1
|
Chen S, Zhao Q, Zhang R, Liu J, Peng W, Xu H, Li X, Wang X, Wu S, Li G, Nan A. A transcribed ultraconserved noncoding RNA, uc.285+, promotes colorectal cancer proliferation through dual targeting of CDC42 by directly binding mRNA and protein. Transl Res 2024; 270:52-65. [PMID: 38552953 DOI: 10.1016/j.trsl.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
The transcribed ultraconserved region (T-UCR) belongs to a new type of lncRNAs that are conserved in homologous regions of the rat, mouse and human genomes. A lot of research has reported that differential expression of T-UCRs can influence the development of various cancers, revealing the ability of T-UCRs as new therapeutic targets or potential cancer biomarkers. Most studies on the molecular mechanisms of T-UCRs in cancer have focused on ceRNA regulatory networks and interactions with target proteins, but the present study reveals an innovative dual-targeted regulatory approach in which T-UCRs bind directly to mRNAs and directly to proteins. We screened T-UCRs that may be related to colorectal cancer (CRC) by performing a whole-genome T-UCR gene microarray and further studied the functional mechanism of T-UCR uc.285+ in the development of CRC. Modulation of uc.285+ affected the proliferation of CRC cell lines and influenced the expression of the CDC42 gene. We also found that uc.285+ promoted the proliferation of CRC cells by directly binding to CDC42 mRNA and enhancing its stability while directly binding to CDC42 protein and affecting its stability. In short, our research on the characteristics of cell proliferation found that uc.285+ has a biological function in promoting CRC proliferation. uc.285+ may have considerable potential as a new diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Xiaofei Li
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China
| | - Xin Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shuilian Wu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
2
|
de Oliveira JC. Transcribed Ultraconserved Regions: New regulators in cancer signaling and potential biomarkers. Genet Mol Biol 2023; 46:e20220125. [PMID: 36622962 PMCID: PMC9829027 DOI: 10.1590/1678-4685-gmb-2022-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/06/2022] [Indexed: 01/11/2023] Open
Abstract
The ultraconserved regions (UCRs) are 481 genomic elements, longer than 200 bp, 100% conserved in human, mouse, and rat genomes. Usually, coding regions are more conserved, but more than 80% of UCRs are either intergenic or intronic, and many of them produce long non-coding RNAs (lncRNAs). Recently, the deregulated expression of transcribed UCRs (T-UCRs) has been associated with pathological conditions. But, differently from many lncRNAs with recognized crucial effects on malignant cell processes, the role of T-UCRs in the control of cancer cell networks is understudied. Furthermore, the potential utility of these molecules as molecular markers is not clear. Based on this information, the present review aims to organize information about T-UCRs with either oncogenic or tumor suppressor role associated with cancer cell signaling, and better describe T-UCRs with potential utility as prognosis markers. Out of 481 T-UCRs, 297 present differential expression in cancer samples, 23 molecules are associated with tumorigenesis processes, and 12 have more clear potential utility as prognosis markers. In conclusion, T-UCRs are deregulated in several tumor types, highlighted as important molecules in cancer networks, and with potential utility as prognosis markers, although further investigation for translational medicine is still needed.
Collapse
|
3
|
Gao SS, Zhang ZK, Wang XB, Ma Y, Yin GQ, Guo XB. Role of transcribed ultraconserved regions in gastric cancer and therapeutic perspectives. World J Gastroenterol 2022; 28:2900-2909. [PMID: 35978878 PMCID: PMC9280734 DOI: 10.3748/wjg.v28.i25.2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. The occurrence and development of GC is a complex process involving multiple biological mechanisms. Although traditional regulation modulates molecular functions related to the occurrence and development of GC, the comprehensive mechanisms remain unclear. Ultraconserved region (UCR) refers to a genome sequence that is completely conserved in the homologous regions of the human, rat and mouse genomes, with 100% identity, without any insertions or deletions, and often located in fragile sites and tumour-related genes. The transcribed UCR (T-UCR) is transcribed from the UCR and is a new type of long noncoding RNA. Recent studies have found that the expression level of T-UCRs changes during the occurrence and development of GC, revealing a new mechanism underlying GC. Therefore, this article aims to review the relevant research on T-UCRs in GC, as well as the function of T-UCRs and their regulatory role in the occurrence and development of GC, to provide new strategies for GC diagnosis and treatment.
Collapse
Affiliation(s)
- Shen-Shuo Gao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Zhi-Kai Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Xu-Bin Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Yan Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Guo-Qing Yin
- Department of Anus and Intestine Surgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Qingzhou 262500, Shandong Province, China
| | - Xiao-Bo Guo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
4
|
Gibert MK, Sarkar A, Chagari B, Roig-Laboy C, Saha S, Bednarek S, Kefas B, Hanif F, Hudson K, Dube C, Zhang Y, Abounader R. Transcribed Ultraconserved Regions in Cancer. Cells 2022; 11:1684. [PMID: 35626721 PMCID: PMC9139194 DOI: 10.3390/cells11101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Transcribed ultraconserved regions are putative lncRNA molecules that are transcribed from DNA that is 100% conserved in human, mouse, and rat genomes. This is notable, as lncRNAs are typically poorly conserved. TUCRs remain very understudied in many diseases, including cancer. In this review, we summarize the current literature on TUCRs in cancer with respect to expression deregulation, functional roles, mechanisms of action, and clinical perspectives.
Collapse
Affiliation(s)
- Myron K. Gibert
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Aditya Sarkar
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Bilhan Chagari
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Christian Roig-Laboy
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Sylwia Bednarek
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Benjamin Kefas
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Farina Hanif
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- NCI Designated Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance. Cancers (Basel) 2022; 14:cancers14092115. [PMID: 35565245 PMCID: PMC9100048 DOI: 10.3390/cancers14092115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite tremendous efforts devoted to research in pancreatic cancer (PC), the mechanism underlying the tumorigenesis and progression of PC is still not completely clear. Additionally, ideal biomarkers and satisfactory therapeutic strategies for clinical application in PC are still lacking. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) might participate in the pathogenesis of diverse cancers, including PC. The abnormal expression of lncRNAs in PC is considered a vital factor during tumorigenesis that affects tumor cell proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. With this review of relevant articles published in recent years, we aimed to summarize the biogenesis mechanism, classifications, and modes of action of lncRNAs and to review the functions and mechanisms of lncRNAs in PC. Additionally, the clinical significance of lncRNAs in PC was discussed. Finally, we pointed out the questions remaining from recent studies and anticipated that further investigations would address these gaps in knowledge in this field.
Collapse
|
6
|
Bozgeyik I. The dark matter of the human genome and its role in human cancers. Gene 2022; 811:146084. [PMID: 34843880 DOI: 10.1016/j.gene.2021.146084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/06/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
The transcribed ultra-conserved regions (T-UCRs) are a novel family of non-coding RNAs which are absolutely conserved (100%) across orthologous regions of the human, mouse, and rat genomes. T-UCRs represent a small portion of the human genome that is likely to be functional but does not code for proteins and is referred to as the "dark matter" of the human genome. Although T-UCRs are ubiquitously expressed, tissue- and disease-specific expression of T-UCRs have also been observed. Accumulating evidence suggests that T-UCRs are differentially expressed and involved in the malignant transformation of human tumors through various genetic and epigenetic regulatory mechanisms. Therefore, T-UCRs are novel candidate predisposing biomarkers for cancer development. T-UCRs have shown to drive malignant transformation of human cancers through regulating non-coding RNAs and/or protein coding genes. However, the functions and fate of most T-UCRs remain mysterious. Here, we review and highlight the current knowledge on these ultra-conserved elements in the formation and progression of human cancers.
Collapse
Affiliation(s)
- Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
7
|
Corrà F, Crudele F, Baldassari F, Bianchi N, Galasso M, Minotti L, Agnoletto C, Di Leva G, Brugnoli F, Reali E, Bertagnolo V, Vecchione A, Volinia S. UC.183, UC.110, and UC.84 Ultra-Conserved RNAs Are Mutually Exclusive with miR-221 and Are Engaged in the Cell Cycle Circuitry in Breast Cancer Cell Lines. Genes (Basel) 2021; 12:genes12121978. [PMID: 34946928 PMCID: PMC8701292 DOI: 10.3390/genes12121978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
In the human genome, there are about 600 ultra-conserved regions (UCRs), long DNA sequences extremely conserved in vertebrates. We performed a large-scale study to quantify transcribed UCR (T-UCR) and miRNA levels in over 6000 cancer and normal tissue samples to find possible correlation between these kinds of regulatory molecules. Our analysis evidenced several non-coding RNAs showing negative co-regulation with miRNAs; among them, we focused on miR-221 to investigate any relationship with its pivotal role in the cell cycle. We have chosen breast cancer as model, using two cell lines with different phenotypes to carry out in vitro treatments with siRNAs against T-UCRs. Our results demonstrate that the expression of uc.183, uc.110, and uc.84 T-UCRs is mutually exclusive with miR-221 and is engaged in the regulation of CDKN1B expression. In addition, tests with a set of anticancer drugs, including BYL719, AZD5363, AZD8055, AZD7762, and XL765, revealed the modulation of specific T-UCRs without alteration of miR-221 levels.
Collapse
Affiliation(s)
- Fabio Corrà
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Francesca Crudele
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Federica Baldassari
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Nicoletta Bianchi
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Marco Galasso
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Linda Minotti
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Chiara Agnoletto
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy;
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK;
| | - Federica Brugnoli
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Valeria Bertagnolo
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Andrea Vecchione
- Department of Medical Surgical Science and Translational Medicine-c/o Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
- Correspondence: ; Tel.: +39-0532-455-714
| |
Collapse
|
8
|
The Role of lncRNA in the Development of Tumors, including Breast Cancer. Int J Mol Sci 2021; 22:ijms22168427. [PMID: 34445129 PMCID: PMC8395147 DOI: 10.3390/ijms22168427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are the largest groups of ribonucleic acids, but, despite the increasing amount of literature data, the least understood. Given the involvement of lncRNA in basic cellular processes, especially in the regulation of transcription, the role of these noncoding molecules seems to be of great importance for the proper functioning of the organism. Studies have shown a relationship between disturbed lncRNA expression and the pathogenesis of many diseases, including cancer. The present article presents a detailed review of the latest reports and data regarding the importance of lncRNA in the development of cancers, including breast carcinoma.
