1
|
Seo DY, Park JW, Kim SH, Oh SR, Han SB, Kwon OK, Ahn KS. Effect of Isoscopoletin on Cytokine Expression in HaCaT Keratinocytes and RBL-2H3 Basophils: Preliminary Study. Int J Mol Sci 2024; 25:6908. [PMID: 39000019 PMCID: PMC11240891 DOI: 10.3390/ijms25136908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Isoscopoletin is a compound derived from various plants traditionally used for the treatment of skin diseases. However, there have been no reported therapeutic effects of isoscopoletin on atopic dermatitis (AD). AD is a chronic inflammatory skin disease, and commonly used treatments have side effects; thus, there is a need to identify potential natural candidate substances. In this study, we aimed to investigate whether isoscopoletin regulates the inflammatory mediators associated with AD in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin treated RBL-2H3 cells. We determined the influence of isoscopoletin on cell viability through an MTT assay and investigated the production of inflammatory mediators using ELISA and RT-qPCR. Moreover, we analyzed the transcription factors that regulate inflammatory mediators using Western blots and ICC. The results showed that isoscopoletin did not affect cell viability below 40 μM in either HaCaT or RBL-2H3 cells. Isoscopoletin suppressed the production of TARC/CCL17, MDC/CCL22, MCP-1/CCL2, IL-8/CXCL8, and IL-1β in TNF-α/IFN-γ-treated HaCaT cells and IL-4 in PMA/ionomycin-treated RBL-2H3 cells. Furthermore, in TNF-α/IFN-γ-treated HaCaT cells, the phosphorylation of signaling pathways, including MAPK, NF-κB, STAT, and AKT/PKB, increased but was decreased by isoscopoletin. In PMA/ionomycin-treated RBL-2H3 cells, the activation of signaling pathways including PKC, MAPK, and AP-1 increased but was decreased by isoscopoletin. In summary, isoscopoletin reduced the production of inflammatory mediators by regulating upstream transcription factors in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin-treated RBL-2H3 cells. Therefore, we suggest that isoscopoletin has the potential for a therapeutic effect, particularly in skin inflammatory diseases such as AD, by targeting keratinocytes and basophils.
Collapse
Affiliation(s)
- Da-Yun Seo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (D.-Y.S.); (S.-B.H.)
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (S.-H.K.); (S.-R.O.)
| | - Ji-Won Park
- Practical Research Division, Honam National Institute of Biological Resources (HNIBR), Mokpo 58762, Republic of Korea;
| | - Seung-Ho Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (S.-H.K.); (S.-R.O.)
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (S.-H.K.); (S.-R.O.)
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (D.-Y.S.); (S.-B.H.)
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (S.-H.K.); (S.-R.O.)
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (S.-H.K.); (S.-R.O.)
| |
Collapse
|
2
|
Čelakovská J, Čermáková E, Boudková P, Andrýs C, Krejsek J. The association between eosinophils (CD16 + eosinophils), basophils (CD203 + basophils), and CD23 B lymphocytes in patients with atopic dermatitis on dupilumab therapy: pilot study. Dermatol Ther (Heidelb) 2023; 13:1193-1210. [PMID: 37071375 PMCID: PMC10149537 DOI: 10.1007/s13555-023-00922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Eosinophils, basophils, and the molecule CD23 on B cells are involved in the pathophysiology of atopic dermatitis (AD). The molecule CD23 is involved in the regulation of IgE synthesis and is expressed by activated B cells. The molecule CD16 is used to assess the activation of eosinophils and CD203 of basophils. The association between the count of eosinophils, basophils, CD16+ eosinophils, CD203+ basophils and the expression of the activation marker CD23 on B cells in patients with AD (with and without dupilumab therapy) is not described. OBJECTIVE The aim of this pilot study is to evaluate the association between the blood count of eosinophils, basophils, relative CD16+ eosinophils, relative CD203+ basophils, and the expression of molecule CD23 on B cells and on their subsets (total, memory, naive, switched, non-switched) in patients suffering from AD (with and without dupilumab therapy) and in control group. METHODS A total of 45 patients suffering from AD were