1
|
Liu S, Xue YJ, Yin RP, Wu BS, Yu YW, Zhou YY, Wang J, Ji KT. 3, 4-Benzopyrene (Bap) aggravated abdominal aortic aneurysm formation by targeting pyroptosis in smooth muscle cells through ET-1 mediated NLRP3-inflammasome activation. Int Immunopharmacol 2023; 124:110851. [PMID: 37651853 DOI: 10.1016/j.intimp.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
According to epidemiological studies, smoking is one of the leading causes of the high incidence of abdominal aortic aneurysms (AAA).3,4-Benzopyrene (Bap) is a by-product of coal tar and tobacco combustion produced by the incomplete combustion of organic fuels. It is an essential component of both automobile exhaust and tobacco smoke, it is also an important member of the air pollutants. However, the exact mechanism by which Bap can worsen the condition of patients with AAA and increase the mortality of patients with AAA remains unknown. This research aims to investigate the role of Bap in inducing pyroptosis in AAA. In vitro experiments, we revealed that pyroptosis-Gasdermin D (GSDMD) increased when Bap was used. Additionally, the release of inflammatory factors, such as IL-1β and IL-18 were also rising. An mRNA sequencing analysis revealed that macrophages expressed a high level of the endothelin gene when cells were stimulated by Bap. It seemed that smooth muscle cells pyroptosis was related to macrophages. Experiments revealed that endothelin could increase the calcium ion concentration in smooth muscle cells, resulting in a large amount of ROS and activation of NLRP3 inflammasomes. We discovered that treatment with endothelin receptor antagonist (ABT-546) in vivo and calcium ion chelator (BAPTA) in vitro decreased AAA diameter, downregulated NLRP3 inflammasomes and ROS, and significantly reduced the number of activated GSDMD. Inflammatory mediators were released at a lower level. These findings suggest that Bap-induced pyroptosis may be mediated by the ET-1-Ca2+-inflammasome pathway, providing a new way to reduce mortality in AAA patients.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Cardiology, The First People's Hospital oF Jiashan, Jiaxing, Zhejiang 314100, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ri-Peng Yin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo-Sen Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Wei Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ying-Ying Zhou
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jie Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Holme JA, Brinchmann BC, Refsnes M, Låg M, Øvrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health 2019; 18:74. [PMID: 31439044 PMCID: PMC6704565 DOI: 10.1186/s12940-019-0514-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Wang J, Sun H, Zhou Y, Huang K, Que J, Peng Y, Wang J, Lin C, Xue Y, Ji K. Circular RNA microarray expression profile in 3,4-benzopyrene/angiotensin II-induced abdominal aortic aneurysm in mice. J Cell Biochem 2019; 120:10484-10494. [PMID: 30614051 DOI: 10.1002/jcb.28333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/28/2018] [Indexed: 12/30/2022]
Abstract
Abdominal aortic aneurysm (AAA) is an unpredictable but lethal disease that poses a therapeutic dilemma. Circular RNAs (circRNAs), whose functional roles as transcriptional regulators and microRNA (miRNA) sponges have been shown in former studies, are potential biomarkers for many diseases. AAA in male C57BL/6 J mice was induced by coadministration of angiotensin II (Ang II) and 3,4-benzopyrene (BaP). The circRNA expression profiling was performed using two samples from the control group and two samples from the AAA group. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to confirm the reliability of the microarray results. Among the 14 236 detected circRNAs, 413 showed obvious expression changes (fold change ≥ 2; P < 0.05) between the BaP/Ang II-induced AAA group and control group. Of the 413 that showed significant changes, 271 were upregulated, while the other 142 were downregulated. The expression levels of 10 circRNAs were validated by qRT-PCR. The interactions of the differentially expressed circRNAs with miRNAs were predicted. Immunofluorescence showed prominent vascular smooth muscle cell apoptosis in abdominal aortic tissues in the BaP/Ang II group. Furthermore, a circRNA-miRNA coexpression network based on six apoptosis-related circRNAs was built. The genes regulated by the network mapped to several pathways, including apoptosis, the IL-17 signaling pathway, and vascular endothelial growth factor signaling pathway, all of which are related to AAA formation. This study performed circRNA expression profiling in AAA and the results specifically predicted the regulatory role of circRNAs in AAA pathogenesis.
