1
|
Acar M, Uğur S. Morphometric Analysis of Corpus Callosum in Individuals with Alzheimer's Disease: Magnetic Resonance Imaging (MRI) Study. Curr Alzheimer Res 2024; 21:289-294. [PMID: 39177137 DOI: 10.2174/0115672050335744240820065952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION The Corpus Callosum (CC) is the largest commissural tract in the nervous system. Few studies have examined the extent of CC in Alzheimer's disease (AD) patients, and these studies have reported conflicting findings. MATERIALS AND METHODS The study was performed using 176 brain MRI images of 88 Alzheimer's patients (55 women-32 men) and 88 healthy individuals (44 women-44 men). RESULTS In our study, 7 different parameters of the CC were measured, and their average values were determined. We measured each parameter separately in AD patients and healthy individuals and compared them with each other. CONCLUSION CC has an important place not only in Patients with AD but also in other neurodegenerative diseases. We consider that our study will be useful in the evaluation of Patients with AD.
Collapse
Affiliation(s)
- Musa Acar
- Department of Physiotherapy and Rehabilitation, Faculty of Nezahat Keleşoğlu Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Sultan Uğur
- Department of Radiology, Pursaklar State Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Pölsterl S, Wachinger C. Identification of causal effects of neuroanatomy on cognitive decline requires modeling unobserved confounders. Alzheimers Dement 2022; 19:1994-2005. [PMID: 36419215 DOI: 10.1002/alz.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Carrying out a randomized controlled trial to estimate the causal effects of regional brain atrophy due to Alzheimer's disease (AD) is impossible. Instead, we must estimate causal effects from observational data. However, this generally requires knowing and having recorded all confounders, which is often unrealistic. METHODS We provide an approach that leverages the dependencies among multiple neuroanatomical measures to estimate causal effects from observational neuroimaging data without the need to know and record all confounders. RESULTS Our analyses of N = 732 $N=732$ subjects from the Alzheimer's Disease Neuroimaging Initiative demonstrate that using our approach results in biologically meaningful conclusions, whereas ignoring unobserved confounding yields results that conflict with established knowledge on cognitive decline due to AD. DISCUSSION The findings provide evidence that the impact of unobserved confounding can be substantial. To ensure trustworthy scientific insights, future AD research can account for unobserved confounding via the proposed approach.
Collapse
Affiliation(s)
- Sebastian Pölsterl
- The Lab for Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Wachinger
- The Lab for Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany.,Technical University of Munich, School of Medicine, Department of Radiology, Munich, Germany
| | | | | |
Collapse
|
3
|
MRI biomarkers for Alzheimer's disease: the impact of functional connectivity in the default mode network and structural connectivity between lobes on diagnostic accuracy. Heliyon 2022; 8:e08901. [PMID: 35198768 PMCID: PMC8841367 DOI: 10.1016/j.heliyon.2022.e08901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background At present, clinical use of MRI in Alzheimer's disease (AD) is mostly focused on the assessment of brain atrophy, namely in the hippocampal region. Despite this, multiple biomarkers reflecting structural and functional brain connectivity changes have shown promising results in the assessment of AD. To help identify the most relevant ones that may stand a chance of being used in clinical practice, we compared multiple biomarker in terms of their value to discriminate AD from healthy controls and analyzed their age dependency. Methods 20 AD patients and 20 matched controls underwent MRI-scanning (3T GE), including T1-weighted, diffusion-MRI, and resting-state-fMRI (rsfMRI). Whole brain, white matter, gray matter, cortical gray matter and hippocampi volumes were measured using icobrain. rsfMRI between regions of the default-mode-network (DMN) was assessed using group independent-component-analysis. Median diffusivity and kurtosis were determined in gray and white-matter. DTI data was used to evaluate pairwise structural connectivity between lobar regions and the hippocampi. Logistic-Regression and Random-Forest models were trained to classify AD-status based on, respectively different isolated features and age, and feature-groups combined with age. Results Hippocampal features, features reflecting the functional connectivity between the medial-Pre-Frontal-Cortex (mPFC) and the posterior regions of the DMN, and structural interhemispheric frontal connectivity showed the strongest differences between AD-patients and controls. Structural interhemispheric parietal connectivity, structural connectivity between the parietal lobe and hippocampus in the right hemisphere, and mPFC-DMN-features, showed only an association with AD-status (p < 0.05) but not with age. Hippocampi volumes showed an association both with age and AD-status (p < 0.05). Smallest-hippocampus-volume was the most discriminative feature. The best performance (accuracy:0.74, sensitivity:0.74, specificity:0.74) was obtained with an RF-model combining the best feature from each feature-group (smallest hippocampus volume, WM volume, median GM MD, lTPJ-mPFC connectivity and structural interhemispheric frontal connectivity) and age. Conclusions Brain connectivity changes caused by AD are reflected in multiple MRI-biomarkers. Decline in both the functional DMN-connectivity and the parietal interhemispheric structural connectivity may assist sepparating healthy-aging driven changes from AD, complementing hippocampal volumes which are affected by both aging and AD.