Collapse
|
9
|
Zheng Z, Hong D, Zhang X, Chang Y, Sun N, Lin Z, Li H, Huang S, Zhang R, Xie Q, Huang H, Jin H. uc.77- Downregulation Promotes Colorectal Cancer Cell Proliferation by Inhibiting FBXW8-Mediated CDK4 Protein Degradation. Front Oncol 2021; 11:673223. [PMID: 34094975 PMCID: PMC8172171 DOI: 10.3389/fonc.2021.673223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
Transcribed ultraconserved regions (T-UCRs) are a new type of long non-coding RNA, and the UCR has 481 segments longer than 200 base pairs that are 100% conserved between humans, rats, and mice. T-UCRs involved in colorectal cancer (CRC) have not been studied in detail. We performed T-UCR microarray analysis and found that uc.77- was significantly downregulated in CRC tissues and cell lines. Ectopic expression of uc.77- significantly inhibited the proliferation of CRC cells in vitro and the growth of xenograft tumors in nude mice in vivo. Mechanistic studies showed that uc.77- competed with FBXW8 mRNA for binding to microRNA (miR)-4676-5p through a competing endogenous RNA mechanism and inhibited the proliferation of CRC cells by negatively regulating CDK4. The present findings highlight the role of the uc.77-/miR-4676-5p/FBXW8 axis in CRC and identify uc.77- as a potential novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Zhijian Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Hong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Zhang
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yixin Chang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ning Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenni Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shirui Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruirui Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Gu Y, Zhang B, Yu Y, Yang F, Xiao Y, Chen W, Ma L, Wang W, Wang G. Transcribed ultraconserved region uc.242 is a novel regulator of cardiomyocyte hypertrophy induced by angiotensin II. J Investig Med 2020; 69:749-755. [PMID: 33229398 DOI: 10.1136/jim-2020-001471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 11/03/2022]
Abstract
Cardiomyocyte hypertrophy is a response to stress or hormone stimulation and is characterized by an increase of cardiomyocyte size. Abnormal long non-coding RNA (lncRNA) expression profile has been identified in various cardiovascular diseases. Though some lncRNAs had been reported to participate in regulation of cardiac hypertrophy, the universal lncRNA profile of cardiomyocyte hypertrophy had not been established. In the present study, we aimed to identify the differentially expressed lncRNA-mRNA network in angiotensin II-stimulated cardiomyocytes, and screen the potential lncRNAs involved in regulation of cardiomyocyte hypertrophy. The hypertrophic cardiomyocytes were induced by angiotensin II (0.1 μmol/L) for 48 hours. High-throughput microarray analysis combined with quantitative real-time PCR assay were then performed to screen the differentially expressed lncRNAs and mRNAs. A total of 1577 lncRNAs and 496 mRNAs transcripts were identified differentially expressed in hypertrophic cardiomyocytes. Among them, 59 transcribed ultraconserved non-coding RNAs (T-UCRs) were found by evolutionary conservation analysis. Subsequently, the lncRNA-mRNA coexpression network was constructed based on Pearson's correlation analysis results, including 4 T-UCRs and 215 mRNAs. The results revealed that uc.242 was positively interacted with prohypertrophic genes (Hgf and Tnc). Functional study showed that inhibition of uc.242 dramatically decreased hypertrophic marker expression levels and cardiomyocyte surface area under the condition of angiotensin II stimulation. The expression of Hgf and Tnc was also decreased in cardiomyocytes after silencing of uc.242. Summarily, the present study provided crucial clues to explore therapeutic targets for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Ying Gu
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Boyao Zhang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongchao Yu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuchen Xiao
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weisheng Chen
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Liping Ma
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weizhong Wang
- Laboratory of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Liu X, Zhou X, Deng CJ, Zhao Y, Shen J, Wang Y, Zhang YL. Comprehensive analyses of T-UCR expression profiles and exploration of the efficacy of uc.63- and uc.280+ as biomarkers for lung cancer in Xuanwei, China. Pathol Res Pract 2020; 216:152978. [PMID: 32360249 DOI: 10.1016/j.prp.2020.152978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Lung cancer in Xuanwei (LCXW), China, is known worldwide for occurring frequently with high morbidity and mortality, which necessitates research to determine its pathogenesis. This study attempted to screen potential transcribed ultraconserved region (T-UCR) biomarkers related to LCXW. METHODS We performed T-UCR microarrays on 26 paired lung adenocarcinoma and adjacent tissues to explore the T-UCR expression profile of LCXW. Then, bioinformatics analysis was carried out to identify potential T-UCRs, which were further validated by real-time quantitative PCR (RT-qPCR). Then, clinical relevance analysis and Kaplan-Meier tests were performed on 50 paired tissues. RESULTS T-UCRs and RNA transcripts whose transcription units overlap UCRs (RTOUs) were significantly dysregulated in LCXW tissues compared with the corresponding noncancerous lung (NCL) tissues and presented an increasing trend from stage I to III. The expression between T-UCRs and host genes or flanking genes presented a positive or negative correlation. RT-qPCR analysis showed that uc.63- and uc.280+ were significantly up-regulated in LCXW tissues (P < 0.05). Uc.63- up-regulation was associated with tumor stage and poor prognosis of patients (P < 0.05), and uc.280+ up-regulation was associated with patient age (P < 0.05). Bioinformatics analysis of RTOUs showed that the transcripts of XPO1, uc002sbh and uc002sbg, were potentially regulated targets of uc.63-. Gene Ontology and pathway analyses showed XPO1 was involved in many important biological functions. CONCLUSION This study depicted T-UCR and RTOU expression profiling of LCXW and revealed some potential T-UCR biomarkers that may be involved in the carcinogenesis of LCXW.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China
| | - Xin Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China
| | - Cheng-Jun Deng
- Department of Gastroenterology, Kunming Children's Hospital, Kunming, 650034, China
| | - Ying Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China
| | - Jie Shen
- Second Department of Internal Medicine, Kunming Third People's Hospital, Kunming, 650041, China
| | - Yan Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China
| | - Yan-Liang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China.
| |
Collapse
|
12
|
Differentially Methylated Ultra-Conserved Regions Uc160 and Uc283 in Adenomas and Adenocarcinomas Are Associated with Overall Survival of Colorectal Cancer Patients. Cancers (Basel) 2020; 12:cancers12040895. [PMID: 32272654 PMCID: PMC7226527 DOI: 10.3390/cancers12040895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
: Deregulation of the transcribed ultra-conserved regions (T-UCRs) Uc160, Uc283, and Uc346 has been reported in colorectal cancer (CRC) recently. Here, we investigated promoter methylation of these T-UCRs during the adenoma-carcinoma sequence and their clinical significance in CRC patients. Methylation levels were assessed in CRC, adenomas, infiltrated lymph nodes, and metastatic tissue specimens. In situ hybridization was performed in representative tissue specimens. T-UCRs expression levels were also evaluated in HT-29 colon cancer cells before and after the acquired resistance to 5-fluorouracil (5-FU) and oxaliplatin. A gradual increase in T-UCRs methylation levels from hyperplastic polyps to adenomas and to in situ carcinomas (ISC) and a gradual decrease from ISC to infiltrative and metastatic carcinomas was observed (p < 0.001 for Uc160 and Uc283, p = 0.018 for Uc346). Uc160 and Uc283 methylation was associated with the grade of dysplasia in adenoma specimens (p = 0.034 and p = 0.019, respectively). Furthermore, higher Uc160 methylation, mainly in stage III and IV patients, was related to improved overall survival (OS) in univariate (p = 0.009; HR, 0.366) and multivariate analysis (p = 0.005; HR, 0.240). Similarly, higher methylation of Uc283 was associated with longer OS (p = 0.030). Finally, T-UCRs expression was significantly reduced in HT-29 cells after resistance to chemotherapy. This study suggests that promoter methylation of Uc160, Uc283, and Uc346 is altered during CRC development and that Uc160 and Uc283 methylation may have prognostic significance for CRC patients.
Collapse
|
13
|
das Chagas PF, de Sousa GR, Kodama MH, de Biagi Junior CAO, Yunes JA, Brandalise SR, Calin GA, Tone LG, Scrideli CA, de Oliveira JC. Ultraconserved long non-coding RNA uc.112 is highly expressed in childhood T versus B-cell acute lymphoblastic leukemia. Hematol Transfus Cell Ther 2020; 43:28-34. [PMID: 32014474 PMCID: PMC7910170 DOI: 10.1016/j.htct.2019.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) has been detected in several types of cancer, including acute lymphoblastic leukemia (ALL), but lncRNA mapped on transcribed ultraconserved regions (T-UCRs) are little explored. The T-UCRs uc.112, uc.122, uc.160 and uc.262 were evaluated by quantitative real-time PCR in bone marrow samples from children with T-ALL (n = 32) and common-ALL/pre-B ALL (n = 30). In pediatric ALL, higher expression levels of uc.112 were found in patients with T-ALL, compared to patients with B-ALL. T-cells did not differ significantly from B-cells regarding uc.112 expression in non-tumor precursors from public data. Additionally, among B-ALL patients, uc.112 was also found to be increased in patients with hyperdiploidy, compared to other karyotype results. The uc.122, uc.160, and uc.262 were not associated with biological or clinical features. These findings suggest a potential role of uc.112 in pediatric ALL and emphasize the need for further investigation of T-UCR in pediatric ALL.
