1
|
Fava ALM, de Souza CM, dos Santos ÉM, Silvério LAL, Ataide JA, Paiva-Santos AC, Costa JL, de Melo DO, Mazzola PG. Evidence of Cannabidiol Effectiveness Associated or Not with Tetrahydrocannabinol in Topical Administration: A Scope Review. Pharmaceuticals (Basel) 2024; 17:748. [PMID: 38931415 PMCID: PMC11206585 DOI: 10.3390/ph17060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabis sativa is a plant of the Cannabaceae family, whose molecular composition is known for its vast pharmacological properties. Cannabinoids are the molecules responsible for Cannabis sativa potential effects, especially tetrahydrocannabinol and cannabidiol. Scientific development has shown interest in the potential of cannabidiol in various health conditions, as it has demonstrated lower adverse events and great pharmacological potential, especially when administered topically. The present study aims to carry out a scoping review, focusing on the use of cannabidiol, in vivo models, for topical administration. Thus, the methodological approach used by the Joanna Briggs Institute was applied, and the studies were selected based on previously established inclusion criteria. Even though more information regarding the dose to achieve pharmacological potential is still needed, cannabidiol demonstrated potential in treating and preventing different conditions, such as glaucoma, atopic dermatitis, epidermolysis bullosa, and pyoderma gangrenosum.
Collapse
Affiliation(s)
- Ana Laura Masquetti Fava
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Campinas 13083-887, Brazil
| | - Cinthia Madeira de Souza
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Campinas 13083-887, Brazil
| | - Érica Mendes dos Santos
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Farmacêuticas, Campinas 13083-871, Brazil
| | | | - Janaína Artem Ataide
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Farmacêuticas, Campinas 13083-871, Brazil
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Jose Luiz Costa
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Farmacêuticas, Campinas 13083-871, Brazil
- Centro de Informação e Assistência Toxicológica de Campinas, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Daniela Oliveira de Melo
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema 09972-270, Brazil
| | - Priscila Gava Mazzola
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Farmacêuticas, Campinas 13083-871, Brazil
| |
Collapse
|
2
|
O’Sullivan SE, Jensen SS, Kolli AR, Nikolajsen GN, Bruun HZ, Hoeng J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals (Basel) 2024; 17:244. [PMID: 38399459 PMCID: PMC10892205 DOI: 10.3390/ph17020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The poor physicochemical properties of cannabidiol (CBD) hamper its clinical development. The aim of this review was to examine the literature to identify novel oral products and delivery strategies for CBD, while assessing their clinical implications and translatability. Evaluation of the published literature revealed that oral CBD strategies are primarily focused on lipid-based and emulsion solutions or encapsulations, which improve the overall pharmacokinetics (PK) of CBD. Some emulsion formulations demonstrate more rapid systemic delivery. Variability in the PK effects of different oral CBD products is apparent across species. Several novel administration routes exist for CBD delivery that may offer promise for specific indications. For example, intranasal administration and inhalation allow quick delivery of CBD to the plasma and the brain, whereas transdermal and transmucosal administration routes deliver CBD systemically more slowly. There are limited but promising data on novel delivery routes such as intramuscular and subcutaneous. Very limited data show that CBD is generally well distributed across tissues and that some CBD products enable increased delivery of CBD to different brain regions. However, evidence is limited regarding whether changes in CBD PK profiles and tissue distribution equate to superior therapeutic efficacy across indications and whether specific CBD products might be suited to particular indications.
Collapse
Affiliation(s)
| | - Sanne Skov Jensen
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Aditya Reddy Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland;
| | | | - Heidi Ziegler Bruun
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland;
| |
Collapse
|
3
|
Sun Q, Bravo Iniguez A, Tian Q, Du M, Zhu MJ. Dietary Cannabidiol Activates PKA/AMPK Signaling and Attenuates Chronic Inflammation and Leaky Gut in DSS-Induced Colitis Mice. Mol Nutr Food Res 2024; 68:e2300446. [PMID: 38175840 DOI: 10.1002/mnfr.202300446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Indexed: 01/06/2024]
Abstract
SCOPE Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gut, accompanied by impaired epithelial integrity, increased macrophage infiltration, and enhanced colon cancer risk. METHODS AND RESULTS Cannabidiol (CBD), a phytocannabinoid isolated from cannabis plants, is supplemented into mice diet, and its beneficial effects against dextran sulfate sodium (DSS)-induced experimental colitis is evaluated. Eight-week-old mice were fed a standard diet supplemented with or without CBD (200 mg kg-1 ) for 5 weeks. In the 4th week of dietary treatment, mice were subjected to 2.5% DSS induction for 7 days, followed by 7 days of recovery, to induce colitis. CBD supplementation reduced body weight loss, gross bleeding, fecal consistency, and disease activity index. In addition, CBD supplementation protected the colonic structure, promoted tissue recovery, and ameliorated macrophage infiltration in the colonic tissue, which was associated with the activation of cyclic AMP-protein kinase A, extracellular signal-regulated kinase ½, and AMP-activated protein kinase signaling pathways. CBD supplementation also suppressed NLRP3 inflammasome activation and related pro-inflammatory marker secretion. Consistently, CBD feeding reduced tight junction protein claudin2 and myosin light chain kinase in DSS-treated mice. CONCLUSION Dietary CBD protects against inflammation and colitis symptoms induced by DSS, providing an alternative approach to IBD management.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | | | - Qiyu Tian
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
4
|
Svendsen K, Sharkey KA, Altier C. Non-Intoxicating Cannabinoids in Visceral Pain. Cannabis Cannabinoid Res 2024; 9:3-11. [PMID: 37883662 DOI: 10.1089/can.2023.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Cannabis and cannabis products are becoming increasingly popular options for symptom management of inflammatory bowel diseases, particularly abdominal pain. While anecdotal and patient reports suggest efficacy of these compounds for these conditions, clinical research has shown mixed results. To date, clinical research has focused primarily on delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is a ligand of classical cannabinoid receptors (CBRs). CBD is one of a large group of nonintoxicating cannabinoids (niCBs) that mediate their effects on both CBRs and through non-CBR mechanisms of action. Because they are not psychotropic, there is increasing interest and availability of niCBs. The numerous niCBs show potential to rectify abnormal intestinal motility as well as have anti-inflammatory and analgesic effects. The effects of niCBs are frequently not mediated by CBRs, but rather through actions on other targets, including transient receptor potential channels and voltage-gated ion channels. Additionally, evidence suggests that niCBs can be combined to increase their potency through what is termed the entourage effect. This review examines the pre-clinical data available surrounding these niCBs in treatment of abdominal pain with a focus on non-CBR mechanisms.
Collapse
Affiliation(s)
- Kristofer Svendsen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Martinez Naya N, Kelly J, Corna G, Golino M, Polizio AH, Abbate A, Toldo S, Mezzaroma E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024; 29:473. [PMID: 38257386 PMCID: PMC10818442 DOI: 10.3390/molecules29020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound's pharmacological profile. CBD's role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound's anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa's use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD's emergence as a pivotal phytocannabinoid. As research continues, CBD's integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Giuliana Corna
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina;
| | - Michele Golino
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Ariel H. Polizio
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Eleonora Mezzaroma
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
6
|
Moniruzzaman M, Janjua TI, Martin JH, Begun J, Popat A. Cannabidiol - Help and hype in targeting mucosal diseases. J Control Release 2024; 365:530-543. [PMID: 37952828 DOI: 10.1016/j.jconrel.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Cannabidiol (CBD) is one of the most commonly utilised phytocannabinoids due to its non-psychoactive and multiple potential therapeutic properties and its non-selective pharmacology. Recent studies have demonstrated efficacy of CBD in some types of drug resistant epilepsies in combination with other therapies; comparative efficacy to other agents or placebo has been hoped for anxiety, chronic pain, and inflammatory disorders based on animal data. Although CBD products are generally treated as a restricted substance, these are being eased, partially in response to significant growth in CBD product usage and increased production but more due to emerging evidence about its safety and pharmacological properties. Currently, only one CBD product (Epidiolex®) has been approved by the Australian Therapeutic Goods Administration and US Food and Drug Administration. CBD has demonstrated promise in alleviating gut and lung diseases in vitro; however, its physicochemical properties pose a significant barrier to achieving pharmacological effects in in vivo and clinical trials. Improving CBD formulations and delivery methods using technologies including self-emulsifying emulsion, nano and micro particles could overcome these shortfalls and improve its efficacy. This review focuses on the therapeutic potential of CBD in gastrointestinal and lung diseases from the available in vitro, in vivo, and clinical research. We report on identified research gaps and obstacles in the development of CBD-based therapeutics, including novel delivery methods.