Collapse
|
4
|
Wang Z, Bai L, Liu Q, Wang S, Sun C, Zhang M, Zhang Y. Corpus callosum integrity loss predicts cognitive impairment in Leukoaraiosis. Ann Clin Transl Neurol 2020; 7:2409-2420. [PMID: 33119959 PMCID: PMC7732249 DOI: 10.1002/acn3.51231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Objective To investigate regional white matter fibers loss in Leukoaraiosis (LA) and its relationship with cognitive impairments. Methods Fifty‐six participants with LA and 38 healthy controls underwent clinical evaluations and MR scans. Participants with LA were classified as cognitively normal (LA‐NC, n = 18), vascular cognitive impairment of none dementia (LA‐VCIND, n = 24), and vascular dementia (LA‐VaD, n = 14) by Mini‐Mental State Examination and Clinical Dementia Rating. Cognitive domains including visual‐spatial, naming, attention, language, abstraction, memory, and orientation were assessed. With the use of Tract‐based spatial statistics, mean fractional anisotropy (FA) of major white matter fiber tracts were compared between LA and controls and among LA groups with varying levels of cognitive impairments. Regression analyses were performed to evaluate relationships between FA values and cognitive performance. Results Participants showed significant FA reduction in the corpus callosum (CC), bilateral corona radiata, anterior limb of the internal capsule, external capsule, posterior thalamic radiation, and superior longitudinal fasciculus compared to controls and across LA groups. The LA‐VaD group showed consistent damage in the body and genu of CC compared to the LA‐NC and LA‐VCIND groups. A positive correlation between visual‐spatial and FA reduction in right anterior corona radiates in LA‐VCIND and body of CC in LA‐ VaD. Interpretation We found regional fiber loss in the CC across the cognitive spectrum in patients with LA and correlations between FA and visuospatial impairment in the anterior corona radiata in patients with LA‐VCIND and in the body of CC in patients with LA‐VaD.
Collapse
Affiliation(s)
- Zhuonan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
Wilson J, Allcock L, Mc Ardle R, Taylor JP, Rochester L. The neural correlates of discrete gait characteristics in ageing: A structured review. Neurosci Biobehav Rev 2019; 100:344-369. [PMID: 30552912 PMCID: PMC6565843 DOI: 10.1016/j.neubiorev.2018.12.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 12/12/2018] [Indexed: 11/03/2022]
Abstract
Gait is complex, described by diverse characteristics underpinned by widespread central nervous system networks including motor and cognitive functions. Despite this, neural substrates of discrete gait characteristics are poorly understood, limiting understanding of gait impairment in ageing and disease. This structured review aims to map gait characteristics, defined from a pre-specified model reflecting independent gait domains, to brain imaging parameters in older adults. Fifty-two studies of 38,029 yielded were reviewed. Studies showed inconsistent approaches when mapping gait assessment to neural substrates, limiting conclusions. Gait impairments typically associated with brain deterioration, specifically grey matter atrophy and white matter integrity loss. Gait velocity, a global measure of gait control, was most frequently associated with these imaging markers within frontal and basal ganglia regions, and its decline predicted from white matter volume and integrity measurements. Fewer studies assessed additional gait measures or functional imaging parameters. Future studies mapping regional neuroanatomical and functional correlates of gait are needed, including those which take a multi-process network perspective to better understand mobility in health and disease.
