1
|
Rivera-Torres F, Maciel-Cerda A, González-Gómez GH, Falcón-Neri A, Gómez-Lizárraga K, Esquivel-Posadas HT, Vera-Graziano R. In Vitro Modulation of Spontaneous Activity in Embryonic Cardiomyocytes Cultured on Poly(vinyl alcohol)/Bioglass Type 58S Electrospun Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:372. [PMID: 38392745 PMCID: PMC10892114 DOI: 10.3390/nano14040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Because of the physiological and cardiac changes associated with cardiovascular disease, tissue engineering can potentially restore the biological functions of cardiac tissue through the fabrication of scaffolds. In the present study, hybrid nanofiber scaffolds of poly (vinyl alcohol) (PVA) and bioglass type 58S (58SiO2-33CaO-9P2O5, Bg) were fabricated, and their effect on the spontaneous activity of chick embryonic cardiomyocytes in vitro was determined. PVA/Bg nanofibers were produced by electrospinning and stabilized by chemical crosslinking with glutaraldehyde. The electrospun scaffolds were analyzed to determine their chemical structure, morphology, and thermal transitions. The crosslinked scaffolds were more stable to degradation in water. A Bg concentration of 25% in the hybrid scaffolds improved thermal stability and decreased degradation in water after PVA crosslinking. Cardiomyocytes showed increased adhesion and contractility in cells seeded on hybrid scaffolds with higher Bg concentrations. In addition, the effect of Ca2+ ions released from the bioglass on the contraction patterns of cultured cardiomyocytes was investigated. The results suggest that the scaffolds with 25% Bg led to a uniform beating frequency that resulted in synchronous contraction patterns.
Collapse
Affiliation(s)
- Filiberto Rivera-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (F.R.-T.); (H.T.E.-P.)
| | - Alfredo Maciel-Cerda
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Gertrudis Hortensia González-Gómez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (G.H.G.-G.); (A.F.-N.)
| | - Alicia Falcón-Neri
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (G.H.G.-G.); (A.F.-N.)
| | - Karla Gómez-Lizárraga
- Cátedra CONAHCyT/Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Héctor Tomás Esquivel-Posadas
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (F.R.-T.); (H.T.E.-P.)
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Escolar de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| |
Collapse
|
2
|
Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Predictive accuracy of lymphocyte-to-monocyte ratio and monocyte-to-high-density-lipoprotein-cholesterol ratio in determining the slow flow/no-reflow phenomenon in patients with non-ST-elevated myocardial infarction. Coron Artery Dis 2021; 31:518-526. [PMID: 32040024 DOI: 10.1097/mca.0000000000000848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate whether inflammation based scores including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR) and monocyte to high-density lipoprotein cholesterol (HDL-C) ratio (MHR) predict the slow flow (SF)/no-reflow (NR) phenomenon comparatively in patients with non-ST-elevated Myocardial Infarction (NSTEMI) undergoing percutaneous coronary intervention (PCI). METHODS Current study is retrospective designed and includes 426 NSTEMI patients (mean age of 56.8 ± 11.4 years). The patients were grouped into non slow flow/no-reflow and slow flow/no-reflow groups according to postintervention thrombolysis in myocardial infarction flow grade. RESULTS The slow flow/no-reflow group had significantly higher MHR and lower LMR values than the non slow flow/no-reflow group (P < 0.01 and P < 0.01, respectively). Lower LMR [odds ratio (OR): 0.659, P < 0.01] and higher MHR (OR: 1.174, P = 0.04) were independent predictors of slow flow/no-reflow phenomenon in model 1 and 2 multivariate analyses, respectively. Furthermore, left ventricular ejection fraction (LVEF) (OR: 0.934, P = 0.01; OR: 0.930, P < 0.01), smoking (OR: 2.279, P = 0.03; OR: 2.118, P = 0.04), Syntax score (1.038, P = 0.04; 1.046, P = 0.01) and high thrombus grade (OR: 7.839, P < 0.01; OR: 8.269, P < 0.01), independently predicted the slow flow/no-reflow development in both multivariate analysis models, respectively. The predictive performance of LMR and MHR was not different (P = 0.88), but both predictive powers were superior to NLR (P < 0.01 and P = 0.03, respectively). CONCLUSION The MHR and LMR may be useful inflammatory biomarkers for identifying high-risk individuals for the development of slow flow/no reflow in NSTEMI patients who underwent PCI.