Collapse
Affiliation(s)
- Jiaoni Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Huankun Sun
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yingying Zhou
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Kaiyu Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jiaqun Que
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yangpei Peng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jinsheng Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Cong Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yangjing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Kangting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Effects of Eicosapentaenoic Acid on the Cytoprotection Through Nrf2-Mediated Heme Oxygenase-1 in Human Endothelial Cells. J Cardiovasc Pharmacol 2016; 66:108-17. [PMID: 25815672 DOI: 10.1097/fjc.0000000000000251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Consumption of omega-3 polyunsaturated fatty acid, particularly eicosapentaenoic acid (EPA), is associated with a significant reduction in the risk of developing cardiovascular disease. The aim of this study was to investigate whether heme oxygenase-1 (HO-1) induction contributes to the cytoprotective effects of EPA in endothelial cells threatened with oxidative damage. In this study, we investigated the effect of EPA on the induction of HO-1 by NF-E2-related factor 2 (Nrf2) in human umbilical vein endothelial cells. In cells treated with low concentrations of EPA (10-25 μM), HO-1 expression increased in a time- and concentration-dependent manner. Additionally, EPA treatment increased Nrf2 nuclear translocation and antioxidant response element activity, leading to the upregulation of HO-1 expression. Furthermore, treatment with EPA reduced hydrogen peroxide (H(2)O(2))-induced cell death. The reduction in cell death was reversed by treatment with zinc protoporphyrin, an inhibitor of HO-1, indicating that HO-1 contributed to the protective effect of EPA. These data suggest that EPA protects against H(2)O(2)-induced oxidative stress in endothelial cells by activating Nrf2 and inducting HO-1 expression.
Collapse
|
5
|
Metabolism of benzo(a)pyrene by aortic subcellular fractions in the setting of abdominal aortic aneurysms. Mol Cell Biochem 2015; 411:383-91. [PMID: 26530167 DOI: 10.1007/s11010-015-2600-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
As exposure to polycyclic aromatic hydrocarbons (PAHs; a family of environmental toxicants) have been implicated in cardiovascular diseases, the ability of the aortic tissue to process these toxicants is important from the standpoint of abdominal aortic aneurysms and atherosclerosis. Benzo(a)pyrene (B(a)P), a representative PAH compound is released into the environment from automobile exhausts, industrial emissions, and considerable intake of B(a)P is also expected in people who are smokers and barbecued red meat eaters. Therefore, knowledge of B(a)P metabolism in the cardiovascular system will be of importance in the management of vascular disorders. Toward this end, subcellular fractions (nuclear, cytosolic, mitochondrial, and microsomal) were isolated from the aortic tissues of Apo E mice that received a 5 mg/kg/week of B(a)P for 42 days and 0.71 mg/kg/day for 60 days. The fractions were incubated with 1 and 3 μM B(a)P. Post incubation, samples were extracted with ethyl acetate and analyzed by reverse-phase HPLC. Microsomal B(a)P metabolism was greater than the rest of the fractions. The B(a)P metabolite levels generated by all the subcellular fractions showed a B(a)P exposure concentration-dependent increase for both the weekly and daily B(a)P treatment categories. The preponderance of B(a)P metabolites such as 7,8-dihydrodiol, 3,6-, and 6,12-dione metabolites are interesting due to their reported involvement in B(a)P-induced toxicity through oxidative stress.
