 Proteins Alter Host Immune Responses by Hampering Th1 Response. Front Microbiol 2016; 7:719. [PMID: 27242739 PMCID: PMC4868851 DOI: 10.3389/fmicb.2016.00719] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/29/2016] [Indexed: 02/04/2023] Open
Abstract
PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed, and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-γ and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favorable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.
Collapse
Affiliation(s)
- Mohd Khubaib
- Inflammation Biology and Cell Signaling Laboratory, National Institute of PathologyNew Delhi, India; Dr. Reddy's Institute of Life Sciences, University of Hyderabad CampusHyderabad, India
| | - Javaid A Sheikh
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| | - Saurabh Pandey
- Inflammation Biology and Cell Signaling Laboratory, National Institute of PathologyNew Delhi, India; Dr. Reddy's Institute of Life Sciences, University of Hyderabad CampusHyderabad, India
| | - Battu Srikanth
- Department of Biotechnology, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Manish Bhuwan
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| | - Nooruddin Khan
- Department of Biotechnology, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Seyed E Hasnain
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad CampusHyderabad, India; Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of TechnologyNew Delhi, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| |
Collapse
|
16
|
Phelan JE, Coll F, Bergval I, Anthony RM, Warren R, Sampson SL, Gey van Pittius NC, Glynn JR, Crampin AC, Alves A, Bessa TB, Campino S, Dheda K, Grandjean L, Hasan R, Hasan Z, Miranda A, Moore D, Panaiotov S, Perdigao J, Portugal I, Sheen P, de Oliveira Sousa E, Streicher EM, van Helden PD, Viveiros M, Hibberd ML, Pain A, McNerney R, Clark TG. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics 2016; 17:151. [PMID: 26923687 PMCID: PMC4770551 DOI: 10.1186/s12864-016-2467-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/12/2016] [Indexed: 11/23/2022] Open
Abstract
Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. Results To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. Conclusions This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2467-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jody E Phelan
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| | - Francesc Coll
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| | - Indra Bergval
- KIT Biomedical Research, Royal Tropical Institute, Amsterdam, Netherlands.
| | - Richard M Anthony
- KIT Biomedical Research, Royal Tropical Institute, Amsterdam, Netherlands.
| | - Rob Warren
- Department of Science and Technology and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, and Medical Research Council Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Samantha L Sampson
- Department of Science and Technology and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, and Medical Research Council Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Nicolaas C Gey van Pittius
- Department of Science and Technology and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, and Medical Research Council Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Judith R Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK.
| | - Amelia C Crampin
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK. .,Karonga Prevention Study, Lilongwe, Malawi.
| | - Adriana Alves
- National Mycobacterium Reference Laboratory, Porto, Portugal.
| | - Theolis Barbosa Bessa
- Centro de Pesquisas Goncalo Moniz, Fundacao Oswaldo Cruz Bahia R, Salvador, Bahia, Brazil.
| | - Susana Campino
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| | - Keertan Dheda
- Department of Medicine, Lung Infection and Immunity Unit, Division of Pulmonology & UCT Lung Institute, University of Cape Town, Cape Town, Western Cape, South Africa. .,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, Western Cape, South Africa.
| | - Louis Grandjean
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK. .,Laboratorio de Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Stadium Road, Karachi, Pakistan.
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Stadium Road, Karachi, Pakistan.
| | - Anabela Miranda
- National Mycobacterium Reference Laboratory, Porto, Portugal.
| | - David Moore
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| | - Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, 1504, Sofia, Bulgaria.
| | | | | | - Patricia Sheen
- Laboratorio de Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | - Elizabeth M Streicher
- Department of Science and Technology and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, and Medical Research Council Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Paul D van Helden
- Department of Science and Technology and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, and Medical Research Council Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Miguel Viveiros
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT/UNL), Lisbon, Portugal.
| | - Martin L Hibberd
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Ruth McNerney
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| | - Taane G Clark
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK. .,Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK.
| |
Collapse
|
17
|
Kim WS, Kim JS, Cha SB, Kim SJ, Kim H, Kwon KW, Han SJ, Choi SY, Shin SJ. Mycobacterium tuberculosis PE27 activates dendritic cells and contributes to Th1-polarized memory immune responses during in vivo infection. Immunobiology 2015; 221:440-53. [PMID: 26655143 DOI: 10.1016/j.imbio.2015.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/29/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
A gradual understanding of the proline-glutamate (PE) and proline-proline-glutamate (PPE) families, which compromise 10% of the coding regions in the Mycobacterium tuberculosis (Mtb) genome, has uncovered unique roles in host-pathogen interactions. However, the immunological function of PE27 (Rv2769c), the largest PE member, remains unclear. Here, we explored the functional roles and related signaling mechanisms of PE27 in the interaction with dendritic cells (DCs) to shape the T cell response. PE27 phenotypically and functionally induces DC maturation by up-regulating CD80, CD86, MHC class I and MHC class II expression on the DC surface to promote the production of TNF-α, IL-1β, IL-6, and IL-12p70 but not IL-10. Additionally, we found that PE27-mediated DC activation requires the participation of mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) signaling pathways. Interestingly, PE27-treated DCs directed naïve CD4(+) T cells to secrete IFN-γ and activate T-bet but not GATA-3. PE27 also induced IFN-γ-producing memory T cell responses in Mtb-infected mice, indicating that PE27 contributes to Th1-polarization. Taken together, these findings suggest that PE27 possesses Th1-polarizing potential through DC maturation and could be useful in the design of TB vaccines.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Soo Young Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