Collapse
Affiliation(s)
- Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jennifer H Martin
- Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, Kookaburra Circuit, Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
7
|
Story G, Briere CE, McClements DJ, Sela DA. Cannabidiol and Intestinal Motility: a Systematic Review. Curr Dev Nutr 2023; 7:101972. [PMID: 37786751 PMCID: PMC10541995 DOI: 10.1016/j.cdnut.2023.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid extracted from the cannabis plant that is used for medicinal purposes. Ingestion of CBD is claimed to address several pathologies, including gastrointestinal disorders, although limited evidence has been generated thus far to substantiate many of its health claims. Nevertheless, CBD usage as an over-the-counter treatment for gastrointestinal disorders is likely to expand in response to increasing commercial availability, permissive legal status, and acceptance by consumers. This systematic review critically evaluates the knowledge boundaries of the published research on CBD, intestinal motility, and intestinal motility disorders. Research on CBD and intestinal motility is currently limited but does support the safety and efficacy of CBD for several therapeutic applications, including seizure disorders, inflammatory responses, and upper gastrointestinal dysfunction (i.e., nausea and vomiting). CBD, therefore, may have therapeutic potential for addressing functional gastrointestinal disorders. The results of this review show promising in vitro and preclinical data supporting a role of CBD in intestinal motility. This includes improved gastrointestinal-related outcomes in murine models of colitis. These studies, however, vary by dose, delivery method, and CBD-extract composition. Clinical trials have yet to find a conclusive benefit of CBD on intestinal motility disorders, but these trials have been limited in scope. In addition, critical factors such as CBD dosing parameters have not yet been established. Further research will establish the efficacy of CBD in applications to address intestinal motility.
Collapse
Affiliation(s)
- Galaxie Story
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Carrie-Ellen Briere
- Elaine Marieb College of Nursing, University of Massachusetts, Amherst, MA, United States
| | - D. Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Department of Nutrition, University of Massachusetts, Amherst, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
8
|
Thapa D, Warne LN, Falasca M. Pharmacohistory of Cannabis Use-A New Possibility in Future Drug Development for Gastrointestinal Diseases. Int J Mol Sci 2023; 24:14677. [PMID: 37834122 PMCID: PMC10572150 DOI: 10.3390/ijms241914677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Humans have employed cannabis for multiple uses including medicine, recreation, food, and fibre. The various components such as roots, flowers, seeds, and leaves have been utilized to alleviate pain, inflammation, anxiety, and gastrointestinal disorders like nausea, vomiting, diarrhoea, and inflammatory bowel diseases (IBDs). It has occupied a significant space in ethnomedicines across cultures and religions. Despite multi-dimensional uses, the global prohibition of cannabis by the USA through the introduction of the Marijuana Tax Act in 1937 led to prejudice about the perceived risks of cannabis, overshadowing its medicinal potential. Nevertheless, the discovery of tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and the endocannabinoid system renewed scientific interest in understanding the role of cannabis in modulating different conditions, including gastrointestinal disorders. Preparations combining cannabidiol and THC have shown promise in mitigating gut symptoms through anti-inflammatory and motility-enhancing effects. This review revisits the ethnomedicinal use of cannabis in gastrointestinal diseases and emphasizes the need for further research to determine optimal dosages, formulations, and safety profiles of cannabis-based medicines. It also underscores the future potential of cannabinoid-based therapies by leveraging the role of the expanded endocannabinoid system, an endocannabinoidome, in the modulation of gastrointestinal ailments.
Collapse
Affiliation(s)
- Dinesh Thapa
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
| | - Leon N. Warne
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
- Little Green Pharma, West Perth, WA 6872, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (D.T.); (L.N.W.)
| |
Collapse
|
9
|
Preteroti M, Wilson ET, Eidelman DH, Baglole CJ. Modulation of pulmonary immune function by inhaled cannabis products and consequences for lung disease. Respir Res 2023; 24:95. [PMID: 36978106 PMCID: PMC10043545 DOI: 10.1186/s12931-023-02399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The lungs, in addition to participating in gas exchange, represent the first line of defense against inhaled pathogens and respiratory toxicants. Cells lining the airways and alveoli include epithelial cells and alveolar macrophages, the latter being resident innate immune cells important in surfactant recycling, protection against bacterial invasion and modulation of lung immune homeostasis. Environmental exposure to toxicants found in cigarette smoke, air pollution and cannabis can alter the number and function of immune cells in the lungs. Cannabis (marijuana) is a plant-derived product that is typically inhaled in the form of smoke from a joint. However, alternative delivery methods such as vaping, which heats the plant without combustion, are becoming more common. Cannabis use has increased in recent years, coinciding with more countries legalizing cannabis for both recreational and medicinal purposes. Cannabis may have numerous health benefits owing to the presence of cannabinoids that dampen immune function and therefore tame inflammation that is associated with chronic diseases such as arthritis. The health effects that could come with cannabis use remain poorly understood, particularly inhaled cannabis products that may directly impact the pulmonary immune system. Herein, we first describe the bioactive phytochemicals present in cannabis, with an emphasis on cannabinoids and their ability to interact with the endocannabinoid system. We also review the current state-of-knowledge as to how inhaled cannabis/cannabinoids can shape immune response in the lungs and discuss the potential consequences of altered pulmonary immunity. Overall, more research is needed to understand how cannabis inhalation shapes the pulmonary immune response to balance physiological and beneficial responses with potential deleterious consequences on the lungs.
Collapse
Affiliation(s)
- Matthew Preteroti
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Emily T Wilson
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - David H Eidelman
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carolyn J Baglole
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Preteroti MW, Traboulsi H, Greiss P, Lapohos O, Fonseca GJ, Eidelman DH, Baglole CJ. Receptor-mediated effects of Δ 9 -tetrahydrocannabinol and cannabidiol on the inflammatory response of alveolar macrophages. Immunol Cell Biol 2023; 101:156-170. [PMID: 36510483 DOI: 10.1111/imcb.12614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Δ9 -Tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) are cannabinoids found in Cannabis sativa. While research supports cannabinoids reduce inflammation, the consensus surrounding receptor(s)-mediated effects has yet to be established. Here, we investigated the receptor-mediated properties of Δ9 -THC and CBD on alveolar macrophages, an important pulmonary immune cell in direct contact with cannabinoids inhaled by cannabis smokers. MH-S cells, a mouse alveolar macrophage cell line, were exposed to Δ9 -THC and CBD, with and without lipopolysaccharide (LPS). Outcomes included RNA-sequencing and cytokine analysis. Δ9 -THC and CBD alone did not affect the basal transcriptional response of MH-S cells. In response to LPS, Δ9 -THC and CBD significantly reduced the expression of numerous proinflammatory cytokines including tumor necrosis factor-alpha, interleukin (IL)-1β and IL-6, an effect that was dependent on CB2 . The anti-inflammatory effects of CBD but not Δ9 -THC were mediated through a reduction in signaling through nuclear factor-kappa B and extracellular signal-regulated protein kinase 1/2. These results suggest that CBD and Δ9 -THC have potent immunomodulatory properties in alveolar macrophages, a cell type important in immune homeostasis in the lungs. Further investigation into the effects of cannabinoids on lung immune cells could lead to the identification of therapies that may ameliorate conditions characterized by inflammation.