Collapse
|
4
|
Jarrell DK, Vanderslice EJ, VeDepo MC, Jacot JG. Engineering Myocardium for Heart Regeneration-Advancements, Considerations, and Future Directions. Front Cardiovasc Med 2020; 7:586261. [PMID: 33195474 PMCID: PMC7588355 DOI: 10.3389/fcvm.2020.586261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
Heart disease is the leading cause of death in the United States among both adults and infants. In adults, 5-year survival after a heart attack is <60%, and congenital heart defects are the top killer of liveborn infants. Problematically, the regenerative capacity of the heart is extremely limited, even in newborns. Furthermore, suitable donor hearts for transplant cannot meet the demand and require recipients to use immunosuppressants for life. Tissue engineered myocardium has the potential to replace dead or fibrotic heart tissue in adults and could also be used to permanently repair congenital heart defects in infants. In addition, engineering functional myocardium could facilitate the development of a whole bioartificial heart. Here, we review and compare in vitro and in situ myocardial tissue engineering strategies. In the context of this comparison, we consider three challenges that must be addressed in the engineering of myocardial tissue: recapitulation of myocardial architecture, vascularization of the tissue, and modulation of the immune system. In addition to reviewing and analyzing current progress, we recommend specific strategies for the generation of tissue engineered myocardial patches for heart regeneration and repair.
Collapse
Affiliation(s)
- Dillon K Jarrell
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ethan J Vanderslice
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mitchell C VeDepo
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey G Jacot
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Koppinger MP, Lopez-Pier MA, Skaria R, Harris PR, Konhilas JP. Lactobacillus reuteri attenuates cardiac injury without lowering cholesterol in low-density lipoprotein receptor-deficient mice fed standard chow. Am J Physiol Heart Circ Physiol 2020; 319:H32-H41. [PMID: 32412785 DOI: 10.1152/ajpheart.00569.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disruption of the normal gut microbiome (dysbiosis) is implicated in the progression and severity of myriad disorders, including hypercholesterolemia and cardiovascular disease. Probiotics attenuate and reverse gut dysbiosis to improve cardiovascular risk factors like hypertension and hypercholesterolemia. Lactobacillus reuteri is a well-studied lactic acid-producing probiotic with known cholesterol-lowering properties and anti-inflammatory effects. In the present study, we hypothesized that L. reuteri delivered to hypercholesterolemic low-density lipoprotein receptor knockout (LDLr KO) mice will reduce cholesterol levels and minimize cardiac injury from an ischemic insult. L. reuteri [1 × 109 or 50 × 106 colony-forming units (CFU)/day] was administered by oral gavage to wild-type mice and LDLr KO for up to 6 wk followed by an ischemia-reperfusion (I/R) protocol. After 4 wk of gavage, total serum cholesterol in wild-type mice receiving saline was 113.5 ± 5.6 mg/dL compared with 113.3 ± 6.8 and 101.9 ± 7.5 mg/dL in mice receiving 1 × 109 or 50 × 106 CFU/day, respectively. Over the same time frame, administration of L. reuteri at 1 × 109 or 50 × 106 CFU/day did not lower total serum cholesterol (283.0 ± 11.1, 263.3 ± 5.0, and 253.1 ± 7.0 mg/dL; saline, 1 × 109 or 50 × 106 CFU/day, respectively) in LDLr KO mice. Despite no impact on total serum cholesterol, L. reuteri administration significantly attenuated cardiac injury following I/R, as evidenced by smaller infarct sizes compared with controls in both wild-type and LDLr KO groups. In conclusion, daily L. reuteri significantly protected against cardiac injury without lowering cholesterol levels, suggesting anti-inflammatory properties of L. reuteri uncoupled from improvements in serum cholesterol.NEW & NOTEWORTHY We demonstrated that daily delivery of Lactobacillus reuteri to wild-type and hypercholesterolemic lipoprotein receptor knockout mice attenuated cardiac injury following ischemia-reperfusion without lowering total serum cholesterol in the short term. In addition, we validated protection against cardiac injury using histology and immunohistochemistry techniques. L. reuteri offers promise as a probiotic to mitigate ischemic cardiac injury.