Collapse
Affiliation(s)
- Joanna Wilson
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle Upon Tyne, UK
| | - Liesl Allcock
- Geriatric Medicine, Northumbria Healthcare Trust, UK
| | - Ríona Mc Ardle
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle Upon Tyne, UK
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle Upon Tyne, UK
| | - Lynn Rochester
- Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle Upon Tyne, UK; Newcastle Upon Tyne Hospital NHS Foundation Trust, UK.
| |
Collapse
|
6
|
Scally B, Burke MR, Bunce D, Delvenne JF. Visual and visuomotor interhemispheric transfer time in older adults. Neurobiol Aging 2018; 65:69-76. [DOI: 10.1016/j.neurobiolaging.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 11/07/2017] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
|
7
|
Delvenne JF, Castronovo J. Reduced inter-hemispheric interference in ageing: Evidence from a divided field Stroop paradigm. Brain Cogn 2018; 122:26-33. [PMID: 29407788 DOI: 10.1016/j.bandc.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 10/26/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
One of the most important structural changes that occur in the brain during the course of life relates to the corpus callosum, the largest neural pathway that connects the two cerebral hemispheres. It has been shown that the corpus callosum, and in particular its anterior sections, endures a process of degeneration in ageing. Hence, a primary question is whether such structural changes in the brain of older adults have functional consequences on inter-hemispheric communication. In particular, whether the atrophy of the corpus callosum in ageing may lead to a higher or lower level of inter-hemispheric interference is currently unknown. To investigate this question, we asked young and healthy older adults to perform modified versions of the classic Stroop paradigm in which the target and distracter were spatially separated. Across two experiments, we found that the Stroop effect was significantly reduced in older adults when the two stimuli were distributed in two different hemifields as opposed to the same single hemifield. This new finding suggests that age-related callosal thinning reduces inter-hemispheric interference by facilitating the two hemispheres to process information in parallel.
Collapse
|
8
|
White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation. J Neurosci 2017; 37:11675-11687. [PMID: 29084867 DOI: 10.1523/jneurosci.3033-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/16/2017] [Indexed: 11/21/2022] Open
Abstract
Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits.SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of degeneration determines whether sleep spindles can promote motor memory consolidation. Therefore, white matter integrity in the human brain, more than age per se, determines the magnitude of decline in sleep spindles in later life and, with it, the success (or lack thereof) of sleep-dependent motor memory consolidation in older adults.
Collapse
|
9
|
Delorme S, De Guio F, Reyes S, Jabouley A, Chabriat H, Jouvent E. Reaction Time Is Negatively Associated with Corpus Callosum Area in the Early Stages of CADASIL. AJNR Am J Neuroradiol 2017; 38:2094-2099. [PMID: 28912283 DOI: 10.3174/ajnr.a5378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/23/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Reaction time was recently recognized as a marker of subtle cognitive and behavioral alterations in the early clinical stages of CADASIL, a monogenic cerebral small-vessel disease. In unselected patients with CADASIL, brain atrophy and lacunes are the main imaging correlates of disease severity, but MR imaging correlates of reaction time in mildly affected patients are unknown. We hypothesized that reaction time is independently associated with the corpus callosum area in the early clinical stages of CADASIL. MATERIALS AND METHODS Twenty-six patients with CADASIL without dementia (Mini-Mental State Examination score > 24 and no cognitive symptoms) and without disability (modified Rankin Scale score ≤ 1) were compared with 29 age- and sex-matched controls. Corpus callosum area was determined on 3D-T1 MR imaging sequences with validated methodology. Between-group comparisons were performed with t tests or χ2 tests when appropriate. Relationships between reaction time and corpus callosum area were tested using linear regression modeling. RESULTS Reaction time was significantly related to corpus callosum area in patients (estimate = -7.4 × 103, standard error = 3.3 × 103, P = .03) even after adjustment for age, sex, level of education, and scores of depression and apathy (estimate = -12.2 × 103, standard error = 3.8 × 103, P = .005). No significant relationship was observed in controls. CONCLUSIONS Corpus callosum area, a simple and robust imaging parameter, appears to be an independent correlate of reaction time at the early clinical stages of CADASIL. Further studies will determine whether corpus callosum area can be used as an outcome in future clinical trials in CADASIL or in more prevalent small-vessel diseases.
