1
|
Reshamwala R, Oieni F, Shah M. Non-stem Cell Mediated Tissue Regeneration and Repair. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
2
|
Peripheral Nerve Regeneration Using a Nerve Conduit with Olfactory Ensheathing Cells in a Rat Model. Tissue Eng Regen Med 2021; 18:453-465. [PMID: 33515167 DOI: 10.1007/s13770-020-00326-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Autologous nerve grafts are the gold standard treatment for peripheral nerve injury treatment. However, this procedure cannot avoid sacrificing other nerves as a major limitation. The aim of the present study was to evaluate the potential of olfactory ensheathing cells (OECs) embedded in a nerve conduit. METHODS A 10-mm segment of the sciatic nerve was resected in 21 rats, and the nerve injury was repaired with one of the following (n = 7 per group): autologous nerve graft, poly (ε-caprolactone) (PCL) conduit and OECs, and PCL conduit only. The consequent effect on nerve regeneration was measured based on the nerve conduction velocity (NCV), amplitude of the compound muscle action potential (ACMAP), wet muscle weight, histomorphometric analysis, and nerve density quantification. RESULTS Histomorphometric analysis revealed nerve regeneration and angiogenesis in all groups. However, there were significant differences (p < 0.05) in the ACMAP nerve regeneration rate of the gastrocnemius and tibialis anterior muscles between the autologous graft (37.9 ± 14.3% and 39.1% ± 20.4%) and PCL only (17.8 ± 8.6% and 13.6 ± 5.8%) groups, and between the PCL only and PCL + OECs (46.3 ± 20.0% and 34.5 ± 14.6%) groups, with no differences between the autologous nerve and PCL + OEC groups (p > 0.05). No significant results in NCV, wet muscle weight, and nerve density quantification were observed among the 3 groups. CONCLUSION A PCL conduit with OECs enhances the regeneration of injured peripheral nerves, offering a good alternative to autologous nerve grafts.
Collapse
|
3
|
Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SWP. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve 2019; 61:449-459. [PMID: 31725911 DOI: 10.1002/mus.26760] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical problem. There is a growing body of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral nerve regeneration after injury. The characteristics of both mesoderm-derived and ectoderm-derived stem cell types and their role in peripheral nerve regeneration are discussed, specifically focusing on the presentation of both foundational laboratory studies and translational applications. The current state of clinical translation is presented, with an emphasis on both ethical considerations of using stems cells in humans and current governmental regulatory policies. Current advancements in cell-based therapies represent a promising future with regard to supporting nerve regeneration and achieving significant functional recovery after debilitating nerve injuries.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Theodore A Kung
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Boecker AH, Bozkurt A, Kim BS, Altinova H, Tank J, Deumens R, Tolba R, Weis J, Brook GA, Pallua N, van Neerven SGA. Cell-enrichment with olfactory ensheathing cells has limited local extra beneficial effects on nerve regeneration supported by the nerve guide Perimaix. J Tissue Eng Regen Med 2018; 12:2125-2137. [PMID: 30044547 DOI: 10.1002/term.2731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
The reconstruction of peripheral nerve injuries is clinically challenging, and today, the autologous nerve transplantation is still considered as the only gold standard remedy for nerve lesions where a direct nerve coaptation is not possible. Nevertheless, the functional merits of many biomaterials have been tested as potential substitutes for the autologous nerve transplant. One of the strategies that have been pursued is the combination of bioengineered nerve guides with cellular enrichment. In this present study, we combined the previously evaluated collagen-based and microstructured nerve guide Perimaix with olfactory ensheathing cell enrichment. Rat sciatic nerve defects of 20 mm were either bridged by a cell-seeded or nonseeded nerve guide or an autologous nerve transplant. Animals were monitored for 12 weeks for structural and functional parameters. Seeded cells survived on Perimaix, and following implantation aligned along the microstructured Perimaix framework. Axonal densities within the cell-seeded nerve guides were higher than in the nonseeded nerve guides and were comparable to the autograft. Additionally, cell-seeding had local beneficial effects on myelination within the nerve guide, as myelin sheath thickness was enhanced when compared with the empty scaffold. Nevertheless, for bridging the nerve gap of 20 mm, both the cell-seeded as well as nonseeded scaffolds were equally efficient regarding the functional outcome, which did not differ between the autograft, seeded or nonseeded groups. Our data demonstrate that olfactory ensheathing cell enrichment has local effects on nerve regeneration in combination with the Perimaix nerve guide. Surprisingly, for traversing the lesion gap, additional cell-seeding is not crucial.