Collapse
Affiliation(s)
- Matthew W Preteroti
- Meakins-Christie Laboratories, Montreal, QC, Canada.,Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pathology, Montreal, QC, Canada
| | - Hussein Traboulsi
- Meakins-Christie Laboratories, Montreal, QC, Canada.,Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, Montreal, QC, Canada
| | - Patrick Greiss
- Meakins-Christie Laboratories, Montreal, QC, Canada.,Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Life Sciences, Queen's University, Kingston, ON, Canada
| | - Orsolya Lapohos
- Meakins-Christie Laboratories, Montreal, QC, Canada.,Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, Montreal, QC, Canada.,Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Gregory J Fonseca
- Meakins-Christie Laboratories, Montreal, QC, Canada.,Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, Montreal, QC, Canada.,Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, Montreal, QC, Canada.,Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, Montreal, QC, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, Montreal, QC, Canada.,Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pathology, Montreal, QC, Canada.,Department of Medicine, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Azimi S, Saghafi F, Mohammadi MH, Moghimi MH, Akhavan SA, Khataminia M, Shirvani M, Sohrevardi SM, Jamialahmadi T, Sahebnasagh A, Sahebkar A. The Potential of Cannabidiol for Acute Respiratory Distress Syndrome in COVID-19. Curr Pharm Des 2023; 29:2291-2296. [PMID: 37818584 DOI: 10.2174/0113816128275803230920094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023]
Abstract
COVID-19 disease manifests itself in a wide range of signs and symptoms, beginning with mild symptoms, such as fever, cough, and dyspnea, progressing to acute respiratory distress syndrome (ARDS) and death in some cases. The cytokine storm, or an excess of cytokines released locally, is assumed to be the primary cause of ARDS and mortality in COVID-19 patients. To enhance the survival rate of COVID-19 patients, early management of the cytokine storm with immunomodulators is crucial. Although the effectiveness of some immunosuppressants, such as corticosteroids and tocilizumab, has been studied in clinical trials, the administration of these drugs should be exercised cautiously. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid from Cannabis sativa extracts with anti-inflammatory properties. This review is intended to discuss the possible utility of CBD for the management of COVID-19 patients, particularly those with ARDS.
Collapse
Affiliation(s)
- Saeid Azimi
- Student Research Committee, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mohammad Hossein Moghimi
- Student Research Committee, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Ali Akhavan
- Student Research Committee, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Khataminia
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Shirvani
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mojtaba Sohrevardi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adeleh Sahebnasagh
- Department of Internal Medicine, Clinical Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Aziz AI, Nguyen LC, Oumeslakht L, Bensussan A, Ben Mkaddem S. Cannabinoids as Immune System Modulators: Cannabidiol Potential Therapeutic Approaches and Limitations. Cannabis Cannabinoid Res 2022; 8:254-269. [PMID: 36413346 DOI: 10.1089/can.2022.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction: Cannabidiol (CBD) is the second most abundant Phytocannabinoid in Cannabis extracts. CBD has a binding affinity for several cannabinoid and cannabinoid-associated receptors. Epidiolex (oral CBD solution) has been lately licensed by the Food and Drug Administration (FDA) for the treatment of pediatric epileptic seizures. Methods: In this review, we discussed the most promising applications of CBD for chronic inflammatory conditions, namely CBD's anti-inflammatory effects during inflammatory bowel disease, coronavirus disease (antiviral effect), brain pathologies (neuroprotective and anti-inflammatory properties), as well as CBD immunomodulatory and antitumoral activities in the tumor microenvironment. Special focus was shed on the main therapeutic mechanisms of action of CBD, particularly in the control of the immune system and the endocannabinoid system. Results: Findings suggest that CBD is a potent immunomodulatory drug as it has manifested immunosuppressive properties in the context of sterile inflammation (e.g., inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases), and immunoprotective effects during viral infections (e.g. COVID-19) Similarly, CBD has exhibited a selective response toward cancer types by engaging different targets and signaling pathways. These results are in favor of the primary function of the endocannabinoid system which is homeostatic maintenance. Conclusion: The presented evidence suggests that the endocannabinoid system is a prominent target for the treatment of inflammatory and autoimmune diseases, rheumatoid diseases, viral infections, neurological and psychological pathologies, and cancer. Moreover, the antitumoral activities of CBD have been suggested to be potentially used in combination with chemo- or immunotherapy during cancer. However, clinical results are still lacking, which raises a challenge to apply translational cannabis research to the human immune system.
Collapse
Affiliation(s)
- Abdel-ilah Aziz
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Loubna Oumeslakht
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Armand Bensussan
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France
| | - Sanae Ben Mkaddem
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
13
|
Cannabis sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:antiox11040660. [PMID: 35453344 PMCID: PMC9030479 DOI: 10.3390/antiox11040660] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Cannabis (Cannabis sativa L.) plants from the family Cannabidaceae have been used since ancient times, to produce fibers, oil, and for medicinal purposes. Psychoactive delta-9-tetrahydrocannabinol (THC) and nonpsychoactive cannabidiol (CBD) are the main pharmacologically active compounds of Cannabis sativa. These compounds have, for a long time, been under extensive investigation, and their potent antioxidant and inflammatory properties have been reported, although the detailed mechanisms of their actions have not been fully clarified. CB1 receptors are suggested to be responsible for the analgesic effect of THC, while CB2 receptors may account for its immunomodulatory properties. Unlike THC, CBD has a very low affinity for both CB1 and CB2 receptors, and behaves as their negative allosteric modulator. CBD activity, as a CB2 receptor inverse agonist, could be important for CBD anti-inflammatory properties. In this review, we discuss the chemical properties and bioavailability of THC and CBD, their main mechanisms of action, and their role in oxidative stress and inflammation.
Collapse
|
14
|
Gęgotek A, Atalay S, Skrzydlewska E. UV induced changes in proteome of rats plasma are reversed by dermally applied cannabidiol. Sci Rep 2021; 11:20666. [PMID: 34667212 PMCID: PMC8526570 DOI: 10.1038/s41598-021-00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
UV radiation is known to induce a multiple changes in the metabolism of skin-building cells, what can affect the functioning not only neighboring cells, but also, following signal transduction releasing into the blood vessels, the entire body. Therefore, the aim of this study was to analyze the proteomic disturbances occurred in plasma of chronically UVA/UVB irradiated rats and define the effect on these changes of skin topically applied cannabidiol (CBD). Obtained results showed significant changes in the expression of numerous anti-inflammatory and signaling proteins including: NFκB inhibitor, 14-3-3 protein, protein kinase C, keratin, and protein S100 after UV irradiation and CBD treatment. Moreover, the effects of UVA and UVB were manifested by increased level of lipid peroxidation products-protein adducts formation. CBD partially prevented all of these changes, but in a various degree depending on the UV radiation type. Moreover, topical treatment with CBD resulted in the penetration of CBD into the blood and, as a consequence, in direct modifications to the plasma protein structure by creating CBD adducts with molecules, such as proline-rich protein 30, transcription factor 19, or N-acetylglucosamine-6-sulfatase, what significantly changed the activity of these proteins. In conclusion, it may be suggested that CBD applied topically may be an effective compound against systemic UV-induced oxidative stress, but its effectiveness requires careful analysis of CBD's effects on other tissues of the living organism.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
15
|
Friedman LK, Peng H, Zeman RJ. Cannabidiol reduces lesion volume and restores vestibulomotor and cognitive function following moderately severe traumatic brain injury. Exp Neurol 2021; 346:113844. [PMID: 34428457 DOI: 10.1016/j.expneurol.2021.113844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Despite the high incidence of traumatic brain injury (TBI), there is no universal treatment to safely treat patients. Blunt brain injuries destroy primary neural tissue that results in impaired perfusion, excessive release of glutamate, inflammation, excitotoxicity, and progressive secondary neuronal cell death. We hypothesized that administration of cannabidiol (CBD) directly to a brain contusion site, will optimize delivery to the injured tissue which will reduce local neural excitation and inflammation to spare neural tissue and improve neurological outcome following TBI. CBD was infused into a gelfoam matrix forming an implant (CBDi), then applied over the dura at the contusion site as well as delivered systemically by injection (CBD.IP). Post-injury administration of CBDi+IP greatly reduced defecation scores, lesion volume, the loss of neurons in the ipsilateral hippocampus, the number of injured neurons of the contralateral hippocampus, and reversed TBI-induced glial fibrillary acidic protein (GFAP) upregulation which was superior to either CBD.IP or CBDi treatment alone. Vestibulomotor performance on the beam-balance test was restored by 12 days post-TBI and sustained through 28 days. CBDi+IP treated rats exhibited preinjury levels of spontaneous alternation on the spontaneous alternation T-maze. In the object recognition test, they had greater mobility and exploration of novel objects compared to contusion or implant alone consistent with reduced anxiety and restored cognitive function. These results suggest that dual therapy by targeting the site of injury internally with a CBD-infused medical carrier followed by systemic supplementation may offer a more effective countermeasure than systemic or implant treatment alone for the deleterious effects of penetrating head wounds.