Collapse
Affiliation(s)
- Pablo Ferreira das Chagas
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil; Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brazil
| | - Graziella Ribeiro de Sousa
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Márcio Hideki Kodama
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | | | | | | | | | - Luiz Gonzaga Tone
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Carlos Alberto Scrideli
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Jaqueline Carvalho de Oliveira
- Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brazil; Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
14
|
Sun Y, Fan W, Xue R, Dong B, Liang Z, Chen C, Li J, Wang Y, Zhao J, Huang H, Jiang J, Wu Z, Dai G, Fang R, Yan Y, Yang T, Huang ZP, Dong Y, Liu C. Transcribed Ultraconserved Regions, Uc.323, Ameliorates Cardiac Hypertrophy by Regulating the Transcription of CPT1b (Carnitine Palmitoyl transferase 1b). Hypertension 2019; 75:79-90. [PMID: 31735087 DOI: 10.1161/hypertensionaha.119.13173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcribed ultraconserved regions (T-UCRs) are a novel class of long noncoding RNAs transcribed from UCRs, which exhibit 100% DNA sequence conservation among humans, mice, and rats. However, whether T-UCRs regulate cardiac hypertrophy remains unclear. We aimed to explore the effects of T-UCRs on cardiac hypertrophy. First, we performed long noncoding RNA microarray analysis on hearts of mice subjected to sham surgery or aortic banding and found that the T-UCR uc.323 was decreased significantly in mice with aortic banding-induced cardiac hypertrophy. In vitro loss- and gain-of-function experiments demonstrated that uc.323 protected cardiomyocytes against hypertrophy induced by phenylephrine. Additionally, we discovered that mammalian target of rapamycin 1 contributed to phenylephrine-induced uc.323 downregulation and uc.323-mediated cardiomyocyte hypertrophy. We further mapped the possible target genes of uc.323 through global microarray mRNA expression analysis after uc.323 knockdown and found that uc.323 regulated the expression of cardiac hypertrophy-related genes such as CPT1b (Carnitine Palmitoyl transferase 1b). Then, chromatin immunoprecipitation proved that EZH2 (enhancer of zeste homolog 2) bound to the promoter of CPT1b via H3K27me3 (trimethylation of lysine 27 of histone H3) to induce CPT1b downregulation. And overexpression of CPT1b could block uc.323-mediated cardiomyocyte hypertrophy. Finally, we found that uc.323 deficiency induced cardiac hypertrophy. Our results reveal that uc.323 is a conserved T-UCR that inhibits cardiac hypertrophy, potentially by regulating the transcription of CPT1b via interaction with EZH2.
Collapse
Affiliation(s)
- Yu Sun
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Cardiology, the Second People's Hospital of Guangdong Province, Guangzhou, Guangdong, China (Y.S.).,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Wendong Fan
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Ruicong Xue
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Bin Dong
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Zhuomin Liang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Chen Chen
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jiayong Li
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Yan Wang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jingjing Zhao
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Huiling Huang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jingzhou Jiang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Zexuan Wu
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Gang Dai
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Rong Fang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Youchen Yan
- Department of Cardiology, Center for Translational Medicine (Y.Y., T.Y.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tiqun Yang
- Department of Cardiology, Center for Translational Medicine (Y.Y., T.Y.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhan-Peng Huang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Yugang Dong
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Chen Liu
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| |
Collapse
|
15
|
Galamb O, Barták BK, Kalmár A, Nagy ZB, Szigeti KA, Tulassay Z, Igaz P, Molnár B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J Gastroenterol 2019; 25:5026-5048. [PMID: 31558855 PMCID: PMC6747286 DOI: 10.3748/wjg.v25.i34.5026] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are members of the non-protein coding RNA family longer than 200 nucleotides. They participate in the regulation of gene and protein expression influencing apoptosis, cell proliferation and immune responses, thereby playing a critical role in the development and progression of various cancers, including colorectal cancer (CRC). As CRC is one of the most frequently diagnosed malignancies worldwide with high mortality, its screening and early detection are crucial, so the identification of disease-specific biomarkers is necessary. LncRNAs are promising candidates as they are involved in carcinogenesis, and certain lncRNAs (e.g., CCAT1, CRNDE, CRCAL1-4) show altered expression in adenomas, making them potential early diagnostic markers. In addition to being useful as tissue-specific markers, analysis of circulating lncRNAs (e.g., CCAT1, CCAT2, BLACAT1, CRNDE, NEAT1, UCA1) in peripheral blood offers the possibility to establish minimally invasive, liquid biopsy-based diagnostic tests. This review article aims to describe the origin, structure, and functions of lncRNAs and to discuss their contribution to CRC development. Moreover, our purpose is to summarise lncRNAs showing altered expression levels during tumor formation in both colon tissue and plasma/serum samples and to demonstrate their clinical implications as diagnostic or prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Barbara K Barták
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Zsófia B Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Krisztina A Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Peter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| |
Collapse
|
16
|
Pereira Zambalde E, Mathias C, Rodrigues AC, Souza Fonseca Ribeiro EM, Fiori Gradia D, Calin GA, Carvalho de Oliveira J. Highlighting transcribed ultraconserved regions in human diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1567. [DOI: 10.1002/wrna.1567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
| | - Carolina Mathias
- Department of Genetics Universidade Federal do Paraná Curitiba Brazil
| | | | | | | | - George A. Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center University of Texas Houston Texas
| | | |
Collapse
|
17
|
Guo Z, Zhou C, Zhong X, Shi J, Wu Z, Tang K, Wang Z, Song Y. The long noncoding RNA CTA-941F9.9 is frequently downregulated and may serve as a biomarker for carcinogenesis in colorectal cancer. J Clin Lab Anal 2019; 33:e22986. [PMID: 31343781 PMCID: PMC6868415 DOI: 10.1002/jcla.22986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) participate in the carcinogenesis of many different cancers. This study aimed to detect expression of lncRNA CTA-941F9.9 in colorectal cancer tissues compared with matched nontumorous adjacent tissues (NATs). Moreover, we investigated whether this molecule is able to influence carcinogenesis in colorectal cancer (CRC). METHODS Colorectal cancer tissues and NATs from two cohorts of patients were examined. Quantitative PCR was performed to quantify levels of CTA-941F9.9 expression in these samples. The association between CTA-941F9.9 expression and clinicopathological features, including receiver operating characteristic (ROC) curves, was also analyzed to evaluate the diagnostic value of CTA-941F9.9 in CRC. Potential effects of lncRNA CTA-941F9.9 on CRC cells were assessed via autophagy, transwell assay, CCK8 assays, and flow cytometry. RESULTS Our experimental results showed lncRNA CTA-941F9.9 to be significantly downregulated in CRC tissues in both cohorts, with areas under the ROC curve (AUC) of 0.802 and 0.876. However, no significant correlations between CTA-941F9.9 expression levels and clinicopathological characteristics or patient outcomes were observed. We also found that CTA-941F9.9 promotes autophagy in CRC cell lines but no significant function of CTA-941F9.9 in regulating cancer cell proliferation or migration. CONCLUSIONS LncRNA CTA-941F9.9 is frequently downregulated in CRC compared with NATs and might play an important role in CRC carcinogenesis.
Collapse
Affiliation(s)
- Zhexu Guo
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Cen Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xi Zhong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Kaiwen Tang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
The Transcribed-Ultra Conserved Regions: Novel Non-Coding RNA Players in Neuroblastoma Progression. Noncoding RNA 2019; 5:ncrna5020039. [PMID: 31167408 PMCID: PMC6631508 DOI: 10.3390/ncrna5020039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
The Transcribed-Ultra Conserved Regions (T-UCRs) are a class of novel non-coding RNAs that arise from the dark matter of the genome. T-UCRs are highly conserved between mouse, rat, and human genomes, which might indicate a definitive role for these elements in health and disease. The growing body of evidence suggests that T-UCRs contribute to oncogenic pathways. Neuroblastoma is a type of childhood cancer that is challenging to treat. The role of non-coding RNAs in the pathogenesis of neuroblastoma, in particular for cancer development, progression, and therapy resistance, has been documented. Exosmic non-coding RNAs are also involved in shaping the biology of the tumor microenvironment in neuroblastoma. In recent years, the involvement of T-UCRs in a wide variety of pathways in neuroblastoma has been discovered. Here, we present an overview of the involvement of T-UCRs in various cellular pathways, such as DNA damage response, proliferation, chemotherapy response, MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)) amplification, gene copy number, and immune response, as well as correlate it to patient survival in neuroblastoma.