Collapse
Affiliation(s)
| | - Marissa Anne Lopez-Pier
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Rinku Skaria
- Department of Physiology, University of Arizona, Tucson, Arizona
| | | | - John P Konhilas
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,Department of Biomedical Engineering, University of Arizona, Tucson, Arizona.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona.,Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Effects of polarized macrophages on the in vitro gene expression after Co-Culture of human pluripotent stem cell-derived cardiomyocytes. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.regen.2019.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Fan Z, Li Y, Ji H, Jian X. Prognostic utility of the combination of monocyte-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio in patients with NSTEMI after primary percutaneous coronary intervention: a retrospective cohort study. BMJ Open 2018; 8:e023459. [PMID: 30341133 PMCID: PMC6196857 DOI: 10.1136/bmjopen-2018-023459] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate prognostic value of the combination of monocyte-to-lymphocyte ratio (MLR) with neutrophil-to-lymphocyte ratio (NLR) for predicting long-term major adverse cardiac events (MACE) in patients with non-ST elevated myocardial infarction (NSTEMI) who underwent primary percutaneous coronary intervention (PCI). DESIGN Retrospective cohort study. SETTING Civil Aviation General Hospital, Beijing, China. PARTICIPANTS 678 patients with NSTEMI undergoing primary PCI between July 2010 and July 2015 were enrolled. MAIN OUTCOME MEASURES The main outcomes were MACE. The cumulative MACE-free survival rates were calculated by Kaplan-Meier analysis and the independent predictors of MACE were assessed by Cox regression analysis. RESULTS According to the cut-off values of MLR 0.36 and NLR 2.15, the study population was classified into four groups: low MLR + low NLR group (n=319), low MLR + high NLR group (n=126), high MLR + low NLR group (n=102) and high MLR + high NLR group (n=131). The high MLR + high NLR group had a lower MACE-free survival rate than the other three groups (p logrank <0.001). Both MLR (HR 2.128, 95% CI 1.458 to 3.105) and NLR (HR 1.925, 95% CI 1.385 to 2.676) were independent predictors of long-term MACE. Moreover, the patients in the high MLR + high NLR group had an HR of 4.055 (95% CI 2.550 to 6.448) for long-term MACE, with the low-MLR + low NLR group as reference. Comparisons of receiver operating characteristic curves revealed that the combination of MLR with NLR achieved better performance in differentiating long-term MACE, compared with MLR, NLR, high-sensitivity C reactive protein and brain natriuretic peptide alone, and had similar performance to all other pairwise combinations of the four biomarkers. CONCLUSIONS Elevated levels of MLR and NLR were independent predictors of long-term MACE in patients with NSTEMI. Moreover, the combination of MLR and NLR could improve the prognostic value in predicting long-term MACE.
Collapse
Affiliation(s)
- Zeyuan Fan
- Department of Cardiovascular Diseases, Civil Aviation General Hospital, Civil Aviation Clinical Medical College of Peking University, Beijing, China
| | - Yang Li
- Department of Cardiovascular Diseases, Civil Aviation General Hospital, Civil Aviation Clinical Medical College of Peking University, Beijing, China
| | - Hanhua Ji
- Department of Cardiovascular Diseases, Civil Aviation General Hospital, Civil Aviation Clinical Medical College of Peking University, Beijing, China
| | - Xinwen Jian
- Department of Cardiovascular Diseases, Civil Aviation General Hospital, Civil Aviation Clinical Medical College of Peking University, Beijing, China
| |
Collapse
|
8
|
Gaffney L, Wrona EA, Freytes DO. Potential Synergistic Effects of Stem Cells and Extracellular Matrix Scaffolds. ACS Biomater Sci Eng 2017. [DOI: 10.1021/acsbiomaterials.7b00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lewis Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily A. Wrona
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Tang J, Vandergriff A, Wang Z, Hensley MT, Cores J, Allen TA, Dinh PU, Zhang J, Caranasos TG, Cheng K. A Regenerative Cardiac Patch Formed by Spray Painting of Biomaterials onto the Heart. Tissue Eng Part C Methods 2017; 23:146-155. [PMID: 28068869 DOI: 10.1089/ten.tec.2016.0492] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Layering a regenerative polymer scaffold on the surface of the heart, termed as a cardiac patch, has been proven to be effective in preserving cardiac function after myocardial infarction (MI). However, the placement of such a patch on the heart usually needs open-chest surgery, which is traumatic, therefore prevents the translation of this strategy into the clinic. We sought to device a way to apply a cardiac patch by spray painting in situ polymerizable biomaterials onto the heart with a minimally invasive procedure. To prove the concept, we used platelet fibrin gel as the "paint" material in a mouse model of MI. The use of the spraying system allowed for placement of a uniform cardiac patch on the heart in a mini-invasive manner without the need for sutures or glue. The spray treatment promoted cardiac repair and attenuated cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Junnan Tang
- 1 Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China .,2 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.,3 Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| | - Adam Vandergriff
- 2 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.,3 Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| | - Zegen Wang
- 4 The Cyrus Tang Hematology Center, Soochow University , Suzhou, China
| | - Michael Taylor Hensley
- 2 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.,3 Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| | - Jhon Cores
- 2 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.,3 Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| | - Tyler A Allen
- 2 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.,3 Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| | - Phuong-Uyen Dinh
- 2 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.,3 Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| | - Jinying Zhang
- 1 Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Thomas George Caranasos
- 5 Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Ke Cheng
- 2 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University , Raleigh, North Carolina.,3 Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.,4 The Cyrus Tang Hematology Center, Soochow University , Suzhou, China .,6 Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
10
|
Abstract
Inflammation is an essential component of the normal mammalian host tissue response and plays an important role during cardiovascular and musculoskeletal diseases. Given the important role of inflammation on the host tissue response after injury, understanding this process represents essential aspects of biomedical research, tissue engineering, and regenerative medicine. Macrophages are central players during the inflammatory response with an extensive role during wound healing. These cells exhibit a spectrum of activation states that span from pro-inflammatory to pro-healing phenotypes. The phenotype of the macrophages can have profound influences on the progression of disease or injury. As such, understanding and subsequent modulation of macrophage phenotype represents an exciting target area for regenerative medicine therapies. In this chapter, we describe the role of macrophages in specific cases of injury and disease. After myocardial infarction, a biphasic response of pro- and anti-inflammatory macrophages are involved in the remodeling process. In volumetric muscle loss, there is an intricate communication between inflammatory cells and progenitor cells affecting repair processes. Osteoarthritis is characterized by increased levels of pro-inflammatory macrophages over an extended period of time with significant impact on the progression of the disease. By harnessing the complex role of macrophages, enhanced therapeutic treatments can be developed that enhance the normal healing response as well as help the survival of therapeutic cells delivered to the site of injury.