Collapse
Affiliation(s)
- S Delorme
- From the University Paris Diderot (S.D., F.D.G., H.C., E.J.), Sorbonne Paris Cité, UMR-S 1161 INSERM, Paris, France
| | - F De Guio
- From the University Paris Diderot (S.D., F.D.G., H.C., E.J.), Sorbonne Paris Cité, UMR-S 1161 INSERM, Paris, France.,DHU NeuroVasc Sorbonne Paris Cité (F.D.G., H.C., E.J.), Paris, France
| | - S Reyes
- Department of Neurology (S.R., A.J., H.C., E.J.), AP-HP, Lariboisière Hospital, Paris, France
| | - A Jabouley
- Department of Neurology (S.R., A.J., H.C., E.J.), AP-HP, Lariboisière Hospital, Paris, France
| | - H Chabriat
- From the University Paris Diderot (S.D., F.D.G., H.C., E.J.), Sorbonne Paris Cité, UMR-S 1161 INSERM, Paris, France.,DHU NeuroVasc Sorbonne Paris Cité (F.D.G., H.C., E.J.), Paris, France.,Department of Neurology (S.R., A.J., H.C., E.J.), AP-HP, Lariboisière Hospital, Paris, France
| | - E Jouvent
- From the University Paris Diderot (S.D., F.D.G., H.C., E.J.), Sorbonne Paris Cité, UMR-S 1161 INSERM, Paris, France .,DHU NeuroVasc Sorbonne Paris Cité (F.D.G., H.C., E.J.), Paris, France.,Department of Neurology (S.R., A.J., H.C., E.J.), AP-HP, Lariboisière Hospital, Paris, France
| |
Collapse
|
10
|
Yuan JL, Wang SK, Guo XJ, Teng LL, Jiang H, Gu H, Hu WL. Disconnections of Cortico-Subcortical Pathways Related to Cognitive Impairment in Patients with Leukoaraiosis: A Preliminary Diffusion Tensor Imaging Study. Eur Neurol 2017; 78:41-47. [PMID: 28618415 DOI: 10.1159/000477899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/25/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND We aimed to explore the relation between the microstructural integrity of white matter using the technique of diffusion tensor imaging (DTI) and changes of cognition in leukoaraiosis (LA). METHODS Fifty patients with LA and 50 age- and gender-matched controls were recruited consecutively. The average values of mean diffusivity (MD) and fractional anisotropy (FA) were quantified both within white matter lesions (WMLs) and normal-appearing white matter (NAWM) from the regions of interest (ROIs). RESULTS We found significantly decreased FA and increased MD in WMLs at the 5 ROIs than that in NAWM and controls (p < 0.05). The values of FA in NAWM were significantly lower at centrum semiovale and posterior periventricular white matter than those of controls (p < 0.05). The values of MD in NAWM were significantly higher at the anterior periventricular white matter and corpus callosum than those of controls (p < 0.05). The values of FA in NAWM located at anterior periventricular white matter correlated inversely with the Z scores of executive function (r = -0.420, p = 0.028). CONCLUSIONS DTI may provide some important information about the cognitive dysfunction in patients with LA, which may largely attribute to the "disconnection" of cortico-subcortical pathways, with the evidence of reduced FA and increased MD.