Collapse
|
19
|
Zhou J, Wang C, Gong W, Wu Y, Xue H, Jiang Z, Shi M. uc.454 Inhibited Growth by Targeting Heat Shock Protein Family A Member 12B in Non-Small-Cell Lung Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:174-183. [PMID: 30195756 PMCID: PMC6023848 DOI: 10.1016/j.omtn.2018.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/18/2023]
Abstract
Transcribed ultraconserved regions (T-UCRs) classified as long non-coding RNAs (Lnc-RNAs) are transcripts longer than 200-nt RNA with no protein-coding capacity. Previous studies showed that T-UCRs serve as novel oncogenes, or tumor suppressors are involved in tumorigenesis and cancer progressive. Nevertheless, the clinicopathologic significance and regulatory mechanism of T-UCRs in lung cancer (LC) remain largely unknown. We found that uc.454 was downregulated in both non-small-cell LC (NSCLC) tissues and LC cell lines, and the downregulated uc.454 is associated with tumor size and tumors with more advanced stages. Transfection with uc.454 markedly induced apoptosis and inhibited cell proliferation in SPC-A-1 and NCI-H2170 LC cell lines. Above results suggested that uc.454 played a suppressive role in LC. Heat shock protein family A member 12B (HSPA12B) protein was negatively regulated by uc.454 at the posttranscriptional level by dual-luciferase reporter assay and affected the expressions of Bcl-2 family members, which finally induced LC apoptosis. The uc.454/HSPA12B axis furthers our understanding of the molecular mechanisms involved in tumor apoptosis, which may potentially serve as a therapeutic target for lung carcinoma.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China; Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou 225009, China
| | - Chenghai Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou 225009, China
| | - Weijuan Gong
- Department of Molecular Immunology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou 225009, China
| | - Yandan Wu
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou 225009, China
| | - Huimin Xue
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou 225009, China
| | - Zewei Jiang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou 225009, China
| | - Minhua Shi
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
20
|
Kottorou AE, Antonacopoulou AG, Dimitrakopoulos FID, Diamantopoulou G, Sirinian C, Kalofonou M, Theodorakopoulos T, Oikonomou C, Katsakoulis EC, Koutras A, Makatsoris T, Demopoulos N, Stephanou G, Stavropoulos M, Thomopoulos KC, Kalofonos HP. Deregulation of methylation of transcribed-ultra conserved regions in colorectal cancer and their value for detection of adenomas and adenocarcinomas. Oncotarget 2018; 9:21411-21428. [PMID: 29765549 PMCID: PMC5940382 DOI: 10.18632/oncotarget.25115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
Expression of Transcribed Ultraconserved Regions (T-UCRs) is often deregulated in cancer. The present study assesses the expression and methylation of three T-UCRs (Uc160, Uc283 and Uc346) in colorectal cancer (CRC) and explores the potential of T-UCR methylation in circulating DNA for the detection of adenomas and adenocarcinomas. Expression levels of Uc160, Uc283 and Uc346 were lower in neoplastic tissues from 64 CRC patients (statistically significant for Uc160, p<0.001), compared to non-malignant tissues, while methylation levels displayed the inverse pattern (p<0.001, p=0.001 and p=0.004 respectively). In colon cancer cell lines, overexpression of Uc160 and Uc346 led to increased proliferation and migration rates. Methylation levels of Uc160 in plasma of 50 CRC, 59 adenoma patients, 40 healthy subjects and 12 patients with colon inflammation or diverticulosis predicted the presence of CRC with 35% sensitivity and 89% specificity (p=0.016), while methylation levels of the combination of all three T-UCRs resulted in 45% sensitivity and 74.3% specificity (p=0.013). In conclusion, studied T-UCRs’ expression and methylation status are deregulated in CRC while Uc160 and Uc346 appear to have a complicated role in CRC progression. Moreover their methylation status appears a promising non-invasive screening test for CRC, provided that the sensitivity of the assay is improved.
Collapse
Affiliation(s)
- Anastasia E Kottorou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
| | - Anna G Antonacopoulou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
| | - Foteinos-Ioannis D Dimitrakopoulos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece.,Division of Oncology, University Hospital of Patras, Patras, Greece
| | | | - Chaido Sirinian
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
| | - Melpomeni Kalofonou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | | | - Chrysa Oikonomou
- Division of Oncology, University Hospital of Patras, Patras, Greece
| | | | - Angelos Koutras
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece.,Division of Oncology, University Hospital of Patras, Patras, Greece
| | - Thomas Makatsoris
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece.,Division of Oncology, University Hospital of Patras, Patras, Greece
| | - Nikos Demopoulos
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Georgia Stephanou
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | | | | | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece.,Division of Oncology, University Hospital of Patras, Patras, Greece
| |
Collapse
|
21
|
Wen HJ, Walsh MP, Yan IK, Takahashi K, Fields A, Patel T. Functional Modulation of Gene Expression by Ultraconserved Long Non-coding RNA TUC338 during Growth of Human Hepatocellular Carcinoma. iScience 2018; 2:210-220. [PMID: 29888750 PMCID: PMC5993207 DOI: 10.1016/j.isci.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TUC338 is an ultraconserved long non-coding RNA that contributes to transformed cell growth in hepatocellular carcinoma (HCC). Genomic regions of TUC338 occupancy were enriched in unique or known binding motifs homologous to the tumor suppressors Pax6 and p53. Genes involved in cell proliferation were enriched within a 9-kb range of TUC338-binding sites. TUC338 RNA-based purification was used to isolate chromatin for mass spectrometry, and the plasminogen activator inhibitor-1 RNA-binding protein (PAI-RBP1) was identified as a TUC338 RNA-binding partner. The PAI-RBP1 target gene plasminogen activator inhibitor-1 (PAI-1) itself could also be post-transcriptionally regulated by TUC338. Thus modulation of transformed cell growth by TUC338 may involve binding to PAI-RBP1 as well as to sequence-defined cis-binding sites to modulate gene expression. These findings suggest that ultraconserved RNAs such as TUC338 can function in a manner analogous to transcription factors to modulate cell proliferation and transformed cell growth in HCC. TUC338 can modulate cell proliferation by sequence-specific genomic binding TUC338 binds to motifs homologous to those of the tumor suppressors Pax6 and p53 Plasminogen activator inhibitor-1 mRNA binding protein is a TUC338-binding protein TUC338 can regulate PAI-RBP1 target gene plasminogen activator inhibitor-1
Collapse
Affiliation(s)
- Hui-Ju Wen
- Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael P Walsh
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Irene K Yan
- Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kenji Takahashi
- Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alan Fields
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
22
|
Liu C, Wang J, Yuan X, Qian W, Zhang B, Shi M, Xie J, Shen B, Xu H, Hou Z, Chen H. Long noncoding RNA uc.345 promotes tumorigenesis of pancreatic cancer by upregulation of hnRNPL expression. Oncotarget 2018; 7:71556-71566. [PMID: 27689400 PMCID: PMC5342101 DOI: 10.18632/oncotarget.12253] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence points to an important functional or regulatory role of long noncoding RNA in cellular processes as well as cancer diseases resulted from the aberrant lncRNA expression. LncRNA could participate in the cancer progression and develop a significant role through the interaction with proteins. In the present study, we report a lncRNA termed uc.345 that is up-regulated in tumor tissues, compared to the corresponding noncancerous tissues. We found that a higher uc.345 expression level was more frequently observed in tissues with increased depth of invasion and advanced TNM tumor node metastasis T stage. Moreover, uc.345 could be used as an independent risk factor for the overall survival (OS) of the pancreatic cancer patients. By employing soft agar assays and tumor xenograft models, we showed that uc.345 could accelerate tumor growth. Further, we discovered that uc.345 could upregulate the hnRNPL expression and that inhibition of (hnRNPL) dampens the tumorigenesis capability of uc.345. Collectively, these results demonstrate that uc.345 functions as an oncogenic lncRNA that promotes tumor progression and serves as a poor predictor for pancreatic cancer patients' overall survival.
Collapse
Affiliation(s)
- Chao Liu
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Wang
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyuan Yuan
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenli Qian
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bosen Zhang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junjie Xie
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Xu
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Jiang J, Azevedo-Pouly ACP, Redis RS, Lee EJ, Gusev Y, Allard D, Sutaria DS, Badawi M, Elgamal OA, Lerner MR, Brackett DJ, Calin GA, Schmittgen TD. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma. Oncotarget 2018; 7:53165-53177. [PMID: 27363020 PMCID: PMC5288176 DOI: 10.18632/oncotarget.10242] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/28/2016] [Indexed: 12/29/2022] Open
Abstract
Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC.
Collapse
Affiliation(s)
- Jinmai Jiang
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ana Clara P Azevedo-Pouly
- College of Pharmacy, Ohio State University, Columbus, OH, USA.,Present address: Department of Molecular Biology University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roxana S Redis
- University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Eun Joo Lee
- College of Pharmacy, Ohio State University, Columbus, OH, USA.,Present address: College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Republic of Korea
| | - Yuriy Gusev
- Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | - Mohamed Badawi
- College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Ola A Elgamal
- College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Megan R Lerner
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.,Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Daniel J Brackett
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.,Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - George A Calin
- University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
24
|
Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis. Oncotarget 2018; 7:20636-54. [PMID: 26943042 PMCID: PMC4991481 DOI: 10.18632/oncotarget.7833] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
Ultraconserved regions (UCRs) have been shown to originate non-coding RNA transcripts (T-UCRs) that have different expression profiles and play functional roles in the pathophysiology of multiple cancers. The relevance of these functions to the pathogenesis of bladder cancer (BlCa) is speculative. To elucidate this relevance, we first used genome-wide profiling to evaluate the expression of T-UCRs in BlCa tissues. Analysis of two datasets comprising normal bladder tissues and BlCa specimens with a custom T-UCR microarray identified ultraconserved RNA (uc.) 8+ as the most upregulated T-UCR in BlCa tissues, although its expression was lower than in pericancerous bladder tissues. These results were confirmed on BlCa tissues by real-time PCR and by in situ hybridization. Although uc.8+ is located within intron 1 of CASZ1, a zinc-finger transcription factor, the transcribed non-coding RNA encoding uc.8+ is expressed independently of CASZ1. In vitro experiments evaluating the effects of uc.8+ silencing, showed significantly decreased capacities for cancer cell invasion, migration, and proliferation. From this, we proposed and validated a model of interaction in which uc.8+ shuttles from the nucleus to the cytoplasm of BlCa cells, interacts with microRNA (miR)-596, and cooperates in the promotion and development of BlCa. Using computational analysis, we investigated the miR-binding domain accessibility, as determined by base-pairing interactions within the uc.8+ predicted secondary structure, RNA binding affinity, and RNA species abundance in bladder tissues and showed that uc.8+ is a natural decoy for miR-596. Thus uc.8+ upregulation results in increased expression of MMP9, increasing the invasive potential of BlCa cells. These interactions between evolutionarily conserved regions of DNA suggest that natural selection has preserved this potentially regulatory layer that uses RNA to modulate miR levels, opening up the possibility for development of useful markers for early diagnosis and prognosis as well as for development of new RNA-based cancer therapies.