Collapse
Affiliation(s)
- L K Friedman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States of America.
| | - H Peng
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States of America
| | - R J Zeman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States of America
| |
Collapse
|
16
|
Inflammatory Bowel Disease and Cannabis: A Practical Approach for Clinicians. Adv Ther 2021; 38:4152-4161. [PMID: 34110607 PMCID: PMC8279986 DOI: 10.1007/s12325-021-01805-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Although still not approved at the federal level for medical or adult recreational use, cannabis has been approved in the United States (USA) by individual states for both of these purposes. A total of 15 states now regulate cannabis for adult use and 36 states for medical use. In more recent years, cannabis has gained popularity for the treatment of chronic conditions, inflammatory bowel disease (IBD) being one of them. However, the exact role of cannabis in the treatment of IBD remains uncertain. While cannabis may help in some instances with symptom management, it has not been proven to help with inflammation or to fundamentally correct underlying disease processes. Additionally, along with the perceived symptom benefits of cannabis come concerning issues like dosing inconsistencies, dependence, and cannabinoid hyperemesis syndrome. In this review article, we explore the nuanced relationship between cannabis and the treatment of IBD by summarizing the current research. We also use clinical vignettes to discuss the more practical considerations surrounding its use.
Collapse
|
17
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
18
|
Risk Assessment of Over-the-Counter Cannabinoid-Based Cosmetics: Legal and Regulatory Issues Governing the Safety of Cannabinoid-Based Cosmetics in the UAE. COSMETICS 2021. [DOI: 10.3390/cosmetics8030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose: The lack of scientific evidence of the safety and efficacy of over-the-counter topical cannabinoid-based cosmetics remains a concern. The current study attempted to assess the quality of cannabinoid-based cosmetic products available on the UAE market. In particular, the study attempted to quantify the presence of undeclared tetrahydrocannabinol, specifically delta-9-tetrahydrocannabinol (THC) and delta-9-tetrahydrocannabinolic acid (THCA), in these products. Methods: A total of 18 cannabinoid-based cosmetics were collected and analysed in this study. GC-MS analysis was used to determine the presence of total undeclared tetrahydrocannabinol. Results: The estimate for the average tetrahydrocannabinol content was 0.011% with a 95% CI (0.004−0.019). Leave-on cosmetics products are more likely to contain total tetrahydrocannabinol compared to rinse-off cosmetics (p = 0.041). Although there was no statistically significant difference in the total tetrahydrocannabinol according to cosmetic category, there was a tendency towards higher tetrahydrocannabinol content in the hand care products, baby products, and body care preparations. Conclusion: The current study reveals the need for producers of cannabinoid-based cosmetic products to issue quality certificates for each batch produced to inform users of the tested levels of tetrahydrocannabinol.
Collapse
|
19
|
Gao J, Yu W, Zhang C, Liu H, Fan J, Wei J. The protective effect and mechanism of Aornia melanocarpa Elliot anthocyanins on IBD model mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Abstract
In traditional medicine, Cannabis sativa has been prescribed for a variety of diseases. Today, the plant is largely known for its recreational purpose, but it may find a way back to what it was originally known for: a herbal remedy. Most of the plant's ingredients, such as Δ-tetrahydrocannabinol, cannabidiol, cannabigerol, and others, have demonstrated beneficial effects in preclinical models of intestinal inflammation. Endogenous cannabinoids (endocannabinoids) have shown a regulatory role in inflammation and mucosal permeability of the gastrointestinal tract where they likely interact with the gut microbiome. Anecdotal reports suggest that in humans, Cannabis exerts antinociceptive, anti-inflammatory, and antidiarrheal properties. Despite these reports, strong evidence on beneficial effects of Cannabis in human gastrointestinal diseases is lacking. Clinical trials with Cannabis in patients suffering from inflammatory bowel disease (IBD) have shown improvement in quality of life but failed to provide evidence for a reduction of inflammation markers. Within the endogenous opioid system, mu opioid receptors may be involved in anti-inflammation of the gut. Opioids are frequently used to treat abdominal pain in IBD; however, heavy opioid use in IBD is associated with opioid dependency and higher mortality. This review highlights latest advances in the potential treatment of IBD using Cannabis/cannabinoids or opioids.
Collapse
|
21
|
Pagano E, Iannotti FA, Piscitelli F, Romano B, Lucariello G, Venneri T, Di Marzo V, Izzo AA, Borrelli F. Efficacy of combined therapy with fish oil and phytocannabinoids in murine intestinal inflammation. Phytother Res 2020; 35:517-529. [PMID: 32996187 DOI: 10.1002/ptr.6831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Fish oil (FO) and phytocannabinoids have received considerable attention for their intestinal anti-inflammatory effects. We investigated whether the combination of FO with cannabigerol (CBG) and cannabidiol (CBD) or a combination of all three treatments results in a more pronounced intestinal antiinflammatory action compared to the effects achieved separately. Colitis was induced in mice by 2,4-dinitrobenzenesulfonic acid (DNBS). CBD and CBG levels were detected and quantified by liquid chromatography coupled with time of flight mass spectrometry and ion trap mass spectrometry (LC-MS-IT-TOF). Endocannabinoids and related mediators were assessed by LC-MS. DNBS increased colon weight/colon length ratio, myeloperoxidase activity, interleukin-1β, and intestinal permeability. CBG, but not CBD, given by oral gavage, ameliorated DNBS-induced colonic inflammation. FO pretreatment (at the inactive dose) increased the antiinflammatory action of CBG and rendered oral CBD effective while reducing endocannabinoid levels. Furthermore, the combination of FO, CBD, and a per se inactive dose of CBG resulted in intestinal anti-inflammatory effects. Finally, FO did not alter phytocannabinoid levels in the serum and in the colon. By highlighting the apparent additivity between phytocannabinoids and FO, our preclinical data support a novel strategy of combining these substances for the potential development of a treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Fabio A Iannotti
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group.,Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Pharmacy, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| |
Collapse
|
22
|
Verrico CD, Wesson S, Konduri V, Hofferek CJ, Vazquez-Perez J, Blair E, Dunner K, Salimpour P, Decker WK, Halpert MM. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain 2020; 161:2191-2202. [PMID: 32345916 PMCID: PMC7584779 DOI: 10.1097/j.pain.0000000000001896] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Abstract
ABSTRACT Over the last 2 decades, affirmative diagnoses of osteoarthritis (OA) in the United States have tripled due to increasing rates of obesity and an aging population. Hemp-derived cannabidiol (CBD) is the major nontetrahydrocannabinol component of cannabis and has been promoted as a potential treatment for a wide variety of disparate inflammatory conditions. Here, we evaluated CBD for its ability to modulate the production of proinflammatory cytokines in vitro and in murine models of induced inflammation and further validated the ability of a liposomal formulation to increase bioavailability in mice and in humans. Subsequently, the therapeutic potential of both naked and liposomally encapsulated CBD was explored in a 4-week, randomized placebo-controlled, double-blinded study in a spontaneous canine model of OA. In vitro and in mouse models, CBD significantly attenuated the production of proinflammatory cytokines IL-6 and TNF-α while elevating levels of anti-inflammatory IL-10. In the veterinary study, CBD significantly decreased pain and increased mobility in a dose-dependent fashion among animals with an affirmative diagnosis of OA. Liposomal CBD (20 mg/day) was as effective as the highest dose of nonliposomal CBD (50 mg/day) in improving clinical outcomes. Hematocrit, comprehensive metabolic profile, and clinical chemistry indicated no significant detrimental impact of CBD administration over the 4-week analysis period. This study supports the safety and therapeutic potential of hemp-derived CBD for relieving arthritic pain and suggests follow-up investigations in humans are warranted.