Collapse
Affiliation(s)
- Jun-Liang Yuan
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Yapıcı-Eser H, Onay A, Öztop-Çakmak Ö, Egemen E, Vanlı-Yavuz EN, Solaroğlu İ. Rare case of glioblastoma multiforme located in posterior corpus callosum presenting with depressive symptoms and visual memory deficits. BMJ Case Rep 2016; 2016:bcr-2016-216505. [PMID: 27979842 DOI: 10.1136/bcr-2016-216505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Most of the primary brain tumours are located in the supratentorial region, and it is uncommon to see tumour growth on deep brain structures such as posterior corpus callosum (PCC). In addition, lesions in PCC are also difficult to recognise, because construction apraxia, visuospatial perception and attentional capacity impairment may be the only presenting symptoms. Here, we represent a rare case of gliobastoma multiforme located in PCC, which solely presents with depressive symptoms and visual memory deficits. Initial manifestations of primary brain tumours with psychiatric symptoms and memory disturbances, in addition to headaches and seizures, should be kept in mind.
Collapse
Affiliation(s)
- Hale Yapıcı-Eser
- Department of Psychiatry, Koç Universitesi, School of Medicine, Istanbul, Turkey
| | - Aslıhan Onay
- Department of Radiology, Koç University Hospital, İstanbul, Turkey
| | | | - Emrah Egemen
- Department of Neurosurgery, Koç University Hospital, İstanbul, Turkey
| | | | - İhsan Solaroğlu
- Department of Neurosurgery, Koç University, School of Medicine, İstanbul, Turkey
| |
Collapse
|
12
|
Struyfs H, Van Hecke W, Veraart J, Sijbers J, Slaets S, De Belder M, Wuyts L, Peters B, Sleegers K, Robberecht C, Van Broeckhoven C, De Belder F, Parizel PM, Engelborghs S. Diffusion Kurtosis Imaging: A Possible MRI Biomarker for AD Diagnosis? J Alzheimers Dis 2016; 48:937-48. [PMID: 26444762 PMCID: PMC4927852 DOI: 10.3233/jad-150253] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this explorative study was to investigate whether diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameter changes are reliable measures of white matter integrity changes in Alzheimer's disease (AD) patients using a whole brain voxel-based analysis (VBA). Therefore, age- and gender-matched patients with mild cognitive impairment (MCI) due to AD (n = 18), dementia due to AD (n = 19), and age-matched cognitively healthy controls (n = 14) were prospectively included. The magnetic resonance imaging protocol included routine structural brain imaging and DKI. Datasets were transformed to a population-specific atlas space. Groups were compared using VBA. Differences in diffusion and mean kurtosis measures between MCI and AD patients and controls were shown, and were mainly found in the splenium of the corpus callosum and the corona radiata. Hence, DTI and DKI parameter changes are suggestive of white matter changes in AD.
Collapse
Affiliation(s)
- Hanne Struyfs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hecke
- icoMetrix, Leuven, Belgium.,Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Jelle Veraart
- iMinds-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium.,Center for Biomedical Imaging, New York University Langone Medical Center, New York, NY, USA
| | - Jan Sijbers
- iMinds-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Sylvie Slaets
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Maya De Belder
- Department of Experimental Psychology, University of Ghent, Ghent, Belgium
| | - Laura Wuyts
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Benjamin Peters
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Caroline Robberecht
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Frank De Belder
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
13
|
Altered visual-spatial attention to task-irrelevant information is associated with falls risk in older adults. Neuropsychologia 2014; 51:3025-32. [PMID: 24436970 DOI: 10.1016/j.neuropsychologia.2013.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Executive cognitive functions play a critical role in falls risk—a pressing health care issue in seniors. In particular, intact attentional processing is integral for safe mobility and navigation. However, the specific contribution of impaired visual–spatial attention in falls remains unclear. In this study, we examined the association between visual–spatial attention to task-irrelevant stimuli and falls risk in community-dwelling older adults. Participants completed a visual target discrimination task at fixation while task-irrelevant probes were presented in both visual fields. We assessed attention to left and right peripheral probes using event-related potentials (ERPs). Falls risk was determined using the valid and reliable Physiological Profile Assessment (PPA). We found a significantly positive association between reduced attentional facilitation, as measured by the N1 ERP component, and falls risk. This relationship was specific to probes presented in the left visual field and measured at ipsilateral electrode sites. Our results suggest that fallers exhibit reduced attention to the left side of visual space and provide evidence that impaired right hemispheric function and/or structure may contribute to falls.