examined; 32 patients without dupilumab treatment (10 men, 22 women, average age 35 years), 13 patients with dupilumab treatment (7 men, 6 women, average age 43.4 years), and 30 subjects as a control group (10 men, 20 women, average age 44.7 years). Immunophenotype was examined by flow cytometry in which monoclonal antibodies with fluorescent molecules were used. For statistical analysis we used non-parametric Kruskal-Wallis one-factor analysis of variance with post hoc by Dunn's test with Bonferroni modification and the Spearman's rank correlation coefficient; for coefficients higher than 0.41, we report R2 (percent of variation explained). RESULTS The absolute count of eosinophils was significantly higher in patients with AD (with and without dupilumab) in comparison to healthy subjects. The difference in the relative count of CD16+ eosinophils in patients with AD (with and without dupilumab therapy) compared with control is not statistically significant. In patients with dupilumab therapy the significantly lower count of relative CD203+ basophils was confirmed compared with control. The higher association between the count of eosinophils (absolute and relative) and the expression of CD23 marker on B cells was confirmed in patients with dupilumab therapy; in contrast, this association was low in patients with AD without dupilumab therapy and in healthy subjects. CONCLUSION The higher association between the count of eosinophils (absolute and relative) and the expression of CD23 marker on B cells was confirmed in patients with AD under dupilumab therapy. It suggests that IL-4 production by eosinophils may play a role in B lymphocyte activation. The significantly lower count of CD203+ basophils has been demonstrated in patients with dupilumab therapy. This reduction of CD203+ basophil count may contribute to the therapeutic effects of dupilumab by reducing the inflammatory response and allergic reactions in patients with AD.
Collapse
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty, Charles University, Hradec Králové, Czech Republic.
| | - Eva Čermáková
- Department of Medical Biophysics, Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Petra Boudková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Kagoya R, Kondo K, Kishimoto‐Urata M, Shimizu Y, Kikuta S, Yamasoba T. A murine model of eosinophilic chronic rhinosinusitis using the topical application of a vitamin D3 analog. Allergy 2021; 76:1432-1442. [PMID: 33058214 DOI: 10.1111/all.14627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Eosinophilic chronic rhinosinusitis (ECRS) is a chronic inflammatory disease, characterized by eosinophilic infiltration, T-helper type 2 (Th2-type) response, and olfactory dysfunction. A master regulator of Th2-type inflammation, thymic stromal lymphopoietin (TSLP), is important for basophil activation. TSLP-elicited basophils are a key factor in the pathogenesis of ECRS. METHODS In order to elucidate the mechanisms of ECRS in humans, we aimed to establish a murine model of ECRS based on TSLP production in response to the topical application of MC903 (a vitamin D3 analog) and the subsequent TSLP-induced basophil activation. Histological analyses were performed to assess immune cell infiltration into the nasal mucosa and to explore the impact of eosinophilic inflammation on the olfactory epithelium. The status of Th2-type inflammation was evaluated by quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). RESULTS Eosinophils, basophils, and M2 macrophages increased significantly in the nasal mucosa of the mice treated with MC903 and ovalbumin (OVA), compared to those treated with OVA alone or the controls. Quantitative real-time PCR and ELISA revealed elevated expression of interleukin (IL)-4, IL-5, IL-13, TSLP, the chemokine CCL11, and CCL24 in the nasal mucosa of the ECRS mice. In parallel, thinned olfactory epithelium and decreased mature olfactory sensory neurons were observed in the ECRS mice. CONCLUSIONS Our model of ECRS displayed Th2-type inflammation in the sinonasal region, including both eosinophil infiltration and basophil infiltration. Additionally, olfactory epithelium turned out to be affected by eosinophilic inflammation. These features are consistent with the characteristics of the human ECRS.