Collapse
|
25
|
Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Res 2018; 45:12611-12624. [PMID: 29121339 PMCID: PMC5728398 DOI: 10.1093/nar/gkx1074] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Comparative genomics has revealed a class of non-protein-coding genomic sequences that display an extraordinary degree of conservation between two or more organisms, regularly exceeding that found within protein-coding exons. These elements, collectively referred to as conserved non-coding elements (CNEs), are non-randomly distributed across chromosomes and tend to cluster in the vicinity of genes with regulatory roles in multicellular development and differentiation. CNEs are organized into functional ensembles called genomic regulatory blocks–dense clusters of elements that collectively coordinate the expression of shared target genes, and whose span in many cases coincides with topologically associated domains. CNEs display sequence properties that set them apart from other sequences under constraint, and have recently been proposed as useful markers for the reconstruction of the evolutionary history of organisms. Disruption of several of these elements is known to contribute to diseases linked with development, and cancer. The emergence, evolutionary dynamics and functions of CNEs still remain poorly understood, and new approaches are required to enable comprehensive CNE identification and characterization. Here, we review current knowledge and identify challenges that need to be tackled to resolve the impasse in understanding extreme non-coding conservation.
Collapse
Affiliation(s)
- Dimitris Polychronopoulos
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - James W D King
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alexander J Nash
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ge Tan
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| |
Collapse
|
26
|
Wang L, Wang XC, Li X, Gu Y, Zhou J, Jiang S, Liu J, Wu C, Ding Z, Wan Y, Wang C. Expression of uc.189 and its clinicopathologic significance in gynecological cancers. Oncotarget 2017; 9:7453-7463. [PMID: 29484123 PMCID: PMC5800915 DOI: 10.18632/oncotarget.23761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 12/23/2017] [Indexed: 01/01/2023] Open
Abstract
In recent decades, emerging evidence demonstrates that ultraconserved elements (UCEs) encoding noncoding RNAs serve as regulators of gene expression. Until now, the role of uc.189 in human cancers remains undefined and the clinical significance of uc.189 in gynecological cancers remains unknown. This study was to identify the prognostic value of uc.189 expression in gynecological cancers. Tissue microarrays were constructed with 243 samples including 116 cervical squamous cell carcinomas (CSCCs), 98 endometrial adenocarcinomas (EACs), 29 ovarian cystoadenocarcinomas(OCAs), and corresponding normal tissues. In CSCC, uc.189 expression was increased in 78.5% of cases (91/116), decreased in 4.3% (5/116), and unchanged in 17.2% (20/116). In EAC its expression was increased in 74.5% (73/98), decreased in 3.1% (3/98), and unchanged in 22.4% (22/98). Expression of uc.189 was increased in 23, and unchanged/decreased in 6, of 29 cases of ovarian cystoadenocarcinomas. Univariate and multivariate Cox regression analysis demonstrated that over-expression of uc.189 predicted poor prognosis in CSCC and EAC. Thus, these findings suggested uc.189 might be an evaluating prognosis marker of gynecological tumors.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Department of Pharmacy, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Xing Cheng Wang
- Department of Pharmacy, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Xinyu Li
- Department of Basic Medical, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yan Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jun Zhou
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuwan Jiang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiajia Liu
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chong Wu
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyan Ding
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yafeng Wan
- Department of Pharmacy, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Chenghai Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Department of Pharmacy, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
27
|
Abstract
The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
Collapse
Affiliation(s)
- Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
28
|
Vannini I, Wise PM, Challagundla KB, Plousiou M, Raffini M, Bandini E, Fanini F, Paliaga G, Crawford M, Ferracin M, Ivan C, Fabris L, Davuluri RV, Guo Z, Cortez MA, Zhang X, Chen L, Zhang S, Fernandez-Cymering C, Han L, Carloni S, Salvi S, Ling H, Murtadha M, Neviani P, Gitlitz BJ, Laird-Offringa IA, Nana-Sinkam P, Negrini M, Liang H, Amadori D, Cimmino A, Calin GA, Fabbri M. Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nat Commun 2017; 8:1801. [PMID: 29180617 PMCID: PMC5703849 DOI: 10.1038/s41467-017-01562-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/27/2017] [Indexed: 01/05/2023] Open
Abstract
The transcribed ultraconserved regions (T-UCRs) encode long non-coding RNAs implicated in human carcinogenesis. Their mechanisms of action and the factors regulating their expression in cancers are poorly understood. Here we show that high expression of uc.339 correlates with lower survival in 210 non-small cell lung cancer (NSCLC) patients. We provide evidence from cell lines and primary samples that TP53 directly regulates uc.339. We find that transcribed uc.339 is upregulated in archival NSCLC samples, functioning as a decoy RNA for miR-339-3p, -663b-3p, and -95-5p. As a result, Cyclin E2, a direct target of all these microRNAs is upregulated, promoting cancer growth and migration. Finally, we find that modulation of uc.339 affects microRNA expression. However, overexpression or downregulation of these microRNAs causes no significant variations in uc.339 levels, suggesting a type of interaction for uc.339 that we call "entrapping". Our results support a key role for uc.339 in lung cancer.
Collapse
Affiliation(s)
- Ivan Vannini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Petra M Wise
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Meropi Plousiou
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Mirco Raffini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Erika Bandini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Francesca Fanini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Giorgia Paliaga
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Melissa Crawford
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, 40126, Bologna, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Linda Fabris
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Ramana V Davuluri
- Departments of Preventive Medicine and Neurological Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhiyi Guo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lu Chen
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cecilia Fernandez-Cymering
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Silvia Carloni
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Biosciences Laboratory Unit, 47014, Meldola (FC), Italy
| | - Samanta Salvi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Biosciences Laboratory Unit, 47014, Meldola (FC), Italy
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mariam Murtadha
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Paolo Neviani
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Barbara J Gitlitz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ite A Laird-Offringa
- Departments of Surgery and Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dino Amadori
- Department of Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, 47014, Meldola (FC), Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics, National Research Council, 80131, Naples, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA.
| | - Muller Fabbri
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| |
Collapse
|
29
|
Fan F, Zhu Z, Gao C, Liu Y, Wang B, Wang Z, Feng J. Prognostic value of lncRNAs in lung carcinoma: a meta-analysis. Oncotarget 2017; 8:83292-83305. [PMID: 29137343 PMCID: PMC5669969 DOI: 10.18632/oncotarget.21096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Many different long non-coding RNAs (lncRNAs) have been reported to be abnormally expressed in lung carcinoma and may thus serve as prognostic biomarkers for this disease. We conducted this meta-analysis, which included a total of 30 studies identified via searches of PubMed, Embase, Medline, and Web of Science and included 2912 patients from China (28), Germany (1), and Japan (1), to investigate the prognostic value of different lncRNAs in lung carcinoma. The results revealed that lncRNA transcription levels were significantly associated with overall survival in lung cancer patients (HR:1.46, 95% CI: 1.16-1.83, P = 0.000). However, lncRNA transcription levels were not associated with progression-free survival (PFS) (HR: 1.55, 95% CI: 0.50-4.80, P = 0.449). Further analysis showed that high lncRNA transcription levels were significantly associated with tumour-node-metastasis (TNM) stage (III/IV vs I/II: RR = 1.339, 95% CI: 1.046-1.716, P = 0.012), lymph node metastasis (positive vs negative: RR = 1.442, 95% CI: 1.103-1.885, P = 0.007), and distant metastasis (yes vs no: RR = 3.187,95% CI: 1.393-7.294, P = 0.006). Taken together, the results of our present meta-analysis revealed that lncRNAs may be useful prognostic markers for lung carcinoma and may also have value as biomarkers for TNM stage, lymph node metastasis and distant metastasis.
Collapse
Affiliation(s)
- Fan Fan
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Department of Chemotherapy, The No.2 Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Zhengqiu Zhu
- Department of Chemotherapy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Chao Gao
- Department of Chemotherapy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yun Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Baoqing Wang
- Department of Chemotherapy, The No.2 Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Ziquan Wang
- Department of Chemotherapy, The No.2 Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Jifeng Feng
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| |
Collapse
|
30
|
Terracciano D, Terreri S, de Nigris F, Costa V, Calin GA, Cimmino A. The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:449-455. [PMID: 28916343 DOI: 10.1016/j.bbcan.2017.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 02/06/2023]
Abstract
Ultraconserved regions (UCRs) represent a relatively new class of non-coding genomic sequences highly conserved between human, rat and mouse genomes. These regions can reside within exons of protein-coding genes, despite the vast majority of them localizes within introns or intergenic regions. Several studies have undoubtedly demonstrated that most of these regions are actively transcribed in normal cells/tissues, where they contribute to regulate many cellular processes. Interestingly, these non-coding RNAs exhibit aberrant expression levels in human cancer cells and their expression profiles have been used as prognostic factors in human malignancies, as well as to unambiguously distinguish among distinct cancer types. In this review, we first describe their identification, then we provide some updated information about their genomic localization and classification. More importantly, we discuss about the available literature describing an overview of the mechanisms through which some transcribed UCRs (T-UCR) contribute to cancer progression or to the metastatic spread. To date, the interplay between T-UCRs and microRNAs is the most convincing evidence linking T-UCRs and tumorigenesis. The limitations of these studies and the future challenges to be addressed in order to understand the biological role of T-UCRs are also discussed herein. We envision that future efforts are needed to convincingly include this class of ncRNAs in the growing area of cancer therapeutics.