Collapse
Affiliation(s)
- Arne Hendrik Boecker
- Department of Plastic Surgery, Reconstructive and Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany.,Department of Hand-Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ahmet Bozkurt
- Department of Plastic Surgery, Reconstructive and Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany.,Department of Plastic, Hand, Reconstructive and Aesthetic Surgery, Helios Klinikum Wuppertal, University Witten/Herdecke, Wuppertal, Germany
| | - Bong Sung Kim
- Department of Plastic Surgery, Reconstructive and Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Haktan Altinova
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany.,Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julian Tank
- Department of General, Visceral and Thoracic Surgery, Private Medical University, Nuremberg, Germany
| | - Ronald Deumens
- Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium.,Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rene Tolba
- Institute for Laboratory Animal Research, University Hospital RWTH Aachen, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany.,Translational Brain Medicine (JARA Brain), Juelich-Aachen Research Alliance, Germany
| | - Gary Anthony Brook
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany.,Translational Brain Medicine (JARA Brain), Juelich-Aachen Research Alliance, Germany
| | - Norbert Pallua
- Department of Plastic Surgery, Reconstructive and Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
5
|
Kim JI, Kim CS, Park CH. Harnessing Nanotopography of Electrospun Nanofibrous Nerve Guide Conduits (NGCs) for Neural Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:395-408. [PMID: 30357634 DOI: 10.1007/978-981-13-0950-2_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anatomical recovery of nerve defects with their neurological functions after an injury caused by diseases or accidents is an important clinical issue. The most efficient surgical technique so far to the nerve defects, which are unrepairable by direct end-to-end suture, can be autograft transplantation. The autograft transplantation, however, has disadvantages including multiple rounds of surgery, a shortage of nerve donor, and function loss at the donor site. Tissue-engineered nerve guide conduits (TENGCs) have emerged as a potential alternative to autologous nerve grafts for nerve regeneration and functional recovery. Various TENGCs researches are being carried out to improve characteristics and enhance functionality such as material selection, biomimetic, topography, and enhancement by the biomolecules additions. Among them, the customizable surface nanotopography of aligned fibrous TENGCs foster neural repair by providing a cell-friendly environment, permissiveness, guidance cues, and directional growth of the cells. Fibrous nerve guide conduits (NGCs) made of longitudinally ordered fibers is a promising candidate for nerve tissue engineering.
Collapse
Affiliation(s)
- Jeong In Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, South Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, South Korea. .,Division of Mechanical Design Engineering, College of Engineering, Chonbuk National University, Jeonju, South Korea.
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, South Korea. .,Division of Mechanical Design Engineering, College of Engineering, Chonbuk National University, Jeonju, South Korea.
| |
Collapse
|
6
|
Barton MJ, John JS, Clarke M, Wright A, Ekberg J. The Glia Response after Peripheral Nerve Injury: A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies. Int J Mol Sci 2017; 18:E287. [PMID: 28146061 PMCID: PMC5343823 DOI: 10.3390/ijms18020287] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
The peripheral nervous system (PNS) exhibits a much larger capacity for regeneration than the central nervous system (CNS). One reason for this difference is the difference in glial cell types between the two systems. PNS glia respond rapidly to nerve injury by clearing debris from the injury site, supplying essential growth factors and providing structural support; all of which enhances neuronal regeneration. Thus, transplantation of glial cells from the PNS is a very promising therapy for injuries to both the PNS and the CNS. There are two key types of PNS glia: olfactory ensheathing cells (OECs), which populate the olfactory nerve, and Schwann cells (SCs), which are present in the rest of the PNS. These two glial types share many similar morphological and functional characteristics but also exhibit key differences. The olfactory nerve is constantly turning over throughout life, which means OECs are continuously stimulating neural regeneration, whilst SCs only promote regeneration after direct injury to the PNS. This review presents a comparison between these two PNS systems in respect to normal physiology, developmental anatomy, glial functions and their responses to injury. A thorough understanding of the mechanisms and differences between the two systems is crucial for the development of future therapies using transplantation of peripheral glia to treat neural injuries and/or disease.
Collapse
Affiliation(s)
- Matthew J Barton
- Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| | - Alison Wright
- Faculty of Health and Medical Science, Bond University, Robina, QLD 4226, Australia.