Collapse
|
14
|
Levin O, Fujiyama H, Boisgontier MP, Swinnen SP, Summers JJ. Aging and motor inhibition: a converging perspective provided by brain stimulation and imaging approaches. Neurosci Biobehav Rev 2014; 43:100-17. [PMID: 24726575 DOI: 10.1016/j.neubiorev.2014.04.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/18/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
The ability to inhibit actions, one of the hallmarks of human motor control, appears to decline with advancing age. Evidence for a link between changes in inhibitory functions and poor motor performance in healthy older adults has recently become available with transcranial magnetic stimulation (TMS). Overall, these studies indicate that the capacity to modulate intracortical (ICI) and interhemispheric (IHI) inhibition is preserved in high-performing older individuals. In contrast, older individuals exhibiting motor slowing and a declined ability to coordinate movement appear to show a reduced capability to modulate GABA-mediated inhibitory processes. As a decline in the integrity of the GABA-ergic inhibitory processes may emerge due to age-related loss of white and gray matter, a promising direction for future research would be to correlate individual differences in structural and/or functional integrity of principal brain networks with observed changes in inhibitory processes within cortico-cortical, interhemispheric, and/or corticospinal pathways. Finally, we underscore the possible links between reduced inhibitory functions and age-related changes in brain activation patterns.
Collapse
Affiliation(s)
- Oron Levin
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium.
| | - Hakuei Fujiyama
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium; Human Motor Control Laboratory, School of Psychology, University of Tasmania, Australia
| | - Matthieu P Boisgontier
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Group Biomedical Sciences, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), 3001 Leuven, Belgium
| | - Jeffery J Summers
- Human Motor Control Laboratory, School of Psychology, University of Tasmania, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5UX United Kingdom
| |
Collapse
|
15
|
Executive dysfunction correlates with caudate nucleus atrophy in patients with white matter changes on MRI: a subset of LADIS. Psychiatry Res 2013; 214:16-23. [PMID: 23916538 DOI: 10.1016/j.pscychresns.2013.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/19/2013] [Accepted: 05/17/2013] [Indexed: 11/22/2022]
Abstract
White matter changes (WMC) are common magnetic resonance imaging (MRI) findings, particularly in the elderly. Recent studies such as the Leukoaraiosis and Disability Study (LADIS) have found that WMC relate to adverse outcomes including cognitive impairment, depression, disability, unsteadiness and falls in cross-sectional and follow-up studies. Frontostriatal (or frontosubcortical) brain circuits may serve many of these functions, with the caudate nuclei playing a role in convergence of cognitive functions. This study aimed to determine whether reduced caudate volume relates to cognitive functions (executive functions, memory functions and speed of processing) and WMC. We determined caudate nuclei volumes, through manual tracing, on a subgroup of the LADIS study (n=66) from four centres with baseline and 3-year follow-up MRI scans. Regression analysis was used to assess relationships between caudate volume, cognitive function and WMC. Severity of WMC did not relate to caudate volume. Smaller caudate volumes were significantly associated with poorer executive functioning at baseline and at 3 years, but were not associated with scores of memory or speed of processing. Thus, in patients with WMC, a surrogate of small vessel disease, caudate atrophy relates to the dysexecutive syndrome, supporting the role of caudate as an important part of the frontostriatal circuit.