Collapse
Affiliation(s)
- Chris D. Verrico
- Department of Psychiatry, Baylor College of Medicine, Houston TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston TX 77030
| | | | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston TX 77030
| | - Colby J. Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston TX 77030
| | | | | | - Kenneth Dunner
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston TX 77030
| | | | - William K. Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston TX 77030
| | - Matthew M. Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston TX 77030
| |
Collapse
|
23
|
Szczepaniak A, Fichna J. What role do cannabinoids have in modern medicine as gastrointestinal anti-inflammatory drugs? Expert Opin Pharmacother 2020; 21:1931-1934. [DOI: 10.1080/14656566.2020.1795129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Adrian Szczepaniak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
McCartney D, Benson MJ, Desbrow B, Irwin C, Suraev A, McGregor IS. Cannabidiol and Sports Performance: a Narrative Review of Relevant Evidence and Recommendations for Future Research. SPORTS MEDICINE - OPEN 2020; 6:27. [PMID: 32632671 PMCID: PMC7338332 DOI: 10.1186/s40798-020-00251-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes. Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter "nutraceutical" products. The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations. Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations. Early stage clinical studies suggest that CBD may be anxiolytic in "stress-inducing" situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study. CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.
Collapse
Affiliation(s)
- Danielle McCartney
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia.
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia.
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia.
| | - Melissa J Benson
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Ben Desbrow
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher Irwin
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Anastasia Suraev
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
26
|
Abstract
Introduction: Cannabis use among inflammatory bowel disease (IBD) patients is common. There are many studies of various laboratory models demonstrating the anti-inflammatory effect of cannabis, but their translation to human disease is still lacking.Areas covered: The cannabis plant contains many cannabinoids, that activate the endocannabinoid system. The two most abundant phytocannabinoids are the psychoactive Tetrahydrocannabinol (THC), and the (mostly) anti-inflammatory cannabidiol (CBD). Approximately 15% of IBD patients use cannabis to ameliorate disease symptoms. Unfortunately, so far there are only three small placebo controlled study regarding the use of cannabis in active Crohns disease, combining altogether 93 subjects. Two of the studies showed significant clinical improvement but no improvement in markers of inflammation.Expert opinion: Cannabis seems to have a therapeutic potential in IBD. This potential must not be neglected; however, cannabis research is still at a very early stage. The complexity of the plant and the diversity of different cannabis chemovars create an inherent difficulty in cannabis research. We need more studies investigating the effect of the various cannabis compounds. These effects can then be investigated in randomized placebo controlled clinical trials to fully explore the potential of cannabis treatment in IBD.
Collapse
Affiliation(s)
- Timna Naftali
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Wei D, Wang H, Yang J, Dai Z, Yang R, Meng S, Li Y, Lin X. Effects of O-1602 and CBD on TNBS-induced colonic disturbances. Neurogastroenterol Motil 2020; 32:e13756. [PMID: 31802588 DOI: 10.1111/nmo.13756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/22/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND This study attempted to provide the effects and mechanisms of two cannabinoids, O-1602 and cannabidiol (CBD), on colonic motility of 2,4,6-trinitro-benzene sulfonic acid (TNBS) colitis. METHODS TNBS was used to induce the model of motility disorder. G protein-coupled receptor 55 (GPR55) expression was detected using real-time PCR and immunohistochemistry in colon. Pro-inflammatory cytokines and myeloperoxidase were also measured. The colonic motility was measured by upper GI transit in vivo and recorded using electrical stimulation organ bath technique in vitro. Freshly isolated smooth muscle from the rat colon were applied to determine the membrane potential and Ca2+ -ATPase activity, respectively. KEY RESULTS CBD or O-1602 separately improved inflammatory conditions significantly in TNBS-induced colitis rats. However, sole CBD pretreatment reduced GPR55 expression, which was up-regulated in TNBS colitis. O-1602 and CBD each lowered MPO and IL-6 levels remarkably in TNBS colitis, while TNF-α levels experienced no change. CBD rescued the downward colonic motility in TNBS colitis in vivo; however, it decreased the upward contraction of the smooth muscle strip under electrical stimulation in vitro. Pretreatment with CBD prevented against TNBS-induced changes of Ca2+ -ATPase activity of smooth muscle cells. However, membrane potential of the smooth muscle cells decreased by TNBS experienced no change after O-1602 or CBD import. CONCLUSIONS & INFERENCES The present study suggested that CBD participated in the regulation of colonic motility in rats, and the mechanisms may be involved in the regulation of inlammatory factors and Ca2+ -ATPase activity through GPR55.
Collapse
Affiliation(s)
- DanDan Wei
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng, China
| | - HuiChao Wang
- Department of Nephrology, First Affiliated Hospital of Henan University, Kaifeng, China
| | - JingNan Yang
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng, China
| | - ZhiFeng Dai
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng, China
| | - RuiLin Yang
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng, China
| | - ShuangShuang Meng
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng, China
| | - YongYu Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - XuHong Lin
- Department of Clinical Laboratory, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng, China
| |
Collapse
|
28
|
Cannabis use and risk of Clostridioides difficile infection: Analysis of 59,824 hospitalizations. Anaerobe 2020; 61:102095. [DOI: 10.1016/j.anaerobe.2019.102095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022]
|
29
|
Pagano E, Romano B, Iannotti F, Parisi O, D’Armiento M, Pignatiello S, Coretti L, Lucafò M, Venneri T, Stocco G, Lembo F, Orlando P, Capasso R, Di Marzo V, Izzo A, Borrelli F. The non-euphoric phytocannabinoid cannabidivarin counteracts intestinal inflammation in mice and cytokine expression in biopsies from UC pediatric patients. Pharmacol Res 2019; 149:104464. [DOI: 10.1016/j.phrs.2019.104464] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/27/2023]
|
30
|
Cannabidiol Regulates Gene Expression in Encephalitogenic T cells Using Histone Methylation and noncoding RNA during Experimental Autoimmune Encephalomyelitis. Sci Rep 2019; 9:15780. [PMID: 31673072 PMCID: PMC6823430 DOI: 10.1038/s41598-019-52362-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022] Open
Abstract
Cannabidiol (CBD) has been shown by our laboratory to attenuate experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In this study, we used microarray and next generation sequencing (NGS)-based approaches to determine whether CBD would alter genome-wide histone modification and gene expression in MOG sensitized lymphocytes. We compared H3K4me3 and H3K27me3 marks in CD4+ T cells from naïve, EAE and CBD treated EAE mice by ChIP-seq. Although the overall methylation level of these two histone marks did not change significantly, the signal intensity and coverage differed in individual genes, suggesting that CBD may modulate gene expression by altering histone methylation. Further analysis showed that these histone methylation signals were differentially enriched in the binding sites of certain transcription factors, such as ZNF143 and FoxA1, suggesting that these transcription factors may play important roles in CBD mediated immune modulation. Using microarray analysis, we found that the expression pattern of many EAE-induced genes was reversed by CBD treatment which was consistent with its effect on attenuating the clinical symptoms of EAE. A unique finding of this study was that the expression of many miRNAs and lncRNAs was dramatically affected by CBD. In summary, this study demonstrates that CBD suppresses inflammation through multiple mechanisms, from histone methylation to miRNA to lncRNA.
Collapse
|
31
|
Gao C, Liu L, Zhou Y, Bian Z, Wang S, Wang Y. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin Med 2019; 14:23. [PMID: 31236131 PMCID: PMC6580650 DOI: 10.1186/s13020-019-0245-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease that comprises ulcerative colitis (UC) and Crohn's disease (CD). IBD involves the ileum, rectum, and colon, and common clinical manifestations of IBD are diarrhea, abdominal pain, and even bloody stools. Currently, non-steroidal anti-inflammatory drugs, glucocorticoids, and immunosuppressive agents are used for the treatment of IBD, while their clinical application is severely limited due to unwanted side effects. Chinese medicine (CM) is appealing more and more attention and investigation for the treatment of IBD owing to the potent anti-inflammation pharmacological efficacy and high acceptance by patients. In recent years, novel drug delivery systems are introduced apace to encapsulate CM and many CM-derived active constituents in order to improve solubility, stability and targeting ability. In this review, advanced drug delivery systems developed in the past and present to deliver CM for the treatment of IBD are summarized and future directions are discussed.