Collapse
|
11
|
Domenech M, Polo-Corrales L, Ramirez-Vick JE, Freytes DO. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds? TISSUE ENGINEERING. PART B, REVIEWS 2016; 22:438-458. [PMID: 27269388 PMCID: PMC5124749 DOI: 10.1089/ten.teb.2015.0523] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/24/2016] [Indexed: 01/03/2023]
Abstract
Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.
Collapse
Affiliation(s)
- Maribella Domenech
- Department of Chemical Engineering, Universidad de Puerto Rico, Mayagüez, Puerto Rico
| | - Lilliana Polo-Corrales
- Department of Chemical Engineering, Universidad de Puerto Rico, Mayagüez, Puerto Rico
- Department of Agroindustrial Engineering, Universidad de Sucre, Sucre, Colombia
| | - Jaime E. Ramirez-Vick
- Department of Chemical Engineering, Universidad de Puerto Rico, Mayagüez, Puerto Rico
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, Ohio
| | - Donald O. Freytes
- The New York Stem Cell Foundation Research Institute, New York, New York
- Joint Department of Biomedical Engineering, NC State/UNC-Chapel Hill, Raleigh, North Carolina
| |
Collapse
|
12
|
D'Amore A, Yoshizumi T, Luketich SK, Wolf MT, Gu X, Cammarata M, Hoff R, Badylak SF, Wagner WR. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 2016; 107:1-14. [PMID: 27579776 DOI: 10.1016/j.biomaterials.2016.07.039] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 01/28/2023]
Abstract
As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial infarction. The functional outcomes of microfibrous, elastomeric, biodegradable cardiac patches have been evaluated in a rat chronic infarction model. Ten weeks after infarction and 8 wk after patch epicardial placement, echocardiographic function, tissue-level structural remodeling (e.g., biaxial mechanical response and microstructural analysis), and cellular level remodeling were assessed. The results showed that the incorporation of a cardiac ECM altered the progression of several keys aspects of maladaptive remodeling following myocardial infarction. This included decreasing LV global mechanical compliance, inhibiting echocardiographically-measured functional deterioration, mitigating scar formation and LV wall thinning, and promoting angiogenesis. In evaluating the impact of patch anisotropy, no effects from the altered patch mechanics were detected after 8 wk, possibly due to patch fibrous encapsulation. Overall, this study demonstrates the benefit of a cardiac patch design that combines both ventricle mechanical support, through a biodegradable, fibrillary elastomeric component, and the incorporation of ECM-based hydrogel components.
Collapse
Affiliation(s)
- Antonio D'Amore
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fondazione RiMED, Italy; DICGIM, Università di Palermo, Italy
| | - Tomo Yoshizumi
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel K Luketich
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew T Wolf
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinzhu Gu
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Richard Hoff
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Ma SP, Vunjak-Novakovic G. Tissue-Engineering for the Study of Cardiac Biomechanics. J Biomech Eng 2016; 138:021010. [PMID: 26720588 PMCID: PMC4845250 DOI: 10.1115/1.4032355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 12/13/2022]
Abstract
The notion that both adaptive and maladaptive cardiac remodeling occurs in response to mechanical loading has informed recent progress in cardiac tissue engineering. Today, human cardiac tissues engineered in vitro offer complementary knowledge to that currently provided by animal models, with profound implications to personalized medicine. We review here recent advances in the understanding of the roles of mechanical signals in normal and pathological cardiac function, and their application in clinical translation of tissue engineering strategies to regenerative medicine and in vitro study of disease.