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
- Faculty of Health and Medical Science, Bond University, Robina, QLD 4226, Australia.
| |
Collapse
|
7
|
Olfactory ensheathing glia cell therapy and tubular conduit enhance nerve regeneration after mouse sciatic nerve transection. Brain Res 2016; 1650:243-251. [PMID: 27641994 DOI: 10.1016/j.brainres.2016.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
The regenerative potential of the peripheral nervous system (PNS) is widely known, but functional recovery, particularly in humans, is seldom complete. Therefore, it is necessary to resort to strategies that induce or potentiate the PNS regeneration. Our main objective was to test the effectiveness of Olfactory Ensheathing Cells (OEC) transplantation into a biodegradable conduit as a therapeutic strategy to improve the repair outcome after nerve injury. Sciatic nerve transection was performed in C57BL/6 mice; proximal and distal stumps of the nerve were sutured into the collagen conduit. Two groups were analyzed: DMEM (acellular grafts) and OEC (1×105/2μL). Locomotor function was assessed weekly by Sciatic Function Index (SFI) and Global Mobility Test (GMT). After eight weeks the sciatic nerve was dissected for morphological analysis. Our results showed that the OEC group exhibited many clusters of regenerated nerve fibers, a higher number of myelinated fibers and myelin area compared to DMEM group. The G-ratio analysis of the OEC group showed significantly more fibers on the most suitable sciatic nerve G-ratio index. Motor recovery was accelerated in the OEC group. These data provide evidence that the OEC therapy can improve sciatic nerve functional and morphological recovery and can be potentially translated to the clinical setting.
Collapse
|
8
|
Kraus D, Boyle V, Leibig N, Stark GB, Penna V. The Neuro-spheroid—A novel 3D in vitro model for peripheral nerve regeneration. J Neurosci Methods 2015; 246:97-105. [DOI: 10.1016/j.jneumeth.2015.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/27/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022]
|
9
|
Radtke C, Kocsis JD. Olfactory-ensheathing cell transplantation for peripheral nerve repair: update on recent developments. Cells Tissues Organs 2015; 200:48-58. [PMID: 25765445 DOI: 10.1159/000369006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
A number of important advances have been made using transplantation of olfactory-ensheathing cells (OECs) to provide therapeutic effects with regard to peripheral nerve repair. In vivo studies have focused on transplanting OECs to stimulate axonal regeneration and sprouting, increase remyelination, confer neuroprotection, enhance neovascularization and replace lost cells. OECs support axonal regeneration and remyelination with appropriate formation of axonal nodes of Ranvier with improvement of nerve conduction velocity. Current work using gene profiling and proteomics is identifying potential therapeutic differences between OECs harvested from nasal mucosa and the olfactory bulb and genes that OECs express that may be conducive to neural repair. OECs derived from nasal mucosa are of clinical interest since the cells could potentially be harvested from a patient and used for autotransplantation. Various nerve scaffolds and materials have been used for nerve repair and recent studies have examined OECs in combination with various supportive materials, including nanoparticles and scaffolds for peripheral nerve substance defects. This review will discuss the use of OECs in nerve repair and nerve defect injuries with specific emphasis on differences between OECs derived from the olfactory bulb and the olfactory mucosa.
Collapse
|
10
|
C3 toxin and poly-DL-lactide-ε-caprolactone conduits in the critically damaged peripheral nervous system: a combined therapeutic approach. Ann Plast Surg 2015; 74:350-3. [PMID: 25643184 DOI: 10.1097/sap.0000000000000415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Peripheral nerve regeneration over longer distances through conduits is limited. In the presented study, critical size nerve gap bridging with a poly-DL-lactide-ε-caprolactone (PLC) conduit was combined with application of C3 toxin to facilitate axonal sprouting. MATERIALS AND METHODS The PLC filled with fibrin (n = 10) and fibrin gel loaded with 1-μg C3-C2I and 2-μg C2II (n = 10) were compared to autologous nerve grafts (n = 10) in a 15-mm sciatic nerve gap lesion model of the rat. Functional and electrophysiological analyses were performed before histological evaluation. RESULTS Evaluation of motor function and nerve conduction velocity at 16 weeks revealed no differences between the groups. All histological parameters and muscle weight were significantly elevated in nerve graft group. No differences were observed in both PLC groups. CONCLUSIONS The PLCs are permissive for nerve regeneration over a 15-mm defect in rats. Intraluminal application of C3 toxin did not lead to significant enhancement of nerve sprouting.