Collapse
Affiliation(s)
- Daniela Terracciano
- Dept. of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sara Terreri
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR), Naples, Italy
| | - Filomena de Nigris
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR), Naples, Italy
| | - George A Calin
- Departments of Experimental Therapeutics and Leukemia, and the Center for small interfering RNA and non-coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amelia Cimmino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", National Research Council (CNR), Naples, Italy.
| |
Collapse
|
31
|
Guo Y, Wang C, Miao X, Chen S, Qian Y, Li G, Jiang Y. Upregulation of uc.189 in patients with esophageal squamous cell carcinoma and its clinicopathologic value. Pathol Res Pract 2017; 213:1400-1403. [PMID: 28941722 DOI: 10.1016/j.prp.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022]
Abstract
Ultraconserved elements (UCEs) encoding noncoding RNAs serve as important regulators in cancer biology. Until now, the role of the UCE uc.189 in human cancers remains undefined and the clinical significance of uc.189 in esophageal cancers remains unknown. This study was to identify the prognostic value of uc.189 expression in esophageal squamous cell carcinomas (ESCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of uc.189 in matched cancerous tissues and adjacent noncancerous tissues from 152 patients with ESCC. The correlation of uc.189 with clinicopathological features and prognosis were also analyzed. The expression of uc.189 was significantly higher in human ESCC compared with the adjacent noncancerous tissues (122/152, 80.3%, p<0.01), and the high level of uc.189 expression was significantly correlated with invasion of the tumor (p=0.009), advanced clinical stage (p=0.000), lymph node metastasis (p=0.000), and poor prognosis. High expression of uc.189 might reflect poor prognosis of ESCC and indicate a potential diagnostic target in ESCC patients. Uc.189 might be considered as a novel molecule involved in ESCC progression, which provides a potential prognostic biomarker and therapeutic target.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Esophageal Neoplasms/diagnosis
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Esophageal Squamous Cell Carcinoma
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis/diagnosis
- Lymphatic Metastasis/genetics
- Lymphatic Metastasis/pathology
- Male
- Middle Aged
- Prognosis
- RNA, Long Noncoding/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Yan Guo
- Department of Geriatrics, Jingjiang People's Hospital, The Affiliated Training Hospital of Yangzhou University, 28 Zhongzhou Road, Jingjiang, Jiangsu,214500, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Chenghai Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University,368 Hanjiang Middle Road, Yangzhou, China, 225009; Department of Pathology, Medical School, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xin Miao
- Department of Pathology, Medical School, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, China
| | - Siyu Chen
- Department of Pathology, Medical School, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, China
| | - Yu Qian
- Department of Pathology, Medical School, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, China
| | - Guoli Li
- Department of Pathology, Medical School, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, China; Institute of Translational Medicine, Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ying Jiang
- Department of Pathology, Medical School, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, China; Institute of Translational Medicine, Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
32
|
Gu Y, Yang F, Xu RM, Zhang YY, Li Y, Liu SX, Zhang GX, Wang GK, Ma LP. Differential expression profile of long non-coding RNA in cardiomyocytes autophagy induced by angiotensin II. Cell Biol Int 2017; 41:1076-1082. [PMID: 28653781 DOI: 10.1002/cbin.10809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Gu
- Department of Cardiology; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| | - Fan Yang
- Department of Cardiovascular Surgery; Institution of Cardiac Surgery; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| | - Ru-ming Xu
- Department of Cardiology; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| | - Yun-yan Zhang
- Department of Cardiology; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| | - Yang Li
- Department of Cardiovascular Surgery; Institution of Cardiac Surgery; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| | - Su-xuan Liu
- Department of Cardiology; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| | - Guan-xin Zhang
- Department of Cardiovascular Surgery; Institution of Cardiac Surgery; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| | - Guo-kun Wang
- Department of Cardiovascular Surgery; Institution of Cardiac Surgery; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| | - Li-ping Ma
- Department of Cardiology; Changhai Hospital; The Second Military Medical University; Shanghai 200433 China
| |
Collapse
|
33
|
Yang Y, Du Y, Liu X, Cho WC. Involvement of Non-coding RNAs in the Signaling Pathways of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:19-51. [PMID: 27573893 DOI: 10.1007/978-3-319-42059-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common diagnosed cancers worldwide. The metastasis and development of resistance to anti-cancer treatment are major challenges in the treatment of CRC. Understanding mechanisms underpinning the pathogenesis is therefore critical in developing novel agents for CRC treatments. A large number of evidence has demonstrated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have functional roles in both the physiological and pathological processes by regulating the expression of their target genes. These molecules are engaged in the pathobiology of neoplastic diseases and are targets for the diagnosis, prognosis and therapy of a variety of cancers, including CRC. In this regard, ncRNAs have emerged as one of the hallmarks of CRC pathogenesis and they also play key roles in metastasis, drug resistance and the stemness of CRC stem cell by regulating various signaling networks. Therefore, a better understanding the ncRNAs involved in the signaling pathways of CRC may lead to the development of novel strategy for diagnosis, prognosis and treatment of CRC. In this chapter, we summarize the latest findings on ncRNAs, with a focus on miRNAs and lncRNAs involving in signaling networks and in the regulation of pathogenic signaling pathways in CRC.
Collapse
Affiliation(s)
- Yinxue Yang
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yong Du
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
34
|
Gao X, Gao X, Li C, Zhang Y, Gao L. Knockdown of Long Noncoding RNA uc.338 by siRNA Inhibits Cellular Migration and Invasion in Human Lung Cancer Cells. Oncol Res 2017; 24:337-343. [PMID: 27712590 PMCID: PMC7838692 DOI: 10.3727/096504016x14666990347671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lung cancer remains a critical health concern worldwide. Long noncoding RNAs with ultraconserved elements have recently been implicated in human tumorigenesis. The present study investigated the role of ultraconserved element 338 (uc.338) in the regulation of cell proliferation and metastasis in human lung cancer. Our data showed that the expression of uc.338 in lung cancer was remarkably increased in vivo and in vitro. Depletion of uc.338 with specific siRNA interference retarded the cell proliferative rate in lung cancer cell lines NCI-H929 and H1688. Furthermore, knockdown of uc.338 caused cell cycle arrest in the G0/G1 phase in both cell lines. Transwell assays showed that inhibition of uc.338 notably decreased migration and invasion in NCI-H929 and H1688 cells. Moreover, uc.338 depletion decreased the expression of cyclin B1, Cdc25C, Snail, vimentin, and N-cadherin while increasing the protein level of E-cadherin, shown with Western blot analysis. These results suggested the pro-oncogenic potential of uc.338 in lung cancer, which might provide novel clues for the diagnosis and treatment of lung cancer in the clinic.
Collapse
Affiliation(s)
- Xuexin Gao
- Department of Thoracic Surgery, Central Hospital of Tai'an, Tai'an, Shandong, China
| | | | | | | | | |
Collapse
|
35
|
Cao C, Li J, Li J, Liu L, Cheng X, Jia R. Long Non-Coding RNA Uc.187 Is Upregulated in Preeclampsia and Modulates Proliferation, Apoptosis, and Invasion of HTR-8/SVneo Trophoblast Cells. J Cell Biochem 2017; 118:1462-1470. [PMID: 27883216 DOI: 10.1002/jcb.25805] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022]
Abstract
Among the preeclampsia-related long non-cording RNAs (lncRNAs) screened with a gene chip in our preliminary study, uc.187 attracted our attention because of its high conservation across different species and significant positive correlation with preeclampsia (PE). The literature and bioinformatics analysis suggested that lncRNA uc.187 might be associated with cell growth, invasion, and apoptosis. The expression of uc.187 in severe preeclamptic placentas (n = 31) and normal placentas (n = 18) was evaluated by real-time reverse transcription polymerase chain reaction (qRT-PCR). We constructed a silencing lentivirus vector (uc.187 siRNA) to explore the biological function of uc.187 in the development and progression of HTR-8/SVneo trophoblast cells in vitro. Furthermore, we utilized CCK8 analysis, a transwell invasion assay, and flow cytometry to determine the role of uc.187 in the proliferation, invasion, and apoptosis of HTR-8/SVneo trophoblast cells. The proteins related to proliferation (PCNA, Ki67), invasion (MMP-2/-9 and TIMP-1), and apoptosis (caspase-3, Bcl-2) were evaluated with a Western blot assay. The results showed that there was an obvious upregulation of uc.187 expression in preeclamptic placental tissues. In addition, uc.187 silencing enhanced cell proliferation and invasion and reduced the cellular apoptotic response. Taken together, our findings suggest for the first time that abnormal expression of lncRNA uc.187 may lead to the aberrant biological behavior of HTR-8/SVneo cells. Therefore, we propose uc.187 as a novel lncRNA molecule that might contribute to the development of PE and might represent a potential diagnostic and therapeutic target for this disease. J. Cell. Biochem. 118: 1462-1470, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunyu Cao
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, China
| | - Jingyun Li
- Department of Plastic & Cosmetic Surgery, State key Laboratory of Reproductive Medicine, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Jun Li
- Department of Plastic & Cosmetic Surgery, State key Laboratory of Reproductive Medicine, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Lan Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Xiaoyan Cheng
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Nantong, Nantong, Jiangsu 226018, China
| | - Ruizhe Jia
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| |
Collapse
|
36
|
Understanding the Genomic Ultraconservations: T-UCRs and Cancer. MIRNAS IN DIFFERENTIATION AND DEVELOPMENT 2017; 333:159-172. [DOI: 10.1016/bs.ircmb.2017.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Nan A, Zhou X, Chen L, Liu M, Zhang N, Zhang L, Luo Y, Liu Z, Dai L, Jiang Y. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis. Oncotarget 2016; 7:112-24. [PMID: 26683706 PMCID: PMC4807986 DOI: 10.18632/oncotarget.6590] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023] Open
Abstract
As a common toxic metal, lead has significant neurotoxicity to brain development. Long non-coding RNAs (lncRNAs) function in multiple biological processes. However, whether lncRNAs are involved in lead-induced neurotoxicity remains unclear. Uc.173 is a lncRNA from a transcribed ultra-conservative region (T-UCR) of human, mouse and rat genomes. We established a lead-induced nerve injury mouse model. It showed the levels of Uc.173 decreased significantly in hippocampus tissue and serum of the model. We further tested the expression of Uc.173 in serum of lead-exposed children, which also showed a tendency to decrease. To explore the effects of Uc.173 on lead-induced nerve injury, we overexpressed Uc.173 in an N2a mouse nerve cell line and found Uc.173 had an inhibitory effect on lead-induced apoptosis of N2a. To investigate the molecular mechanisms of Uc.173 in apoptosis associated with lead-induced nerve injury, we predicted the target microRNAs of Uc.173 by using miRanda, TargetScan and RegRNA. After performing quantitative real-time PCR and bioinformatics analysis, we showed Uc.173 might inter-regulate with miR-291a-3p in lead-induced apoptosis and regulate apoptosis-associated genes. Our study suggests Uc.173 significantly inhibits the apoptosis of nerve cells, which may be mediated by inter-regulation with miRNAs in lead-induced nerve injury.