Collapse
|
16
|
Preserved transcallosal inhibition to transcranial magnetic stimulation in nondemented elderly patients with leukoaraiosis. BIOMED RESEARCH INTERNATIONAL 2013. [PMID: 23984349 DOI: 10.1155/2013/351680.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structural corpus callosum (CC) changes in patients with leukoaraiosis (LA) are significantly associated with cognitive and motor impairment. The aim of this study is to investigate the transcallosal fibers functioning by means of transcranial magnetic stimulation (TMS) in elderly patients with LA. The resting motor threshold (rMT), the motor-evoked potentials (MEPs), and the controlateral (cSP) and ipsilateral silent periods (iSP) were determined using single-pulse TMS in 15 patients and 15 age-matched controls. The neuropsychological profile and the vascular burden at brain magnetic resonance imaging (MRI) were concomitantly explored. Patients reported abnormal scores at tests evaluating executive control functions. No significant difference was found in TMS measures of intra- and intercortical excitability. No CC lesion was evident at MRI. Transcallosal inhibitory mechanisms to TMS seem to be spared in LA patients, a finding which is in line with neuroimaging features and suggests a functional integrity of the CC despite the ischemic interruption of corticosubcortical loops implicated in cognition and behavior. The observed neurophysiological finding differs from that reported in degenerative dementia, even in the preclinical or early stage. In our group of patients, the pure extent of LA is more related to impairment of frontal lobe abilities rather than functional callosal changes.
Collapse
|
17
|
Lanza G, Bella R, Giuffrida S, Cantone M, Pennisi G, Spampinato C, Giordano D, Malaguarnera G, Raggi A, Pennisi M. Preserved transcallosal inhibition to transcranial magnetic stimulation in nondemented elderly patients with leukoaraiosis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:351680. [PMID: 23984349 PMCID: PMC3741902 DOI: 10.1155/2013/351680] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/24/2013] [Accepted: 07/14/2013] [Indexed: 02/07/2023]
Abstract
Structural corpus callosum (CC) changes in patients with leukoaraiosis (LA) are significantly associated with cognitive and motor impairment. The aim of this study is to investigate the transcallosal fibers functioning by means of transcranial magnetic stimulation (TMS) in elderly patients with LA. The resting motor threshold (rMT), the motor-evoked potentials (MEPs), and the controlateral (cSP) and ipsilateral silent periods (iSP) were determined using single-pulse TMS in 15 patients and 15 age-matched controls. The neuropsychological profile and the vascular burden at brain magnetic resonance imaging (MRI) were concomitantly explored. Patients reported abnormal scores at tests evaluating executive control functions. No significant difference was found in TMS measures of intra- and intercortical excitability. No CC lesion was evident at MRI. Transcallosal inhibitory mechanisms to TMS seem to be spared in LA patients, a finding which is in line with neuroimaging features and suggests a functional integrity of the CC despite the ischemic interruption of corticosubcortical loops implicated in cognition and behavior. The observed neurophysiological finding differs from that reported in degenerative dementia, even in the preclinical or early stage. In our group of patients, the pure extent of LA is more related to impairment of frontal lobe abilities rather than functional callosal changes.
Collapse
Affiliation(s)
- Giuseppe Lanza
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
| | - Rita Bella
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
- *Rita Bella:
| | - Salvatore Giuffrida
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
| | - Mariagiovanna Cantone
- 2Department of Neurology I.C., Oasi Institute (IRCCS), 73 Via Conte Ruggiero, 94018 Troina, Italy
| | - Giovanni Pennisi
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
| | - Concetto Spampinato
- 3Department of Electrical, Electronics and Informatics Engineering, University of Catania, 6 Viale Andrea Doria, 95125 Catania, Italy
| | - Daniela Giordano
- 3Department of Electrical, Electronics and Informatics Engineering, University of Catania, 6 Viale Andrea Doria, 95125 Catania, Italy
| | - Giulia Malaguarnera
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
| | - Alberto Raggi
- 4Unit of Neurology, Morgagni-Pierantoni Hospital, 34 Via Carlo Forlanini, 47121 Forlì, Italy
| | - Manuela Pennisi
- 5Department of Chemistry, University of Catania, 6 Viale Andrea Doria, 95125 Catania, Italy
| |
Collapse
|
18
|