Collapse
Affiliation(s)
- Stephen P. Ma
- Department of Biomedical Engineering,
Columbia University,
622 West 168th Street,
VC12-234,
New York, NY 10032
e-mail:
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering
and Department of Medicine,
Columbia University,
622 West 168th Street,
VC12-234,
New York, NY 10032
e-mail:
| |
Collapse
|
14
|
Karabekian Z, Ding H, Stybayeva G, Ivanova I, Muselimyan N, Haque A, Toma I, Posnack NG, Revzin A, Leitenberg D, Laflamme MA, Sarvazyan N. HLA Class I Depleted hESC as a Source of Hypoimmunogenic Cells for Tissue Engineering Applications. Tissue Eng Part A 2015. [PMID: 26218149 DOI: 10.1089/ten.tea.2015.0105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rapidly improving protocols for the derivation of autologous cells from stem cell sources is a welcome development. However, there are many circumstances when off-the-shelf universally immunocompatible cells may be needed. Embryonic stem cells (ESCs) provide a unique opportunity to modify the original source of differentiated cells to minimize their rejection by nonautologous hosts. HYPOTHESIS Immune rejection of nonautologous human embryonic stem cell (hESC) derivatives can be reduced by downregulating human leukocyte antigen (HLA) class I molecules, without affecting the ability of these cells to differentiate into specific lineages. METHODS AND RESULTS Beta-2-microglobulin (B2M) expression was decreased by lentiviral transduction using human anti-HLA class I light-chain B2M short hairpin RNA. mRNA levels of B2M were decreased by 90% in a RUES2-modified hESC line, as determined by quantitative real time-polymerase chain reaction analysis. The transduced cells were selected under puromycin pressure and maintained in an undifferentiated state. The latter was confirmed by Oct4 and Nanog expression, and by the formation of characteristic round-shaped colonies. B2M downregulation led to diminished HLA-I expression on the cell surface, as determined by flow cytometry. When used as target cells in a mixed lymphocyte reaction assay, transduced hESCs and their differentiated derivatives did not stimulate allogeneic T-cell proliferation. Using a cardiac differentiation protocol, transduced hESCs formed a confluent layer of cardiac myocytes and maintained a low level of B2M expression. Transduced hESCs were also successfully differentiated into a hepatic lineage, validating their capacity to differentiate into multiple lineages. CONCLUSIONS HLA-I depletion does not preclude hESC differentiation into cardiac or hepatic lineages. This methodology can be used to engineer tissue from nonautologous hESC sources with improved immunocompatibility.
Collapse
Affiliation(s)
- Zaruhi Karabekian
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia.,2 L.A.Orbeli Institute of Physiology, National Academy of Sciences , Yerevan, Armenia
| | - Hao Ding
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Gulnaz Stybayeva
- 3 Department of Biomedical Engineering, University of California Davis , Davis, California
| | - Irina Ivanova
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Narine Muselimyan
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Amranul Haque
- 3 Department of Biomedical Engineering, University of California Davis , Davis, California
| | - Ian Toma
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Nikki G Posnack
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Alexander Revzin
- 3 Department of Biomedical Engineering, University of California Davis , Davis, California
| | - David Leitenberg
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| | - Michael A Laflamme
- 4 Institute for Stem Cell and Regenerative Medicine, Center for Cardiovascular Biology, University of Washington , Seattle, Washington
| | - Narine Sarvazyan
- 1 Pharmacology and Physiology Department, School of Medicine and Health Sciences, The George Washington University , Washington, District of Columbia
| |
Collapse
|
15
|
Zhang S, Yeap XY, Grigoryeva L, Dehn S, DeBerge M, Tye M, Rostlund E, Schrijvers D, Zhang ZJ, Sumagin R, Tourtellotte WG, Lee D, Lomasney J, Morrow J, Thorp EB. Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis. J Mol Cell Cardiol 2015; 87:171-9. [PMID: 26316303 DOI: 10.1016/j.yjmcc.2015.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/29/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mobilization of the innate immune response to clear and metabolize necrotic and apoptotic cardiomyocytes is a prerequisite to heart repair after cardiac injury. Suboptimal kinetics of dying myocyte clearance leads to secondary necrosis, and in the case of the heart, increased potential for collateral loss of neighboring non-regenerative myocytes. Despite the importance of myocyte phagocytic clearance during heart repair, surprisingly little is known about its underlying cell and molecular biology. OBJECTIVE To determine if phagocytic receptor MERTK is expressed in human hearts and to elucidate key sequential steps and phagocytosis efficiency of dying adult cardiomyocytes, by macrophages. RESULTS In infarcted human hearts, expression profiles of the phagocytic receptor MER-tyrosine kinase (MERTK) mimicked that found in experimental ischemic mouse hearts. Electron micrographs of myocardium identified MERTK signal along macrophage phagocytic cups and Mertk-/- macrophages contained reduced digested myocyte debris after myocardial infarction. Ex vivo co-culture of primary macrophages and adult cardiomyocyte apoptotic bodies revealed reduced engulfment relative to resident cardiac fibroblasts. Inefficient clearance was not due to the larger size of myocyte apoptotic bodies, nor were other key steps preceding the formation of phagocytic synapses significantly affected; this included macrophage chemotaxis and direct binding of phagocytes to myocytes. Instead, suppressed phagocytosis was directly associated with myocyte-induced inactivation of MERTK, which was partially rescued by genetic deletion of a MERTK proteolytic susceptibility site. CONCLUSION Utilizing an ex vivo co-cultivation approach to model key cellular and molecular events found in vivo during infarction, cardiomyocyte phagocytosis was found to be inefficient, in part due to myocyte-induced shedding of macrophage MERTK. These findings warrant future studies to identify other cofactors of macrophage-cardiomyocyte cross-talk that contribute to cardiac pathophysiology.