Collapse
Affiliation(s)
- Aruo Nan
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Xinke Zhou
- Institute for Chemical Carcinogenesis, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Lijian Chen
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Meiling Liu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Nan Zhang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Li Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yuanwei Luo
- Institute for Chemical Carcinogenesis, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Zhenzhong Liu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Lijun Dai
- Laboratory Animal Center, Guangzhou Medical University, Guangzhou, PR China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
38
|
Chen D, Sun Q, Cheng X, Zhang L, Song W, Zhou D, Lin J, Wang W. Genome-wide analysis of long noncoding RNA (lncRNA) expression in colorectal cancer tissues from patients with liver metastasis. Cancer Med 2016; 5:1629-39. [PMID: 27165481 PMCID: PMC4867661 DOI: 10.1002/cam4.738] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022] Open
Abstract
The liver is the most frequent site of metastasis in colorectal cancer (CRC), in which long noncoding RNAs (lncRNAs) may play a crucial role. In this study, we performed a genome‐wide analysis of lncRNA expression to identify novel targets for the further study of liver metastasis in CRC. Samples obtained from CRC patients were analyzed using Arraystar human 8 × 60K lncRNA/mRNA v3.0 microarrays chips to find differentially expressed lncRNAs and mRNAs. The results were confirmed by quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR). The differentially expressed lncRNAs and mRNAs were identified through fold change filtering. Gene ontology (GO) and pathway analyses were performed using standard enrichment computational methods. In the CRC tissues from patients with liver metastasis, 2636 lncRNAs were differentially expressed, including 1600 up‐regulated and 1036 down‐regulated over two‐fold compared with the CRC tissues without metastasis. Among the 1584 differentially expressed mRNAs, 548 were up‐regulated and 1036 down‐regulated. GO and pathway analysis of the up‐regulated and down‐regulated mRNAs yielded different results. The up‐regulated mRNAs were associated with single‐organism process (biological process), membrane part (cellular component), and transporter activity (molecular function), whereas the down‐regulated mRNAs were associated with cellular process, membrane, and binding, respectively. In the pathway analysis, 27 gene pathways associated with the up‐regulated mRNAs and 51 gene pathways associated with the down‐regulated mRNAs were targeted. The significant changes in NQO2 (NM_000904) mRNA and six associated lncRNAs were selected for validation by qRT‐PCR. Aberrantly expressed lncRNAs may play an important role in the liver metastasis of CRC. The further study can provide useful insights into the biology and, ultimately, the prevention of liver metastasis.
Collapse
Affiliation(s)
- Dong Chen
- Department of Colorectal Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xiaofei Cheng
- Department of Colorectal Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lufei Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Wei Song
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Dongkai Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Jianjiang Lin
- Department of Colorectal Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Lin H, Sui W, Tan Q, Chen J, Zhang Y, Ou M, Xue W, Li F, Cao C, Sun Y, Dai Y. Integrated analyses of a major histocompatibility complex, methylation and transcribed ultra-conserved regions in systemic lupus erythematosus. Int J Mol Med 2015; 37:139-48. [PMID: 26717903 DOI: 10.3892/ijmm.2015.2416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/05/2015] [Indexed: 11/05/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease which affects different organs and systems that, has a complex genetic inheritance, and is affected by both epigenetic and environmental risk factors. Previous studies on SLE have lacked the statistical power and genetic resolution to fully determine the influence of major histocompatibility complex (MHC) on SLE. In this study, in order to determine this influence, a total of 15 patients with SLE and 15 healthy controls were enrolled. MHC region capture technology, hMeDIP-chip, transcribed ultra-conserved region (T-UCR) microarray and bioinformatics analysis were utilized for both groups. The results revealed methylated CpG enrichment at 6 loci in the MHC segment of SLE. We found 4 single-nucleotide polymorphisms (SNPs) in the CpG promoter of human leukocyte antigen-B (HLA-B) and 2 SNPs in chr6:29521110‑29521833. No significant GO term or KEGG pathway enrichment was noted for an immune-correlated process in the SLE patients for the corresponding CpG-methylated genes. In this study, T-UCR was not discovered in the MHC segment. The analysis of SNPs (rs1050683, rs12697943, rs17881210, rs1065378, rs17184255 and rs16895070) and gene expression in peripheral blood lymphocytes indicated that these SNPs were associated with the occurrence of SLE. Further studies are warranted to examine the roles of these SNPs in the pathogenesis of SLE. Integrative analysis technology provided a view of the molecular signaling pathways in SLE.
Collapse
Affiliation(s)
- Hua Lin
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Weiguo Sui
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Qiupei Tan
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Jiejing Chen
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Yue Zhang
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Minglin Ou
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Wen Xue
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Fengyan Li
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Cuihui Cao
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Yufeng Sun
- Nephrology Department of 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
40
|
Ragusa M, Barbagallo C, Statello L, Condorelli AG, Battaglia R, Tamburello L, Barbagallo D, Di Pietro C, Purrello M. Non-coding landscapes of colorectal cancer. World J Gastroenterol 2015; 21:11709-11739. [PMID: 26556998 PMCID: PMC4631972 DOI: 10.3748/wjg.v21.i41.11709] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.
Collapse
|
41
|
Wang J, Song YX, Ma B, Wang JJ, Sun JX, Chen XW, Zhao JH, Yang YC, Wang ZN. Regulatory Roles of Non-Coding RNAs in Colorectal Cancer. Int J Mol Sci 2015; 16:19886-919. [PMID: 26307974 PMCID: PMC4581331 DOI: 10.3390/ijms160819886] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have recently gained attention because of their involvement in different biological processes. An increasing number of studies have demonstrated that mutations or abnormal expression of ncRNAs are closely associated with various diseases including cancer. The present review is a comprehensive examination of the aberrant regulation of ncRNAs in colorectal cancer (CRC) and a summary of the current findings on ncRNAs, including long ncRNAs, microRNAs, small interfering RNAs, small nucleolar RNAs, small nuclear RNAs, Piwi-interacting RNAs, and circular RNAs. These ncRNAs might become novel biomarkers and targets as well as potential therapeutic tools for the treatment of CRC in the near future and this review may provide important clues for further research on CRC and for the selection of effective therapeutic targets.
Collapse
Affiliation(s)
- Jun Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Bin Ma
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jia-Jun Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Xiao-Wan Chen
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jun-Hua Zhao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Yu-Chong Yang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| |
Collapse
|
42
|
Haque S, Kaushik K, Leonard VE, Kapoor S, Sivadas A, Joshi A, Scaria V, Sivasubbu S. Short stories on zebrafish long noncoding RNAs. Zebrafish 2015; 11:499-508. [PMID: 25110965 DOI: 10.1089/zeb.2014.0994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The recent re-annotation of the transcriptome of human and other model organisms, using next-generation sequencing approaches, has unravelled a hitherto unknown repertoire of transcripts that do not have a potential to code for proteins. These transcripts have been largely classified into an amorphous class popularly known as long noncoding RNAs (lncRNA). This discovery of lncRNAs in human and other model systems have added a new layer to the understanding of gene regulation at the transcriptional and post-transcriptional levels. In recent years, three independent studies have discovered a number of lncRNAs expressed in different stages of zebrafish development and adult tissues using a high-throughput RNA sequencing approach, significantly adding to the repertoire of genes known in zebrafish. A subset of these transcripts also shows distinct and specific spatiotemporal patterns of gene expression, pointing to a tight regulatory control and potential functional roles in development, organogenesis, and/ or homeostasis. This review provides an overview of the lncRNAs in zebrafish and discusses how their discovery could provide new insights into understanding biology, explaining mutant phenotypes, and helping in potentially modeling disease processes.
Collapse
Affiliation(s)
- Shadabul Haque
- 1 Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology , Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:169-76. [PMID: 26149773 DOI: 10.1016/j.bbagrm.2015.06.015] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
Most diseases, including human cancer, are frequently associated with an altered transcription pattern. The alteration of the transcriptome is not restricted to the production of aberrant levels of protein-coding RNAs, but also refers to the dysregulation of the expression of the multiple noncoding members that comprise the human genome. Unexpectedly, recent RNA-seq data of the human transcriptome have revealed that less than 2% of the genome encodes protein-coding transcripts, even though the vast majority of the genome is actively transcribed into non-coding RNAs (ncRNAs) under different conditions. In this review, we present an updated version of the mechanistic aspects of some long non-coding RNAs (lncRNAs) that play critical roles in human cancer. Most importantly, we focus on the interplay between lncRNAs and microRNAs, and the importance of such interactions during the tumorigenic process, providing new insight into the regulatory mechanisms underlying several ncRNA classes of importance in cancer, particularly transcribed ultraconserved regions (T-UCRs). This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Julia Liz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
44
|
Lopez JP, Diallo A, Cruceanu C, Fiori LM, Laboissiere S, Guillet I, Fontaine J, Ragoussis J, Benes V, Turecki G, Ernst C. Biomarker discovery: quantification of microRNAs and other small non-coding RNAs using next generation sequencing. BMC Med Genomics 2015; 8:35. [PMID: 26130076 PMCID: PMC4487992 DOI: 10.1186/s12920-015-0109-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/16/2015] [Indexed: 02/08/2023] Open
Abstract
Background Small ncRNAs (sncRNAs) offer great hope as biomarkers of disease and response to treatment. This has been highlighted in the context of several medical conditions such as cancer, liver disease, cardiovascular disease, and central nervous system disorders, among many others. Here we assessed several steps involved in the development of an ncRNA biomarker discovery pipeline, ranging from sample preparation to bioinformatic processing of small RNA sequencing data. Methods A total of 45 biological samples were included in the present study. All libraries were prepared using the Illumina TruSeq Small RNA protocol and sequenced using the HiSeq2500 or MiSeq Illumina sequencers. Small RNA sequencing data was validated using qRT-PCR. At each stage, we evaluated the pros and cons of different techniques that may be suitable for different experimental designs. Evaluation methods included quality of data output in relation to hands-on laboratory time, cost, and efficiency of processing. Results Our results show that good quality sequencing libraries can be prepared from small amounts of total RNA and that varying degradation levels in the samples do not have a significant effect on the overall quantification of sncRNAs via NGS. In addition, we describe the strengths and limitations of three commercially available library preparation methods: (1) Novex TBE PAGE gel; (2) Pippin Prep automated gel system; and (3) AMPure XP beads. We describe our bioinformatics pipeline, provide recommendations for sequencing coverage, and describe in detail the expression and distribution of all sncRNAs in four human tissues: whole-blood, brain, heart and liver. Conclusions Ultimately this study provides tools and outcome metrics that will aid researchers and clinicians in choosing an appropriate and effective high-throughput sequencing quantification method for various study designs, and overall generating valuable information that can contribute to our understanding of small ncRNAs as potential biomarkers and mediators of biological functions and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0109-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Pablo Lopez
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Alpha Diallo
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada.