18
|
Ahmed A, Das A, Mukhopadhyay S. Immunoregulatory functions and expression patterns of PE/PPE family members: Roles in pathogenicity and impact on anti-tuberculosis vaccine and drug design. IUBMB Life 2015; 67:414-27. [DOI: 10.1002/iub.1387] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Asma Ahmed
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
| | - Arghya Das
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
- Manipal University; Manipal Karnataka India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
| |
Collapse
|
19
|
Deng W, Zeng J, Xiang X, Li P, Xie J. PE11 (Rv1169c) selectively alters fatty acid components of Mycobacterium smegmatis and host cell interleukin-6 level accompanied with cell death. Front Microbiol 2015; 6:613. [PMID: 26157429 PMCID: PMC4477156 DOI: 10.3389/fmicb.2015.00613] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022] Open
Abstract
PE/PPE family proteins, named after their conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains of N-terminal, are most intriguing aspects of pathologic mycobacterial genome. The roles of most members of this family remain unknown, although selected genes of this family are related to the virulence of Mycobacterium tuberculosis. In order to decipher the role of Rv1169c, the Mycobacterium smegmatis strain heterologous expressed this ORF was constructed and identified that Rv1169c was a cell wall associated protein with a novel function in modifying the cell wall fatty acids. The growth of Rv1169c expressing strain was affected under surface stress, acidic condition and antibiotics treatment. M. smegmatis expressing Rv1169c induced necrotic cell death of macrophage after infection and significantly decreased interlukin-6 production compared to controls. In general, these results underscore a proposing role of Rv1169c in virulence of M. tuberculosis, as it's role in the susceptibility of anti-mycobacteria factors caused by modified cell wall fatty acid, and the induced necrotic cell death by Rv1169c is crucial for M. tuberculosis virulence during infection.
Collapse
Affiliation(s)
- Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Xiaohong Xiang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Ping Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| |
Collapse
|
20
|
Fishbein S, van Wyk N, Warren RM, Sampson SL. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 2015; 96:901-16. [PMID: 25727695 DOI: 10.1111/mmi.12981] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Abstract
The pe/ppe genes represent one of the most intriguing aspects of the Mycobacterium tuberculosis genome. These genes are especially abundant in pathogenic mycobacteria, with more than 160 members in M. tuberculosis. Despite being discovered over 15 years ago, their function remains unclear, although various lines of evidence implicate selected family members in mycobacterial virulence. In this review, we use PE/PPE phylogeny as a framework within which we examine the diversity and putative functions of these proteins. We report on the evolution and diversity of the respective gene families, as well as the implications thereof for function and host immune recognition. We summarize recent findings on pe/ppe gene regulation, also placing this in the context of PE/PPE phylogeny. We collate data from several large proteomics datasets, providing an overview of PE/PPE localization, and discuss the implications this may have for host responses. Assessment of the current knowledge of PE/PPE diversity suggests that these proteins are not variable antigens as has been so widely speculated; however, they do clearly play important roles in virulence. Viewing the growing body of pe/ppe literature through the lens of phylogeny reveals trends in features and function that may be associated with the evolution of mycobacterial pathogenicity.
Collapse
Affiliation(s)
- S Fishbein
- Harvard School of Public Health, Boston, MA, USA.,DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - N van Wyk
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - R M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - S L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| |
Collapse
|
21
|
Tundup S, Mohareer K, Hasnain SE. Mycobacterium tuberculosis PE25/PPE41 protein complex induces necrosis in macrophages: Role in virulence and disease reactivation? FEBS Open Bio 2014; 4:822-8. [PMID: 25379378 PMCID: PMC4219985 DOI: 10.1016/j.fob.2014.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 02/03/2023] Open
Abstract
The Mycobacterium secreted protein PE25/PPE41 drives TNF-α secretion. PE25/PPE41 protein induces necrotic cell death, but not apoptosis, in macrophages. Necotic cell death induced by PE25/PPE41 is independent of TNF-α/NFκB/AP-1 pathways. PE25/PPE41 possibly acts as virulence factor, by an ‘immune quorum sensing’ mechanism. Necrotic cell death may help in mycobacterial dissemination and re-activation.
Necrotic cell death during TB infection is an important prerequisite for bacterial dissemination and virulence. The underlying mechanisms and the bacterial factors involved therein are not well understood. The Mycobacterium tuberculosis (M. tuberculosis) co-operonic PE25/PPE41 protein complex, similar to ESAT-6/CFP-10, belonging to the PE/PPE and ESAT-6 families of genes has co-expanded and co-evolved in the genomes of pathogenic mycobacteria. We report a novel role of this highly immunogenic PE25/PPE41 protein complex in inducing necrosis, but not apoptosis, in macrophages. We propose that these protein complexes of M. tuberculosis, secreted by similar/unique transport system (Type VII), have an important role in M. tuberculosis virulence and disease reactivation.
Collapse
Affiliation(s)
- Smanla Tundup
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Krishnaveni Mohareer
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof CR Rao Road, Hyderabad 500 046, India
| | - Seyed E Hasnain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India ; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Prof CR Rao Road, Hyderabad 500046, India
| |
Collapse
|
22
|
Gene cooption in Mycobacteria and search for virulence attributes: Comparative proteomic analyses of Mycobacterium tuberculosis, Mycobacterium indicus pranii and other mycobacteria. Int J Med Microbiol 2014; 304:742-8. [DOI: 10.1016/j.ijmm.2014.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023] Open
|
23
|
Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: Perhaps more? Biochimie 2012; 94:110-6. [DOI: 10.1016/j.biochi.2011.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/27/2011] [Indexed: 02/03/2023]
|