Collapse
|
6
|
Du Y, Wang Y, Zhang F, Wu W, Wang W, Li H, Xia S, Liu H. Regulation of metastasis of bladder cancer cells through the WNT signaling pathway. Tumour Biol 2015; 36:8839-44. [PMID: 26069102 DOI: 10.1007/s13277-015-3563-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/13/2015] [Indexed: 01/21/2023] Open
Abstract
Bladder cancer (BC) is the most popular malignant urinary cancer, with the highest incidence and mortality of all genitourinary system tumors worldwide. To date, the molecular regulation of the metastasis of BC remains ill defined. Here, we examined the levels of matrix metallopeptidase 9 (MMP9) and nuclear β-catenin in the BC specimen. We used lithium chloride (LiCl) to inhibit cytosol β-catenin phosphorylation and degradation to increase nuclear β-catenin levels in BC cells. We used IWP-2 to enhance cytosol β-catenin phosphorylation and degradation to decrease nuclear β-catenin levels in BC cells. We examined MMP9 levels in these experimental settings by quantitative reverse transcription-PCR (RT-qPCR), Western blot, and ELISA. The cell invasiveness was evaluated by Transwell cell assay. We found significantly higher levels of MMP9 and nuclear β-catenin in human BC specimen with metastasis, compared to those without metastasis. Moreover, a strong correlation was detected between MMP9 and nuclear β-catenin. LiCl significantly increased nuclear β-catenin, resulting in MMP9 activation in BC cells. IWP-2 significantly decreased nuclear β-catenin, resulting in MMP9 inhibition in BC cells. MMP9 regulated cell invasiveness. Together, these data suggest that the WNT signaling pathway regulates metastasis of BC through activation of MMP9. Therapies targeting the WNT signaling pathway may be a promising treatment for BC.
Collapse
Affiliation(s)
- Yiheng Du
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Rd, Shanghai, 200080, China
| | - Yongchuan Wang
- Department of Urology, Weifang Hospital of Chinese Traditional Medicine, Weifang, 261041, China
| | - Fei Zhang
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Rd, Shanghai, 200080, China
| | - Wenbo Wu
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Rd, Shanghai, 200080, China
| | - Wei Wang
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Rd, Shanghai, 200080, China
| | - Hao Li
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Rd, Shanghai, 200080, China
| | - Shujie Xia
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Rd, Shanghai, 200080, China
| | - Haitao Liu
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Rd, Shanghai, 200080, China.
| |
Collapse
|
7
|
Prins PA, Hill MF, Airey D, Nwosu S, Perati PR, Tavori H, F. Linton M, Kon V, Fazio S, Sampson UK. Angiotensin-induced abdominal aortic aneurysms in hypercholesterolemic mice: role of serum cholesterol and temporal effects of exposure. PLoS One 2014; 9:e84517. [PMID: 24465413 PMCID: PMC3900396 DOI: 10.1371/journal.pone.0084517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023] Open
Abstract
Objective Understanding variations in size and pattern of development of angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) may inform translational research strategies. Thus, we sought insight into the temporal evolution of AAA in apolipoprotein (apo)E−/− mice. Approach A cohort of mice underwent a 4-week pump-mediated infusion of saline (n = 23) or 1500 ng/kg/min of Ang II (n = 85) and AAA development was tracked via in vivo ultrasound imaging. We adjusted for hemodynamic covariates in the regression models for AAA occurrence in relation to time. Results The overall effect of time was statistically significant (p<0.001). Compared to day 7 of AngII infusion, there was no decrease in the log odds of AAA occurrence by day 14 (−0.234, p = 0.65), but compared to day 21 and 28, the log odds decreased by 9.07 (p<0.001) and 2.35 (p = 0.04), respectively. Hemodynamic parameters were not predictive of change in aortic diameter (Δ) (SBP, p = 0.66; DBP, p = 0.66). Mean total cholesterol (TC) was higher among mice with large versus small AAA (601 vs. 422 mg/ml, p<0.0001), and the difference was due to LDL. AngII exposure was associated with 0.43 mm (95% CI, 0.27 to 0.61, p<0.0001) increase in aortic diameter; and a 100 mg/dl increase in mean final cholesterol level was associated with a 12% (95% CI, 5.68 to 18.23, p<0.0001) increase in aortic diameter. Baseline cholesterol was not associated with change in aortic diameter (p = 0.86). Conclusions These are the first formal estimates of a consistent pattern of Ang II-induced AAA development. The odds of AAA occurrence diminish after the second week of Ang II infusion, and TC is independently associated with AAA size.