Collapse
Affiliation(s)
- Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| | - Lijuan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
- PU-UM Innovative Institute of Chinese Medical Sciences, Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| | - Yangyang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
- Leiden University European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR China
| |
Collapse
|
32
|
Ambrose T, Simmons A. Cannabis, Cannabinoids, and the Endocannabinoid System-Is there Therapeutic Potential for Inflammatory Bowel Disease? J Crohns Colitis 2019; 13:525-535. [PMID: 30418525 PMCID: PMC6441301 DOI: 10.1093/ecco-jcc/jjy185] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cannabis sativa and its extracts have been used for centuries, both medicinally and recreationally. There is accumulating evidence that exogenous cannabis and related cannabinoids improve symptoms associated with inflammatory bowel disease [IBD], such as pain, loss of appetite, and diarrhoea. In vivo, exocannabinoids have been demonstrated to improve colitis, mainly in chemical models. Exocannabinoids signal through the endocannabinoid system, an increasingly understood network of endogenous lipid ligands and their receptors, together with a number of synthetic and degradative enzymes and the resulting products. Modulating the endocannabinoid system using pharmacological receptor agonists, genetic knockout models, or inhibition of degradative enzymes have largely shown improvements in colitis in vivo. Despite these promising experimental results, this has not translated into meaningful benefits for human IBD in the few clinical trials which have been conducted to date, the largest study being limited by poor medication tolerance due to the Δ9-tetrahydrocannabinol component. This review article synthesises the current literature surrounding the modulation of the endocannabinoid system and administration of exocannabinoids in experimental and human IBD. Findings of clinical surveys and studies of cannabis use in IBD are summarised. Discrepancies in the literature are highlighted together with identifying novel areas of interest.
Collapse
Affiliation(s)
- Tim Ambrose
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK,MRC Human Immunology Unit, John Radcliffe Hospital, Oxford, UK,Corresponding author: Dr Tim Ambrose, BSc (Hons), MBChB, MRCP (UK) (Gastroenterology), c/o Prof. Alison Simmons, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK. Tel.: 01865 222628;
| | - Alison Simmons
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK,MRC Human Immunology Unit, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
33
|
Salaga M, Binienda A, Piscitelli F, Mokrowiecka A, Cygankiewicz AI, Verde R, Malecka-Panas E, Kordek R, Krajewska WM, Di Marzo V, Fichna J. Systemic administration of serotonin exacerbates abdominal pain and colitis via interaction with the endocannabinoid system. Biochem Pharmacol 2019; 161:37-51. [DOI: 10.1016/j.bcp.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
|
34
|
Members of the endocannabinoid system are distinctly regulated in inflammatory bowel disease and colorectal cancer. Sci Rep 2019; 9:2358. [PMID: 30787385 PMCID: PMC6382821 DOI: 10.1038/s41598-019-38865-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
Preclinical studies have demonstrated that the endocannabinoid system (ECS) plays an important role in the protection against intestinal inflammation and colorectal cancer (CRC); however, human data are scarce. We determined members of the ECS and related components of the ‘endocannabinoidome’ in patients with inflammatory bowel disease (IBD) and CRC, and compared them to control subjects. Anandamide (AEA) and oleoylethanolamide (OEA) were increased in plasma of ulcerative colitis (UC) and Crohn’s disease (CD) patients while 2-arachidonoylglycerol (2-AG) was elevated in patients with CD, but not UC. 2-AG, but not AEA, PEA and OEA, was elevated in CRC patients. Lysophosphatidylinositol (LPI) 18:0 showed higher levels in patients with IBD than in control subjects whereas LPI 20:4 was elevated in both CRC and IBD. Gene expression in intestinal mucosal biopsies revealed different profiles in CD and UC. CD, but not UC patients, showed increased gene expression for the 2-AG synthesizing enzyme diacylglycerol lipase alpha. Transcripts of CNR1 and GPR119 were predominantly decreased in CD. Our data show altered plasma levels of endocannabinoids and endocannabinoid-like lipids in IBD and CRC and distinct transcript profiles in UC and CD. We also report alterations for less known components in intestinal inflammation, such as GPR119, OEA and LPI.
Collapse
|
35
|
Couch DG, Maudslay H, Doleman B, Lund JN, O'Sullivan SE. The Use of Cannabinoids in Colitis: A Systematic Review and Meta-Analysis. Inflamm Bowel Dis 2018; 24:680-697. [PMID: 29562280 DOI: 10.1093/ibd/izy014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical trials investigating the use of cannabinoid drugs for the treatment of intestinal inflammation are anticipated secondary to preclinical literature demonstrating efficacy in reducing inflammation. METHODS We systematically reviewed publications on the benefit of drugs targeting the endo-cannabinoid system in intestinal inflammation. We collated studies examining outcomes for meta-analysis from EMBASE, MEDLINE and Pubmed until March 2017. Quality was assessed according to mSTAIR and SRYCLE score. RESULTS From 2008 papers, 51 publications examining the effect of cannabinoid compounds on murine colitis and 2 clinical studies were identified. Twenty-four compounds were assessed across 71 endpoints. Cannabidiol, a phytocannabinoid, was the most investigated drug. Macroscopic colitis severity (disease activity index [DAI]) and myeloperoxidase activity (MPO) were assessed throughout publications and were meta-analyzed using random effects models. Cannabinoids reduced DAI in comparison with the vehicle (standard mean difference [SMD] -1.36; 95% CI, -1.62 to-1.09; I2 = 61%). FAAH inhibitor URB597 had the largest effect size (SMD -4.43; 95% CI, -6.32 to -2.55), followed by the synthetic drug AM1241 (SMD -3.11; 95% CI, -5.01 to -1.22) and the endocannabinoid anandamide (SMD -3.03; 95% CI, -4.89 to -1.17; I2 not assessed). Cannabinoids reduced MPO in rodents compared to the vehicle; SMD -1.26; 95% CI, -1.54 to -0.97; I2 = 48.1%. Cannabigerol had the largest effect size (SMD -6.20; 95% CI, -9.90 to -2.50), followed by the synthetic CB1 agonist ACEA (SMD -3.15; 95% CI, -4.75 to -1.55) and synthetic CB1/2 agonist WIN55,212-2 (SMD -1.74; 95% CI, -2.81 to -0.67; I2 = 57%). We found no evidence of reporting bias. No significant difference was found between the prophylactic and therapeutic use of cannabinoid drugs. CONCLUSIONS There is abundant preclinical literature demonstrating the anti-inflammatory effects of cannabinoid drugs in inflammation of the gut. Larger randomised controlled-trials are warranted.
Collapse
Affiliation(s)
- Daniel G Couch
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Henry Maudslay
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Brett Doleman
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Jonathan N Lund
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
36
|
|
37
|
Yu X, Yang G, Jiang H, Lin S, Liu Y, Zhang X, Zeng H, Su Z, Huang S, Shen L, Zhang X. Patchouli oil ameliorates acute colitis: A targeted metabolite analysis of 2,4,6-trinitrobenzenesulfonic acid-induced rats. Exp Ther Med 2017; 14:1184-1192. [PMID: 28810577 DOI: 10.3892/etm.2017.4577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/28/2016] [Indexed: 12/30/2022] Open
Abstract
The incidence of inflammatory bowel disease (IBD), characterized by chronic, relapsing intestinal inflammation, has continually increased in recent years. A previous study by our group identified five potential metabolic markers possibly associated with the pathology of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced IBD in rats. The present study aimed to examine the potential therapeutic effects of the essential oil of Pogostemon cablin (also known as patchouli; PO) on TNBS-induced rats and investigate the concomitant metabolic changes by targeting the previously identified potential markers. Pogostemon cablin is widely used to treat gastrointestinal diseases, including IBD, in China. The results of the present study showed that PO (270 mg/kg, rectal instillation) significantly alleviated colonic damage and reduced disease activity indicators and colonic myeloperoxidase in TNBS-induced rats. In addition, a targeted metabolic profiling study identified that four metabolites were elevated in the urine of the animals in the TNBS group, which were significantly inhibited by treatment with PO: Two tryptophan metabolites [4-(2-aminophenyl)-2,4-dioxobutanoic acid and 4,6-cihydroxyquinoline] and two gut microbial metabolites (phenylacetylglycine and p-cresol glucuronide). Taken together, these findings suggested that PO ameliorated the symptoms of TNBS-induced IBD and reversed the metabolic changes potentially associated with TNBS-induced IBD in rats.
