1
|
Zhao J, Xue Y, Pan Y, Yao A, Wang G, Li D, Wang T, Zhao S, Hou Y. Toll-like receptor 3 agonist poly I:C reinforces the potency of cytotoxic chemotherapy via the TLR3-UNC93B1-IFN-β signaling axis in paclitaxel-resistant colon cancer. J Cell Physiol 2018; 234:7051-7061. [PMID: 30387134 DOI: 10.1002/jcp.27459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Type I interferon (IFN) signaling in neoplastic cells has a chemo-sensitizing effect in cancer therapy. Toll-like receptor 3 (TLR3) activation promotes IFN-β production, which induces apoptosis and impairs proliferation in some cancer cells. Herein, we tested whether the TLR3 agonist polyinosinic: polycytidylic acid (poly I:C) can improve chemotherapeutic efficacy in paclitaxel (PTX) resistant cell lines. Human colon cancer cell lines HCT116, SW620, HCT-8 (sensitive to PTX), and HCT-8/PTX (resistant to PTX) were treated with poly I:C and the cell viability was measured. Results showed that poly I:C specifically impaired the cell viability of HCT-8/PTX by simultaneously promoting cell apoptosis and inhibiting cell proliferation. In addition, when TLR3 was overexpressed in HCT-8/PTX cells, we found that TLR3 contributed to the production of IFN-β that reduced cell viability, and poly I:C preferentially activated the TLR3-UNC93B1 signaling pathway to mediate this effect. Moreover, cotreatment of poly I:C and PTX acted synergistically to induce cell apoptosis of HCT-8/PTX via upregulating the expression of TLR3 and its molecular chaperone UNC93B1, assisting in the secretion of IFN-β. Notably, a combination of poly I:C and PTX synergistically inhibited the PTX-resistant tumor growth in vivo without side effects. In conclusion, our studies demonstrate that poly I:C reinforces the potency of cytotoxic chemotherapeutics in PTX-resistant cell line through the TLR3-UNC93B1-IFN-β signaling pathway, which supplies a novel mechanism of poly I:C for the chemotherapy sensitizing effect in a PTX-resistant tumor.
Collapse
Affiliation(s)
- Jiaojiao Zhao
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Yaxian Xue
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Anran Yao
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Guoqun Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Li
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First hospital, Nanjing Medical University, Nanjing, China
| | - Yayi Hou
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Radio-sensitization of head and neck cancer cells by a combination of poly(I:C) and cisplatin through downregulation of survivin and c-IAP2. Cell Oncol (Dordr) 2018; 42:29-40. [PMID: 30182341 DOI: 10.1007/s13402-018-0403-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers. Concurrent radio-chemotherapy is the standard of care for advanced tumors. However, there is a need for more efficient regimens with less side effects resulting from high doses. Therefore, we set out to explore the therapeutic potential of ternary combinations by bringing together irradiation, cis-platinum and a TLR3 agonist, poly(I:C), with the aim to reduce the dosage of each treatment. This approach is based on our previous work, which revealed a selective cytotoxic effect of TLR3 agonists against malignant cells when combined with other anti-neoplastic agents. METHODS We explored the survival of HNSCC-derived cells (Detroit 562, FaDu, SQ20B and Cal27) using MTT and caspase 3/7 activation assays. The radio-sensitization effects of poly(I:C) and cisplatin were assessed using Western blotting, cell cycle progression, ROS formation and qRT-PCR assays. RESULTS We found that the combination of poly(I:C) and cisplatin downregulated c-IAP2 and survivin expression, reduced cell survival, induced anti-apoptotic gene expression and apoptosis, increased ROS formation and induced G2/M cell cycle arrest in the HNSCC-derived cells tested. CONCLUSIONS Our results indicate that a combined poly(I:C) and cisplatin treatment reduces the survival and induces the radio-sensitivity of HNSCC-derived cells, thus providing a rationale for the development of novel strategies for the treatment of head and neck cancer.
Collapse
|
3
|
Veyrat M, Durand S, Classe M, Glavan TM, Oker N, Kapetanakis NI, Jiang X, Gelin A, Herman P, Casiraghi O, Zagzag D, Enot D, Busson P, Vérillaud B. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget 2018; 7:82580-82593. [PMID: 27791989 PMCID: PMC5347715 DOI: 10.18632/oncotarget.12892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
In this study, a possible link between the innate immune recognition receptor TLR3 and metabolic reprogramming in Head and Neck carcinoma (HNC) cells was investigated. The effects of TLR3 stimulation/knock-down were assessed under several culture conditions in 4 HNC cell-lines by cell growth assays, targeted metabolomics, and glycolysis assays based on time-resolved analysis of proton release (Seahorse analyzer). The stimulation of TLR3 by its synthetic agonist Poly(A:U) resulted in a faster growth of HNC cells under low foetal calf serum conditions. Targeted analysis of glucose metabolism pathways demonstrated a tendency towards a shift from tricarboxylic acid cycle (Krebs cycle) to glycolysis and anabolic reactions in cells treated with Poly(A:U). Glycolysis assays confirmed that TLR3 stimulation enhanced the capacity of malignant cells to switch from oxidative phosphorylation to extra-mitochondrial glycolysis. We found evidence that HIF-1α is involved in this process: addition of the TLR3 agonist resulted in a higher cell concentration of the HIF-1α protein, even in normoxia, whereas knocking-down TLR3 resulted in a lower concentration, even in hypoxia. Finally, we assessed TLR3 expression by immunohistochemistry in a series of 7 HNSCC specimens and found that TLR3 was detected at higher levels in tumors displaying a hypoxic staining pattern. Overall, our results demonstrate that TLR3 stimulation induces the Warburg effect in HNC cells in vitro, and suggest that TLR3 may play a role in tumor adaptation to hypoxia.
Collapse
Affiliation(s)
- Mathieu Veyrat
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Sylvère Durand
- Equipe 11 Labélisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Marion Classe
- Department of Pathology, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | | | - Natalie Oker
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France.,Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | | | - Xiaojun Jiang
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Aurore Gelin
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Philippe Herman
- Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | - Odile Casiraghi
- Department of Biopathology, Gustave Roussy, Villejuif, France
| | - David Zagzag
- Department of Neuropathology, New York University School of Medicine, New York, NY, USA
| | - David Enot
- Equipe 11 Labélisée par la Ligue Nationale Contre le Cancer, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Molecular Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Pierre Busson
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France
| | - Benjamin Vérillaud
- University Paris-Sud (Paris 11), CNRS-UMR 8126, Gustave Roussy, Villejuif, France.,Department of Head and Neck surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| |
Collapse
|