Collapse
Affiliation(s)
- Shuang Zhang
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Xin-Yi Yeap
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Lubov Grigoryeva
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Shirley Dehn
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Matthew DeBerge
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Michael Tye
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Emily Rostlund
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | | | | | - Ronen Sumagin
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Warren G Tourtellotte
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - Daniel Lee
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Jon Lomasney
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA
| | - John Morrow
- Department of Cardiology and Division of Molecular Medicine, Columbia University, New York, NY, USA
| | - Edward B Thorp
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA; Surgery-Organ Transplantation, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
The Assembly of EDC4 and Dcp1a into Processing Bodies Is Critical for the Translational Regulation of IL-6. PLoS One 2015; 10:e0123223. [PMID: 25970328 PMCID: PMC4430274 DOI: 10.1371/journal.pone.0123223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/02/2015] [Indexed: 12/31/2022] Open
Abstract
Macrophages play critical roles in the onset of various diseases and in maintaining homeostasis. There are several functional subsets, of which M1 and M2 macrophages are of particular interest because they are differentially involved in inflammation and its resolution. Here, we investigated the differences in regulatory mechanisms between M1- and M2-polarized macrophages by examining mRNA metabolic machineries such as stress granules (SGs) and processing bodies (P-bodies). Human monocytic leukemia THP-1 cells cultured under M1-polarizing conditions (M1-THPs) had less ability to assemble oxidative-stress-induced SGs than those cultured under M2-polarizing conditions (M2-THPs). In contrast, P-body assembly in response to oxidative stress or TLR4 stimulation was increased in M1-THPs as compared to M2-THPs. These results suggest that mRNA metabolism is controlled differently in M1-THPs and M2-THPs. Interestingly, knocking down EDC4 or Dcp1a, which are components of P-bodies, severely reduced the production of IL-6, but not TNF-α in M1-THPs without decreasing the amount of IL-6 mRNA. This is the first report to demonstrate that the assembly of EDC4 and Dcp1a into P-bodies is critical in the posttranscriptional regulation of IL-6. Thus, improving our understanding of the mechanisms governing mRNA metabolism by examining macrophage subtypes may lead to new therapeutic targets.
Collapse
|
17
|
Kaiser NJ, Coulombe KLK. Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration. Biomed Mater 2015; 10:034003. [PMID: 25970645 PMCID: PMC4696555 DOI: 10.1088/1748-6041/10/3/034003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue engineering is well suited for the treatment of cardiac disease due to the limited regenerative capacity of native cardiac tissue and the loss of function associated with endemic cardiac pathologies, such as myocardial infarction and congenital heart defects. However, the physiological complexity of the myocardium imposes extensive requirements on tissue therapies intended for these applications. In recent years, the field of cardiac tissue engineering has been characterized by great innovation and diversity in the fabrication of engineered tissue scaffolds for cardiac repair and regeneration to address these problems. From early approaches that attempted only to deliver cardiac cells in a hydrogel vessel, significant progress has been made in understanding the role of each major component of cardiac living tissue constructs (namely cells, scaffolds, and signaling mechanisms) as they relate to mechanical, biological, and electrical in vivo performance. This improved insight, accompanied by modern material science techniques, allows for the informed development of complex scaffold materials that are optimally designed for cardiac applications. This review provides a background on cardiac physiology as it relates to critical cardiac scaffold characteristics, the degree to which common cardiac scaffold materials fulfill these criteria, and finally an overview of recent in vivo studies that have employed this type of approach.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
18
|
Simón-Yarza T, Rossi A, Heffels KH, Prósper F, Groll J, Blanco-Prieto MJ. Polymeric Electrospun Scaffolds: Neuregulin Encapsulation and Biocompatibility Studies in a Model of Myocardial Ischemia. Tissue Eng Part A 2015; 21:1654-61. [DOI: 10.1089/ten.tea.2014.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Teresa Simón-Yarza
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Karl-Heinz Heffels
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Felipe Prósper
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Maria J. Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| |
Collapse
|
19
|