Collapse
Affiliation(s)
- Xiuting Yu
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Guanghua Yang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hua Jiang
- Analysis Center of Shimadzu Enterprise Management (China) Co., Ltd., Guangzhou, Guangdong 510010, P.R. China
| | - Shuhai Lin
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, Hong Kong SAR, P.R. China
| | - Yuhong Liu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xie Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Huifang Zeng
- Department of Pharmacy, The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ziren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Song Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Linlin Shen
- Analysis Center of Shimadzu Enterprise Management (China) Co., Ltd., Guangzhou, Guangdong 510010, P.R. China
| | - Xiaojun Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
38
|
Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn's Disease, a Randomized Controlled Trial. Dig Dis Sci 2017; 62:1615-1620. [PMID: 28349233 DOI: 10.1007/s10620-017-4540-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/10/2017] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is an anti-inflammatory cannabinoid shown to be beneficial in a mouse model of IBD. Lacking any central effect, cannabidiol is an attractive option for treating inflammatory diseases. AIM To assess the effects of cannabidiol on Crohn's disease in a randomized placebo-controlled trial. PATIENTS AND METHODS Twenty patients aged 18-75 years with a Crohn's disease activity index (CDAI) >200 were randomized to receive oral (10 mg) CBD or placebo twice daily. Patients did not respond to standard treatment with steroids (11 patients), thiopurines (14), or TNF antagonists (11). Disease activity and laboratory parameters were assessed during 8 weeks of treatment and 2 weeks thereafter. Other medical treatment remained unchanged. RESULTS Of 20 patients recruited 19 completed the study. Their mean age was 39 ± 15, and 11 were males. The average CDAI before cannabidiol consumption was 337 ± 108 and 308 ± 96 (p = NS) in the CBD and placebo groups, respectively. After 8 weeks of treatment, the index was 220 ± 122 and 216 ± 121 in the CBD and placebo groups, respectively (p = NS). Hemoglobin, albumin, and kidney and liver function tests remained unchanged. No side effects were observed. CONCLUSION In this study of moderately active Crohn's disease, CBD was safe but had no beneficial effects. This could be due to lack of effect of CBD on Crohn's disease, but could also be due to the small dose of CBD, the small number of patients in the study, or the lack of the necessary synergism with other cannabinoids. Further investigation is warranted. CLINICALTRIALS.GOV: NCT01037322.
Collapse
|
39
|
Hasenoehrl C, Storr M, Schicho R. Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go? Expert Rev Gastroenterol Hepatol 2017; 11:329-337. [PMID: 28276820 PMCID: PMC5388177 DOI: 10.1080/17474124.2017.1292851] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fifty years after the discovery of Δ9-tetrahydrocannabinol (THC) as the psychoactive component of Cannabis, we are assessing the possibility of translating this herb into clinical treatment of inflammatory bowel diseases (IBDs). Here, a discussion on the problems associated with a potential treatment is given. From first surveys and small clinical studies in patients with IBD we have learned that Cannabis is frequently used to alleviate diarrhea, abdominal pain, and loss of appetite. Single ingredients from Cannabis, such as THC and cannabidiol, commonly described as cannabinoids, are responsible for these effects. Synthetic cannabinoid receptor agonists are also termed cannabinoids, some of which, like dronabinol and nabilone, are already available with a narcotic prescription. Areas covered: Recent data on the effects of Cannabis/cannabinoids in experimental models of IBD and in clinical trials with IBD patients have been reviewed using a PubMed database search. A short background on the endocannabinoid system is also provided. Expert commentary: Cannabinoids could be helpful for certain symptoms of IBD, but there is still a lack of clinical studies to prove efficacy, tolerability and safety of cannabinoid-based medication for IBD patients, leaving medical professionals without evidence and guidelines.
Collapse
Affiliation(s)
- Carina Hasenoehrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany,Zentrum für Endoskopie, Starnberg, Germany,CONTACT Martin Storr Walter Brendel Centre of Experimental Medicine, Marchioninistr. 15, Munich81377, Germany
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
40
|
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a lifelong disease of the gastrointestinal tract whose annual incidence and prevalence is on the rise. Current immunosuppressive therapies available for treatment of IBD offer limited benefits and lose effectiveness, exposing a significant need for the development of novel therapies. In the clinical setting, cannabis has been shown to provide patients with IBD symptomatic relief, although the underlying mechanisms of their anti-inflammatory effects remain unclear. METHODS This review reflects our current understanding of how targeting the endocannabinoid system, including cannabinoid receptors 1 and 2, endogenous cannabinoids anandamide and 2-arachidonoylglycerol, atypical cannabinoids, and degrading enzymes including fatty acid amide hydrolase and monoacylglycerol lipase, impacts murine colitis. In addition, the impact of cannabinoids on the human immune system is summarized. RESULTS Cannabinoid receptors 1 and 2, endogenous cannabinoids, and atypical cannabinoids are upregulated in inflammation, and their presence and stimulation attenuate murine colitis, whereas cannabinoid receptor antagonism and cannabinoid receptor deficient models reverse these anti-inflammatory effects. In addition, inhibition of endocannabinoid degradation through monoacylglycerol lipase and fatty acid amide hydrolase blockade can also attenuate colitis development, and is closely linked to cannabinoid receptor expression. CONCLUSIONS Although manipulation of the endocannabinoid system in murine colitis has proven to be largely beneficial in attenuating inflammation, there is a paucity of human study data. Further research is essential to clearly elucidate the specific mechanisms driving this anti-inflammatory effect for the development of therapeutics to target inflammatory disease such as IBD.
Collapse
|
41
|
Gyires K, Zádori ZS. Role of Cannabinoids in Gastrointestinal Mucosal Defense and Inflammation. Curr Neuropharmacol 2017; 14:935-951. [PMID: 26935536 PMCID: PMC5333598 DOI: 10.2174/1570159x14666160303110150] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/14/2015] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids representing potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation. Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms. Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduces the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion. Dual inhibition of FAAH and cyclooxygenase enzymes induces protection against both NSAID-induced gastrointestinal damage and intestinal inflammation. Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects. Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea. In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies.
Collapse
Affiliation(s)
- Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
| | | |
Collapse
|
42
|
Hasenoehrl C, Taschler U, Storr M, Schicho R. The gastrointestinal tract - a central organ of cannabinoid signaling in health and disease. Neurogastroenterol Motil 2016; 28:1765-1780. [PMID: 27561826 PMCID: PMC5130148 DOI: 10.1111/nmo.12931] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract. Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors. After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS. Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity. In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer. PURPOSE The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Carina Hasenoehrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany and Zentrum für Endoskopie, Starnberg, Germany
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
43
|
Pagano E, Capasso R, Piscitelli F, Romano B, Parisi OA, Finizio S, Lauritano A, Marzo VD, Izzo AA, Borrelli F. An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse. Front Pharmacol 2016; 7:341. [PMID: 27757083 PMCID: PMC5047908 DOI: 10.3389/fphar.2016.00341] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for "CBD botanical drug substance," on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| | - Raffaele Capasso
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| | - Fabiana Piscitelli
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Barbara Romano
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| | - Olga A. Parisi
- Department of Pharmacy, University of Naples Federico IINaples, Italy
| | - Stefania Finizio
- Department of Pharmacy, University of Naples Federico IINaples, Italy
| | - Anna Lauritano
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Vincenzo Di Marzo
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Angelo A. Izzo
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| | - Francesca Borrelli
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| |
Collapse
|
44
|
Abnormal cannabidiol attenuates experimental colitis in mice, promotes wound healing and inhibits neutrophil recruitment. JOURNAL OF INFLAMMATION-LONDON 2016; 13:21. [PMID: 27418880 PMCID: PMC4944257 DOI: 10.1186/s12950-016-0129-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/15/2016] [Indexed: 12/30/2022]
Abstract
Background Non-psychotropic atypical cannabinoids have therapeutic potential in a variety of inflammatory conditions including those of the gastrointestinal tract. Here we examined the effects of the atypical cannabinoid abnormal cannabidiol (Abn-CBD) on wound healing, inflammatory cell recruitment and colitis in mice. Methods Colitis was induced in CD1 mice by a single intrarectal administration of trinitrobenzene sulfonic acid (TNBS, 4 mg/100 μl in 30 % ethanol) and Abn-CBD and/or the antagonists O-1918 (Abd-CBD), AM251 (CB1 receptor) and AM630 (CB2 receptor), were administered intraperitoneally (all 5 mg/kg, twice daily for 3 days). The degree of colitis was assessed macro- and microscopically and tissue myeloperoxidase activity was determined. The effects of Abn-CBD on wound healing of endothelial and epithelial cells (LoVo) were assessed in a scratch injury assay. Human neutrophils were employed in Transwell assays or perfused over human umbilical vein endothelial cells (HUVEC) to study the effect of Abn-CBD on neutrophil accumulation and transmigration. Results TNBS-induced colitis was attenuated by treatment with Abn-CBD. Histological, macroscopic colitis scores and tissue myeloperoxidase activity were significantly reduced. These effects were inhibited by O-1918, but not by AM630, and only in part by AM251. Wound healing of both HUVEC and LoVo cells was enhanced by Abn-CBD. Abn-CBD inhibited neutrophil migration towards IL-8, and dose-dependently inhibited accumulation of neutrophils on HUVEC. Conclusions Abn-CBD is protective against TNBS-induced colitis, promotes wound healing of endothelial and epithelial cells and inhibits neutrophil accumulation on HUVEC monolayers. Thus, the atypical cannabinoid Abn-CBD represents a novel potential therapeutic in the treatment of intestinal inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12950-016-0129-0) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016; 15:513-28. [DOI: 10.1016/j.autrev.2016.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
46
|
Jandl K, Stacher E, Bálint Z, Sturm EM, Maric J, Peinhaupt M, Luschnig P, Aringer I, Fauland A, Konya V, Dahlen SE, Wheelock CE, Kratky D, Olschewski A, Marsche G, Schuligoi R, Heinemann A. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung. J Allergy Clin Immunol 2016; 137:833-43. [PMID: 26792210 PMCID: PMC4954606 DOI: 10.1016/j.jaci.2015.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 10/26/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022]
Abstract
Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation.