Collapse
|
11
|
Luo B, Huang J, Lu L, Hu X, Luo Z, Li M. Electrically induced brain-derived neurotrophic factor release from Schwann cells. J Neurosci Res 2014; 92:893-903. [PMID: 24753179 DOI: 10.1002/jnr.23365] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 11/10/2022]
Abstract
Regulating the production of brain-derived neurotrophic factor (BDNF) in Schwann cells (SCs) is critical for their application in traumatic nerve injury, neurodegenerative disorders, and demyelination disease in both central and peripheral nervous systems. The present study investigated the possibility of using electrical stimulation (ES) to activate SCs to release BDNF. We found that short-term ES was capable of promoting BDNF production from SCs, and the maximal BDNF release was achieved by ES at 6 V (3 Hz, 30 min). We further examined the involvement of intracellular calcium ions ([Ca2+]i) in the ES-induced BDNF production in SCs by pharmacological studies. We found that the ES-induced BDNF release required calcium influx through T-type voltage-gated calcium channel (VGCC) and calcium mobilization from internal calcium stores, including inositol triphosphate-sensitive stores and caffeine/ryanodine-sensitive stores. In addition, calcium-calmodulin dependent protein kinase IV (CaMK IV), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) were found to play important roles in the ES-induced BDNF release from SCs. In conclusion, ES is capable of activating SCs to secrete BDNF, which requires the involvement of calcium influx through T-type VGCC and calcium mobilization from internal calcium stores. In addition, activation of CaMK IV, MAPK, and CREB were also involved in the ES-induced BDNF release. The findings indicate that ES can improve the neurotrophic ability in SCs and raise the possibility of developing electrically stimulated SCs as a source of cell therapy for nerve injury in both peripheral and central nervous systems.
Collapse
Affiliation(s)
- Beier Luo
- Institute of Orthopaedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
12
|
Riggio C, Nocentini S, Catalayud MP, Goya GF, Cuschieri A, Raffa V, del Río JA. Generation of magnetized olfactory ensheathing cells for regenerative studies in the central and peripheral nervous tissue. Int J Mol Sci 2013; 14:10852-68. [PMID: 23708092 PMCID: PMC3709706 DOI: 10.3390/ijms140610852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
Abstract
As olfactory receptor axons grow from the peripheral to the central nervous system (CNS) aided by olfactory ensheathing cells (OECs), the transplantation of OECs has been suggested as a plausible therapy for spinal cord lesions. The problem with this hypothesis is that OECs do not represent a single homogeneous entity, but, instead, a functionally heterogeneous population that exhibits a variety of responses, including adhesion and repulsion during cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. In this paper, we report a system based on modified OECs carrying magnetic nanoparticles as a proof of concept experiment enabling specific studies aimed at exploring the potential of OECs in the treatment of spinal cord injuries. Our studies have confirmed that magnetized OECs (i) survive well without exhibiting stress-associated cellular responses; (ii) in vitro, their migration can be modulated by magnetic fields; and (iii) their transplantation in organotypic slices of spinal cord and peripheral nerve showed positive integration in the model. Altogether, these findings indicate the therapeutic potential of magnetized OECs for CNS injuries.
Collapse
Affiliation(s)
- Cristina Riggio
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
| | - Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, Barcelona 08028, Spain; E-Mails: (S.N.); (J.A.R.)
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona 08028, Spain
- Networked Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Barcelona 08028, Spain
| | - Maria Pilar Catalayud
- Nanoscience Institute of Aragón, University of Zaragoza, Mariano Esquillor, Zaragoza 50018, Spain; E-Mails: (M.P.C.); (G.F.G.)
| | - Gerardo Fabian Goya
- Nanoscience Institute of Aragón, University of Zaragoza, Mariano Esquillor, Zaragoza 50018, Spain; E-Mails: (M.P.C.); (G.F.G.)
| | - Alfred Cuschieri
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
| | - Vittoria Raffa
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
- Department of Biology, University of Pisa, Via Luca Ghini 5, Pisa 56126, Italy
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, Barcelona 08028, Spain; E-Mails: (S.N.); (J.A.R.)
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona 08028, Spain
- Networked Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Barcelona 08028, Spain
| |
Collapse
|
13
|
Radtke C, Kocsis JD. Peripheral nerve injuries and transplantation of olfactory ensheathing cells for axonal regeneration and remyelination: fact or fiction? Int J Mol Sci 2012. [PMID: 23202929 PMCID: PMC3497303 DOI: 10.3390/ijms131012911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs) have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; E-Mail:
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-511-532-8864; Fax: +49-511-532-8890
| | - Jeffery D. Kocsis
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; E-Mail:
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|