Karabekian Z, Idrees S, Ding H, Jamshidi A, Posnack NG, Sarvazyan N. Downregulation of beta-microglobulin to diminish T-lymphocyte lysis of non-syngeneic cell sources of engineered heart tissue constructs. ACTA ACUST UNITED AC 2015; 10:034101. [PMID: 25775354 DOI: 10.1088/1748-6041/10/3/034101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of non-autologous major histocompatibility complex class I (MHC-I) molecules on the surface of the grafted cells is one of the main reasons for their rejection in non-syngeneic hosts. We present a straightforward strategy to decrease the presence of MHC-I by shRNA inhibition of beta-2-microglobulin (B2M), a conservative light chain of MHC-I, on the surface of two main cell types that are used to engineer heart tissue constructs. Engineered heart tissue constructs can be generated by combining mouse WT19 fibroblasts and mouse embryonic stem cell-derived cardiac myocytes (mESC-CM). WT19 fibroblasts were stably transduced with an anti-B2M shRNA, which yielded a cell line with dramatically reduced B2M expression levels (16 ± 11% of mock treated control cell line). Interferon gamma treatment increased the levels of B2M expression by >3-fold in both control and transduced fibroblasts; yet, B2M expression levels still remained very low in the transduced cells. When compared with their unmodified counterparts, transduced fibroblasts caused 5.7-fold lesser activation of cognate T-cells. B2M depletion in mESC-CM was achieved by 72 h transduction with anti-B2M shRNA lentiviral particles. Transduced mESC-CM exhibited regular beating and expressed classical cardiac markers. When compared with their unmodified counterparts, transduced mESC-CM caused 2.5-fold lesser activation of cognate T-cells. In vivo assessment of B2M downregulation was performed by analyzing the preferential survival of B2M-downregulated cells in the intraperitoneal cavity of allogeneic mice. Both B2M-downregulated fibroblasts and B2M-downregulated myocytes survived significantly better when compared to their unmodified counterparts (2.01 ± 0.4 and 5.07 ± 1.6 fold increase in survival, respectively). In contrast, when modified WT19 fibroblasts were injected into the intraperitoneal cavity of syngeneic C57Bl/6 mice, no significant survival advantage was observed. Notably, the preferential survival of B2M-downregulated cells persisted in allogeneic hosts with normal levels of natural killer cells, although the effect was lesser in magnitude. Use of shRNA against beta-2-microglobulin offers a simple and effective approach to minimize immunogenicity of the main cellular components of cardiac tissue constructs in non-syngeneic recipients.
Collapse
Affiliation(s)
- Zaruhi Karabekian
- Pharmacology and Physiology Department, The George Washington University, School of Medicine and Health Sciences, 2300 Eye Street, Washington DC 20037, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ye L, Basu J, Zhang J. Fabrication of a myocardial patch with cells differentiated from human-induced pluripotent stem cells. Methods Mol Biol 2015; 1299:103-14. [PMID: 25836578 DOI: 10.1007/978-1-4939-2572-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incidence of cardiovascular disease represents a significant and growing health-care challenge to the developed and developing world. The ability of native heart muscle to regenerate in response to myocardial infarct is minimal. Tissue engineering and regenerative medicine approaches represent one promising response to this difficulty. Here, we present methods for the construction of a cell-seeded cardiac patch with the potential to promote regenerative outcomes in heart muscle with damage secondary to myocardial infarct. This method leverages iPS cells and a fibrin-based scaffold to create a simple and commercially viable tissue-engineered cardiac patch. Human-induced pluripotent stem cells (hiPSCs) can, in principle, be differentiated into cells of any lineage. However, most of the protocols used to generate hiPSC-derived endothelial cells (ECs) and cardiomyocytes (CMs) are unsatisfactory because the yield and phenotypic stability of the hiPSC-ECs are low, and the hiPSC-CMs are often purified via selection for expression of a promoter-reporter construct. In this chapter, we describe an hiPSC-EC differentiation protocol that generates large numbers of stable ECs and an hiPSC-CM differentiation protocol that does not require genetic manipulation, single-cell selection, or sorting with fluorescent dyes or other reagents. We also provide a simple but effective method that can be used to combine hiPSC-ECs and hiPSC-CMs with hiPSC-derived smooth muscle cells to engineer a contracting patch of cardiac cells.
Collapse
Affiliation(s)
- Lei Ye
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, MMC 508, 420 Delaware Street S.E., Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
21
|
Spiller KL, Freytes DO, Vunjak-Novakovic G. Macrophages modulate engineered human tissues for enhanced vascularization and healing. Ann Biomed Eng 2014; 43:616-27. [PMID: 25331098 DOI: 10.1007/s10439-014-1156-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/08/2014] [Indexed: 01/01/2023]
Abstract
Tissue engineering is increasingly based on recapitulating human physiology, through integration of biological principles into engineering designs. In spite of all progress in engineering functional human tissues, we are just beginning to develop effective methods for establishing blood perfusion and controlling the inflammatory factors following implantation into the host. Functional vasculature largely determines tissue survival and function in vivo. The inflammatory response is a major regulator of vascularization and overall functionality of engineered tissues, through the activity of different types of macrophages and the cytokines they secrete. We discuss here the cell-scaffold-bioreactor systems for harnessing the inflammatory response for enhanced tissue vascularization and healing. To this end, inert scaffolds that have been considered for many decades a "gold standard" in regenerative medicine are beginning to be replaced by a new generation of "smart" tissue engineering systems designed to actively mediate tissue survival and function.