Collapse
Affiliation(s)
- Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Eva Maria Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Jovana Maric
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Petra Luschnig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ida Aringer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Center for Infectious Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Institute of Environmental Medicine, Experimental Asthma and Allergy Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
47
|
Stančić A, Jandl K, Hasenöhrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil 2015; 27:1432-45. [PMID: 26227635 PMCID: PMC4587547 DOI: 10.1111/nmo.12639] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND G protein-coupled receptor 55 (GPR55) is a lysophospholipid receptor responsive to certain cannabinoids. The role of GPR55 in inflammatory processes of the gut is largely unknown. Using the recently characterized GPR55 inhibitor CID16020046, we determined the role of GPR55 in experimental intestinal inflammation and explored possible mechanisms of action. METHODS Colitis was induced by either 2.5% dextran sulfate sodium (DSS) supplemented in the drinking water of C57BL/6 mice or by a single intrarectal application of trinitrobenzene sulfonic acid (TNBS). KEY RESULTS Daily application of CID16020046 (20 mg/kg) significantly reduced inflammation scores and myeloperoxidase (MPO) activity. In the DSS colitis model, levels of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), and the expression of cyclooxygenase (Cox)-2 and signal transducer and activator of transcription 3 (STAT-3) were reduced in colon tissues while in TNBS-induced colitis, levels of Cox-2, IL-1β and IL-6 were significantly lowered. Evaluation of leukocyte recruitment by flow cytometry indicated reduced presence of lymphocytes and macrophages in the colon following GPR55 inhibition in DSS-induced colitis. In J774A.1 mouse macrophages, inhibition of GPR55 revealed reduced migration of macrophages and decreased CD11b expression, suggesting that direct effects of CID16020046 on macrophages may have contributed to the improvement of colitis. GPR55(-/-) knockout mice showed reduced inflammation scores as compared to wild type mice in the DSS model suggesting a pro-inflammatory role in intestinal inflammation. CONCLUSIONS & INFERENCES Pharmacological blockade of GPR55 reduces experimental intestinal inflammation by reducing leukocyte migration and activation, in particular that of macrophages. Therefore, CID16020046 represents a possible drug for the treatment of bowel inflammation.
Collapse
Affiliation(s)
- Angela Stančić
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Carina Hasenöhrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Florian Reichmann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Martin Storr
- Department of Medicine II, Klinikum Großhadern, Ludwig-Maximilians University, Munich, Germany
,Co-corresponding author:Martin Storr, MD, PhD Department of Medicine II, Klinikum Großhadern Ludwig-Maximilians University Marchioninistr. 15 81377 Munich Germany Phone: 0049 89-7095-2281 (0) Fax: 0049 89-7095-5281
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
,Corresponding author:Rudolf Schicho, PhD Medical University of Graz Institute of Experimental and Clinical Pharmacology Universitätsplatz 4 8010 Graz Austria Phone: 0043 3163807851 Fax: 0043 3163809645
| |
Collapse
|
48
|
Cannabidiol for the Prevention of Graft-versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation: Results of a Phase II Study. Biol Blood Marrow Transplant 2015; 21:1770-5. [PMID: 26033282 DOI: 10.1016/j.bbmt.2015.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022]
Abstract
Graft-versus-host-disease (GVHD) is a major obstacle to successful allogeneic hematopoietic cell transplantation (alloHCT). Cannabidiol (CBD), a nonpsychotropic ingredient of Cannabis sativa, possesses potent anti-inflammatory and immunosuppressive properties. We hypothesized that CBD may decrease GVHD incidence and severity after alloHCT. We conducted a phase II study. GVHD prophylaxis consisted of cyclosporine and a short course of methotrexate. Patients transplanted from an unrelated donor were given low-dose anti-T cell globulin. CBD 300 mg/day was given orally starting 7 days before transplantation until day 30. Forty-eight consecutive adult patients undergoing alloHCT were enrolled. Thirty-eight patients (79%) had acute leukemia or myelodysplastic syndrome and 35 patients (73%) were given myeloablative conditioning. The donor was either an HLA-identical sibling (n = 28), a 10/10 matched unrelated donor (n = 16), or a 1-antigen-mismatched unrelated donor (n = 4). The median follow-up was 16 months (range, 7 to 23). No grades 3 to 4 toxicities were attributed to CBD. None of the patients developed acute GVHD while consuming CBD. In an intention-to-treat analysis, we found that the cumulative incidence rates of grades II to IV and grades III to IV acute GVHD by day 100 were 12.1% and 5%, respectively. Compared with 101 historical control subjects given standard GVHD prophylaxis, the hazard ratio of developing grades II to IV acute GVHD among subjects treated with CBD plus standard GVHD prophylaxis was .3 (P = .0002). Rates of nonrelapse mortality at 100 days and at 1 year after transplantation were 8.6% and 13.4%, respectively. Among patients surviving more than 100 days, the cumulative incidences of moderate-to-severe chronic GVHD at 12 and 18 months were 20% and 33%, respectively. The combination of CBD with standard GVHD prophylaxis is a safe and promising strategy to reduce the incidence of acute GVHD. A randomized double-blind controlled study is warranted. (clinicaltrials.gov: NCT01385124).
Collapse
|
49
|
Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been …. Headache 2015; 55:885-916. [PMID: 26015168 DOI: 10.1111/head.12570] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine. Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science. However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research. Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis. Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence. OBJECTIVE To review the history of medicinal cannabis use, discuss the pharmacology and physiology of the endocannabinoid system and cannabis-derived cannabinoids, perform a comprehensive literature review of the clinical uses of medicinal cannabis and cannabinoids with a focus on migraine and other headache disorders, and outline general clinical practice guidelines. CONCLUSION The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache. Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research. Cannabis contains an extensive number of pharmacological and biochemical compounds, of which only a minority are understood, so many potential therapeutic uses likely remain undiscovered. Cannabinoids appear to modulate and interact at many pathways inherent to migraine, triptan mechanisms ofaction, and opiate pathways, suggesting potential synergistic or similar benefits. Modulation of the endocannabinoid system through agonism or antagonism of its receptors, targeting its metabolic pathways, or combining cannabinoids with other analgesics for synergistic effects, may provide the foundation for many new classes of medications. Despite the limited evidence and research suggesting a role for cannabis and cannabinoids in some headache disorders, randomized clinical trials are lacking and necessary for confirmation and further evaluation.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Headache Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
50
|
Burstein S. Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med Chem 2015; 23:1377-85. [DOI: 10.1016/j.bmc.2015.01.059] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 01/13/2023]
|