Collapse
Affiliation(s)
- Petra A. Prins
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
| | - Michael F. Hill
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
| | - David Airey
- Department of Biostatistics, VUMC, Nashville, Tennessee, United States of America
| | - Sam Nwosu
- Department of Biostatistics, VUMC, Nashville, Tennessee, United States of America
| | | | - Hagai Tavori
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
| | - MacRae F. Linton
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
| | - Valentina Kon
- Department of Pediatrics, VUMC, Nashville, Tennessee, United States of America
| | - Sergio Fazio
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, Tennessee, United States of America
| | - Uchechukwu K. Sampson
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, VUMC, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Harris KL, Banks LD, Mantey JA, Huderson AC, Ramesh A. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis. Expert Opin Drug Metab Toxicol 2013; 9:1465-80. [PMID: 23898780 PMCID: PMC4081012 DOI: 10.1517/17425255.2013.823157] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Bioaccessibility is a growing area of research in the field of risk assessment. As polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, they are the toxicants of focus to establish cancer risks in humans. Orally ingested PAHs also cause toxicity and even affect the pharmacokinetic behavior of some therapeutic agents. Toward this end, bioaccessibility is being used as a tool to assess the risk of PAHs via dietary exposures. AREAS COVERED This review covers some in vitro bioaccessibility models for PAHs that have been used for the past one-and-a-half decade. This review also considers the factors that influence bioaccessibility and debates the merits and limitations of using a bioaccessibility concept for estimating risk from ingestion of PAH-contaminated soil and food. Finally, the authors discuss the implications of bioaccessibility for PAH-induced toxicity and cancers in the context of risk assessment. EXPERT OPINION So far, much of the focus on PAH bioaccessibility is centered on soil as a preferential matrix. However, ingestion of PAHs through diet far exceeds the amount accidentally ingested through soil. Therefore, bioaccessibility could be exploited as a tool to assess the relative risk of various dietary ingredients tainted with PAHs. While bioaccessibility is a promising approach for assessing PAH risk arising from various types of contaminated soils, none of the models proposed appears to be valid. Bioaccessibility values, derived from in vitro studies, still require validation from in vivo studies.
Collapse
Affiliation(s)
- Kelly L Harris
- Meharry Medical College, Department of Biochemistry & Cancer Biology , 1005 D.B. Todd Blvd, Nashville, TN, 37208 , USA +1 615 327 6486 ; +1 615 327 6442 ;
| | | | | | | | | |
Collapse
|
9
|
Cyclophilin A: a key player for human disease. Cell Death Dis 2013; 4:e888. [PMID: 24176846 PMCID: PMC3920964 DOI: 10.1038/cddis.2013.410] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 01/23/2023]
Abstract
Cyclophilin A (CyPA) is a ubiquitously distributed protein belonging to the immunophilin family. CyPA has peptidyl prolyl cis-trans isomerase (PPIase) activity, which regulates protein folding and trafficking. Although CyPA was initially believed to function primarily as an intracellular protein, recent studies have revealed that it can be secreted by cells in response to inflammatory stimuli. Current research in animal models and humans has provided compelling evidences supporting the critical function of CyPA in several human diseases. This review discusses recently available data about CyPA in cardiovascular diseases, viral infections, neurodegeneration, cancer, rheumatoid arthritis, sepsis, asthma, periodontitis and aging. It is believed that further elucidations of the role of CyPA will provide a better understanding of the molecular mechanisms underlying these diseases and will help develop novel pharmacological therapies.
Collapse
|