| | - Cristiana Cruceanu
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Laura M Fiori
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada.
| | - Sylvie Laboissiere
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.
| | - Isabelle Guillet
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.
| | - Joelle Fontaine
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany.
| | - Gustavo Turecki
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Carl Ernst
- McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada. .,Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
45
|
Long Noncoding RNAs in Digestive System Malignancies: A Novel Class of Cancer Biomarkers and Therapeutic Targets? Gastroenterol Res Pract 2015; 2015:319861. [PMID: 26064090 PMCID: PMC4429197 DOI: 10.1155/2015/319861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
High throughput methodologies have revealed the existence of an unexpectedly large number of long noncoding RNAs (lncRNAs). The unconventional role of lncRNAs in gene expression regulation and their broad implication in oncogenic and tumor suppressive pathways have introduced lncRNAs as novel biological tumor markers. The most prominent example of lncRNAs application in routine clinical practice is PCA3, a FDA-approved biomarker for prostate cancer. Regarding digestive system malignancies, the oncogenic HOTAIR is one of the most widely studied lncRNAs in the preclinical level and has already been identified as a potent prognostic marker for major malignancies of the gastrointestinal tract. Here, we provide an overview of recent findings regarding the emerging role of lncRNAs not only as key regulators of cancer initiation and progression in colon, stomach, pancreatic, liver, and esophageal cancers, but also as reliable tumor markers and therapeutic tools. lncRNAs can be easily, rapidly, and cost-effectively determined in tissues, serum, and gastric juice, making them highly versatile analytes. Taking also into consideration the largely unmet clinical need for early diagnosis and more accurate prognostic/predictive markers for gastrointestinal cancer patients, we comment upon the perspectives of lncRNAs as efficient molecular tools that could aid in the clinical management.
Collapse
|
46
|
Ye LEC, Zhu DEX, Qiu JJ, Xu J, Wei Y. Involvement of long non-coding RNA in colorectal cancer: From benchtop to bedside (Review). Oncol Lett 2015; 9:1039-1045. [PMID: 25663854 PMCID: PMC4315074 DOI: 10.3892/ol.2015.2846] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/12/2014] [Indexed: 01/30/2023] Open
Abstract
Colorectal cancer (CRC) is one of the greatest threats to public health. Recent advances in whole-genome transcriptome analyses have enabled the identification of numerous members of a novel class of non-coding (nc)RNA, long ncRNA (lncRNA), which is broadly defined as RNA molecules that are >200 nt in length and lacking an open reading frame. In the present review, all lncRNAs associated with CRC are briefly summarized, with a particular focus on their potential roles as clinical biomarkers. CRC-associated lncRNAs involved in the underlying mechanisms of CRC progression are also initially included. This should benefit the development of novel markers and effective therapeutic targets for patients with CRC.
Collapse
Affiliation(s)
- LE-Chi Ye
- Department of Oncological Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - DE-Xiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jun-Jun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
47
|
Xu MD, Qi P, Du X. Long non-coding RNAs in colorectal cancer: implications for pathogenesis and clinical application. Mod Pathol 2014; 27:1310-20. [PMID: 24603586 DOI: 10.1038/modpathol.2014.33] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 01/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of newly identified non-coding RNA molecules that are emerging as key regulators of tumor initiation and development. Colorectal cancer (CRC) remains a major health problem worldwide, and there remains a need to further refine the current screening approaches as well as provide tailored diagnostic and therapeutic approaches. Multiple dysregulated lncRNAs participate in tumorigenesis through a variety of molecular mechanisms, and various regulatory factors frequently contribute to the aberrant expression of lncRNAs in CRC, thereby allowing malignant transformation. Additionally, the association of dysregulated lncRNAs with specific developmental stages and clinical outcomes indicates their potential as strong diagnostic and prognostic predictors as well as therapeutic targets. Here we provide a brief overview of the known functions of CRC-associated lncRNAs, describe some potential molecular mechanisms that underlie changes in lncRNA expression in CRC, and attempt to uncover their clinical and therapeutic potential.
Collapse
Affiliation(s)
- Mi-Die Xu
- 1] Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China [3] Institute of Pathology, Fudan University, Shanghai, China
| | - Peng Qi
- 1] Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China [3] Institute of Pathology, Fudan University, Shanghai, China
| | - Xiang Du
- 1] Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China [3] Institute of Pathology, Fudan University, Shanghai, China [4] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
48
|
McCole RB, Fonseka CY, Koren A, Wu CT. Abnormal dosage of ultraconserved elements is highly disfavored in healthy cells but not cancer cells. PLoS Genet 2014; 10:e1004646. [PMID: 25340765 PMCID: PMC4207606 DOI: 10.1371/journal.pgen.1004646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.
Collapse
Affiliation(s)
- Ruth B. McCole
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chamith Y. Fonseka
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Biological and Biomedical Sciences PhD program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - C.-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Fassan M, Dall'Olmo L, Galasso M, Braconi C, Pizzi M, Realdon S, Volinia S, Valeri N, Gasparini P, Baffa R, Souza RF, Vicentini C, D'Angelo E, Bornschein J, Nuovo GJ, Zaninotto G, Croce CM, Rugge M. Transcribed ultraconserved noncoding RNAs (T-UCR) are involved in Barrett's esophagus carcinogenesis. Oncotarget 2014; 5:7162-71. [PMID: 25216530 PMCID: PMC4196192 DOI: 10.18632/oncotarget.2249] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/22/2014] [Indexed: 01/10/2023] Open
Abstract
Barrett's esophagus (BE) involves a metaplastic replacement of native esophageal squamous epithelium (Sq) by columnar-intestinalized mucosa, and it is the main risk factor for Barrett-related adenocarcinoma (BAc). Ultra-conserved regions (UCRs) are a class non-coding sequences that are conserved in humans, mice and rats. More than 90% of UCRs are transcribed (T-UCRs) in normal tissues, and are altered at transcriptional level in tumorigenesis. To identify the T-UCR profiles that are dysregulated in Barrett's mucosa transformation, microarray analysis was performed on a discovery set of 51 macro-dissected samples obtained from 14 long-segment BE patients. Results were validated in an independent series of esophageal biopsy/surgery specimens and in two murine models of Barrett's esophagus (i.e. esophagogastric-duodenal anastomosis). Progression from normal to BE to adenocarcinoma was each associated with specific and mutually exclusive T-UCR signatures that included up-regulation of uc.58-, uc.202-, uc.207-, and uc.223- and down-regulation of uc.214+. A 9 T-UCR signature characterized BE versus Sq (with the down-regulation of uc.161-, uc.165-, and uc.327-, and the up-regulation of uc.153-, uc.158-, uc.206-, uc.274-, uc.472-, and uc.473-). Analogous BE-specific T-UCR profiles were shared by human and murine lesions. This study is the first demonstration of a role for T-UCRs in the transformation of Barrett's mucosa.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Department of Surgical Oncology and Gastroenterological Sciences (DiSCOG), University of Padua, Padua, Italy
- Comprehensive Cancer Center, Ohio State University, Columbus, OH
| | | | - Marco Galasso
- Department of Morphology and Embryology; University of Ferrara, Ferrara, Italy
| | | | - Marco Pizzi
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | - Stefano Volinia
- Comprehensive Cancer Center, Ohio State University, Columbus, OH
- Department of Morphology and Embryology; University of Ferrara, Ferrara, Italy
| | | | | | - Raffaele Baffa
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
- Current address: Sanofi, Cambridge, MA, USA
| | - Rhonda F. Souza
- Department of Medicine, University of Texas Southwestern Medical Center & VA North Texas Health Care System, Dallas, TX
| | | | - Edoardo D'Angelo
- Department of Surgical Oncology and Gastroenterological Sciences (DiSCOG), University of Padua, Padua, Italy
| | - Jan Bornschein
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Gerard J. Nuovo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH
| | - Giovanni Zaninotto
- Department of Surgical Oncology and Gastroenterological Sciences (DiSCOG), University of Padua, Padua, Italy
| | - Carlo M. Croce
- Comprehensive Cancer Center, Ohio State University, Columbus, OH
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Istituto Oncologico Veneto - IOV-IRCCS, Padua, Italy
| |
Collapse
|
50
|
Huang T, Alvarez A, Hu B, Cheng SY. Noncoding RNAs in cancer and cancer stem cells. CHINESE JOURNAL OF CANCER 2014; 32:582-93. [PMID: 24206916 PMCID: PMC3845549 DOI: 10.5732/cjc.013.10170] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potentially useful diagnostic tools.
Collapse
Affiliation(s)
- Tianzhi Huang
- The Ken & Ruth Davee Department of Neuro-logy, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. ,
| | | | | | | |
Collapse
|