Collapse
|
22
|
Coulombe KLK, Bajpai VK, Andreadis ST, Murry CE. Heart regeneration with engineered myocardial tissue. Annu Rev Biomed Eng 2014; 16:1-28. [PMID: 24819474 DOI: 10.1146/annurev-bioeng-071812-152344] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart disease is the leading cause of morbidity and mortality worldwide, and regenerative therapies that replace damaged myocardium could benefit millions of patients annually. The many cell types in the heart, including cardiomyocytes, endothelial cells, vascular smooth muscle cells, pericytes, and cardiac fibroblasts, communicate via intercellular signaling and modulate each other's function. Although much progress has been made in generating cells of the cardiovascular lineage from human pluripotent stem cells, a major challenge now is creating the tissue architecture to integrate a microvascular circulation and afferent arterioles into such an engineered tissue. Recent advances in cardiac and vascular tissue engineering will move us closer to the goal of generating functionally mature tissue. Using the biology of the myocardium as the foundation for designing engineered tissue and addressing the challenges to implantation and integration, we can bridge the gap from bench to bedside for a clinically tractable engineered cardiac tissue.
Collapse
|
23
|
Castellano D, Blanes M, Marco B, Cerrada I, Ruiz-Saurí A, Pelacho B, Araña M, Montero JA, Cambra V, Prosper F, Sepúlveda P. A comparison of electrospun polymers reveals poly(3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair. Stem Cells Dev 2014; 23:1479-90. [PMID: 24564648 DOI: 10.1089/scd.2013.0578] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair.
Collapse
Affiliation(s)
- Delia Castellano
- 1 Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe , Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schmuck EG, Mulligan JD, Ertel RL, Kouris NA, Ogle BM, Raval AN, Saupe KW. Cardiac fibroblast-derived 3D extracellular matrix seeded with mesenchymal stem cells as a novel device to transfer cells to the ischemic myocardium. Cardiovasc Eng Technol 2013; 5:119-131. [PMID: 24683428 DOI: 10.1007/s13239-013-0167-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Demonstrate a novel manufacturing method to generate extracellular matrix scaffolds from cardiac fibroblasts (CF-ECM) as a therapeutic mesenchymal stem cell-transfer device. MATERIALS AND METHODS Rat CF were cultured at high-density (~1.6×105/cm2) for 10-14 days. Cell sheets were removed from the culture dish by incubation with EDTA and decellularized with water and peracetic acid. CF-ECM was characterized by mass spectrometry, immunofluorescence and scanning electron microscopy. CF-ECM seeded with human embryonic stem cell derived mesenchymal stromal cells (hEMSCs) were transferred into a mouse myocardial infarction model. 48 hours later, mouse hearts were excised and examined for CF-ECM scaffold retention and cell transfer. RESULTS CF-ECM scaffolds are composed of fibronectin (82%), collagens type I (13%), type III (3.4%), type V (0.2%), type II (0.1%) elastin (1.3%) and 18 non-structural bioactive molecules. Scaffolds remained intact on the mouse heart for 48 hours without the use of sutures or glue. Identified hEMSCs were distributed from the epicardium to the endocardium. CONCLUSIONS High density cardiac fibroblast culture can be used to generate CF-ECM scaffolds. CF-ECM scaffolds seeded with hEMSCs can be maintained on the heart without suture or glue. hEMSC are successfully delivered throughout the myocardium.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Jacob D Mulligan
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Rebecca L Ertel
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Nicholas A Kouris
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Amish N Raval
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA ; Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Kurt W Saupe
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
Vunjak-Novakovic G. Biomimetic Platforms for Tissue Engineering. Isr J Chem 2013. [DOI: 10.1002/ijch.201300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Brown BN, Badylak SF. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater 2013; 9:4948-55. [PMID: 23099303 DOI: 10.1016/j.actbio.2012.10.025] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/10/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023]
Abstract
The conventional approach to biomaterial design and development typically focuses upon the mechanical and material properties with long-term objectives that include an inert host immune response and long-lasting mechanical and structural support. The emergence of and interest in tissue engineering and regenerative medicine have driven the development of novel cell-friendly biomaterials, materials with tailored degradation rates, materials with highly specific architectures and surfaces, and vehicles for delivery of bioactive molecules, among numerous other advancements. Each of these biomaterial developments supports specific strategies for tissue repair and reconstruction. These advancements in biomaterial form and function, combined with new knowledge of innate and acquired immune system biology, provide an impetus for re-examination of host-biomaterial interactions, including host-biomaterial interface events, spatial and temporal patterns of in vivo biomaterial remodeling, and related downstream functional outcomes. An examination of such issues is provided herein with a particular focus on macrophage polarization and its implications in tissue engineering and regenerative medicine.
Collapse
|
27
|
|