Frederiksen KS, Waldemar G. Corpus callosum in aging and neurodegenerative diseases. Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.12.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SUMMARY The corpus callosum (CC) is a major white matter bundle that connects primarily homologous areas of the cortex. The structure may be involved in interhemispheric communication and enable the lateralization of certain cerebral functions. Despite its possible role as the main conduit for interhemispheric communication, interest from researchers has, at times, been sparse. Renewed interest has led to research that has shown that the CC may play a role in both cognitive aging and neurodegenerative diseases including Alzheimer´s disease and frontotemporal dementia. Studies employing structural MRI and diffusion-weighted MRI have found distinct subregional patterns of callosal atrophy in aging, Alzheimer´s disease and frontotemporal dementia. Furthermore, imaging studies may help to elucidate the underlying pathological mechanisms of callosal atrophy. The present review aims to provide an overview of the current knowledge of the structure and function of the CC and its role in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Kristian Steen Frederiksen
- Memory Disorders Research Group, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Gunhild Waldemar
- Memory Disorders Research Group, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Herron TJ, Kang X, Woods DL. Automated measurement of the human corpus callosum using MRI. Front Neuroinform 2012; 6:25. [PMID: 22988433 PMCID: PMC3439830 DOI: 10.3389/fninf.2012.00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/27/2012] [Indexed: 01/16/2023] Open
Abstract
The corpus callosum includes the majority of fibers that connect the two cortical hemispheres. Studies of cross-sectional callosal morphometry and area have revealed developmental, gender, and hemispheric differences in healthy populations and callosal deficits associated with neurodegenerative disease and brain injury. However, accurate quantification of the callosum using magnetic resonance imaging is complicated by intersubject variability in callosal size, shape, and location and often requires manual outlining of the callosum in order to achieve adequate performance. Here we describe an objective, fully automated protocol that utilizes voxel-based images to quantify the area and thickness both of the entire callosum and of different callosal compartments. We verify the method's accuracy, reliability, robustness, and multisite consistency and make comparisons with manual measurements using public brain-image databases. An analysis of age-related changes in the callosum showed increases in length and reductions in thickness and area with age. A comparison of older subjects with and without mild dementia revealed that reductions in anterior callosal area independently predicted poorer cognitive performance after factoring out Mini-Mental Status Examination scores and normalized whole brain volume. Open-source software implementing the algorithm is available at www.nitrc.org/projects/c8c8.
Collapse
Affiliation(s)
- Timothy J Herron
- Human Cognitive Neurophysiology Laboratory, Research Service, US Veterans Affairs, Northern California Health Care System Martinez, CA, USA
| | | | | |
Collapse
|
20
|
Jokinen H, Frederiksen KS, Garde E, Skimminge A, Siebner H, Waldemar G, Ylikoski R, Madureira S, Verdelho A, van Straaten ECW, Barkhof F, Fazekas F, Schmidt R, Pantoni L, Inzitari D, Erkinjuntti T. Callosal tissue loss parallels subtle decline in psychomotor speed. a longitudinal quantitative MRI study. The LADIS Study. Neuropsychologia 2012; 50:1650-5. [PMID: 22497753 DOI: 10.1016/j.neuropsychologia.2012.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 03/11/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
Abstract
Cross-sectional studies have suggested that corpus callosum (CC) atrophy is related to impairment in global cognitive function, mental speed, and executive functions in the elderly. Longitudinal studies confirming these findings have been lacking. We investigated whether CC tissue loss is associated with change in cognitive performance over time in subjects with age-related white matter lesions (WML). Two-hundred-fifty-three subjects, aged 65-84 years, were evaluated by using repeated MRI and neuropsychological evaluation at baseline and after 3 years. The effect of overall and regional CC tissue loss on cognitive decline was analyzed with hierarchical linear regression models. After controlling for age, sex, education, and baseline cognitive performance, the rates of tissue loss in the total CC area, and in rostrum/genu and midbody subregions were significantly associated with decline in a compound measure of cognitive speed and motor control, but not in those of executive functions, memory, or global cognitive function. Total CC area and midbody remained significant predictors of speed also after adjusting for baseline WML volume, WML progression, and global brain atrophy. However, the relationship between anterior CC and speed performance was mediated by WML volume. In conclusion, the overall and regional rate of CC tissue loss parallels longitudinal slowing of psychomotor performance. The adverse effect of CC tissue loss on psychomotor function may be driven by altered interhemispheric information transfer between homologous cortical areas.
Collapse
Affiliation(s)
- Hanna Jokinen
- Department of Neurology, Helsinki University Central Hospital Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|