Collapse
Affiliation(s)
- Ryoji Kagoya
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
- Department of Otolaryngology Teikyo University Tokyo Japan
| | - Kenji Kondo
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Megumi Kishimoto‐Urata
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Yuya Shimizu
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
- Department of Otolaryngology Teikyo University Tokyo Japan
| | - Shu Kikuta
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology–Head and Neck Surgery Graduate School of Medicine The University of Tokyo Tokyo Japan
| |
Collapse
|
4
|
Basophils Orchestrating Eosinophils' Chemotaxis and Function in Allergic Inflammation. Cells 2021; 10:cells10040895. [PMID: 33919759 PMCID: PMC8070740 DOI: 10.3390/cells10040895] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are well known to contribute significantly to Th2 immunity, such as allergic inflammations. Although basophils have often not been considered in the pathogenicity of allergic dermatitis and asthma, their role in Th2 immunity has become apparent in recent years. Eosinophils and basophils are present at sites of allergic inflammations. It is therefore reasonable to speculate that these two types of granulocytes interact in vivo. In various experimental allergy models, basophils and eosinophils appear to be closely linked by directly or indirectly influencing each other since they are responsive to similar cytokines and chemokines. Indeed, basophils are shown to be the gatekeepers that are capable of regulating eosinophil entry into inflammatory tissue sites through activation-induced interactions with endothelium. However, the direct evidence that eosinophils and basophils interact is still rarely described. Nevertheless, new findings on the regulation and function of eosinophils and basophils biology reported in the last 25 years have shed some light on their potential interaction. This review will focus on the current knowledge that basophils may regulate the biology of eosinophil in atopic dermatitis and allergic asthma.
Collapse
|
5
|
Periostin deletion suppresses late-phase response in mouse experimental allergic conjunctivitis. Allergol Int 2019; 68:233-239. [PMID: 30420208 DOI: 10.1016/j.alit.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND To investigate the potential roles of periostin (POSTN), an extracellular matrix preferentially expressed in Th2-skewed conditions in the pathophysiology of allergic conjunctivitis. METHODS The roles of POSTN in ragweed-induced experimental allergic conjunctivitis (RW-EAC) were evaluated using both POSTN-knockout (KO) and congenic BALB/c wild-type mice. Histological analysis was carried out to enumerate eosinophils/basophils in the conjunctival tissue. Th2 cytokine expression was evaluated by quantitative polymerase chain reaction (Q-PCR), and microarray analysis was performed to elucidate genes differentially expressed in POSTN-KO and wild-type mice in the RW-EAC model. RESULTS Upregulation of POSTN expression and eosinophil infiltration was observed in subconjunctival tissue of RW-EAC in the wild-type mice. The number of infiltrating eosinophils in the conjunctivae of RW-EAC was diminished in POSTN-KO mice compared to wild-type mice. Q-PCR analysis of conjunctival tissue showed induction of Th2 cytokine (Ccl5, Il4, Il5, Il13) expression in the RW-EAC and attenuated Ccl5, Il4, Il13 mRNA expression in the conjunctivae of the RW-EAC using POSTN-KO mice. Microarray analysis and immunohistochemical analysis showed diminished basophil marker (Mcpt8) expression and reduced numbers of infiltrating basophils in the conjunctivae of RW-EAC in POSTN-KO mice. CONCLUSIONS POSTN expression in conjunctival tissue plays an indispensable role in the late-phase reaction of the RW-EAC model by facilitating eosinophil/basophil infiltration and augmenting Th2 cytokine expression.
Collapse
|
6
|
van Beek AA, Fransen F, Meijer B, de Vos P, Knol EF, Savelkoul HFJ. Aged mice display altered numbers and phenotype of basophils, and bone marrow-derived basophil activation, with a limited role for aging-associated microbiota. IMMUNITY & AGEING 2018; 15:32. [PMID: 30519273 PMCID: PMC6263040 DOI: 10.1186/s12979-018-0135-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Background The influence of age on basophils is poorly understood, as well as the effect of aging-associated microbiota on basophils. Therefore, we studied the influence of aging and aging-associated microbiota on basophil frequency and phenotype, and differentiation from basophil precursors. Results Basophils became more abundant in bone marrow (BM) and spleens of 19-month-old mice compared with 4-month-old mice. Aged basophils tended to express less CD200R3 and more CD123, both in BM and spleen. Differences in microbiota composition with aging were confirmed by 16S sequencing. Microbiota transfers from young and old mice to germ-free recipients revealed that CD11b tended to be lowered on splenic basophils by aging-associated microbiota. Furthermore, abundance of Alistipes, Oscillibacter, Bacteroidetes RC9 gut group, and S24-7 family positively correlated and CD123 expression, whereas Akkermansia abundance negatively correlated with basophils numbers.Subsequently, we purified FcεRIα+CD11c-CD117- BM-derived basophils and found that those from aged mice expressed lower levels of CD11b upon stimulation. Higher frequencies of IL-4+ basophils were generated from basophil precursors of aged mice, which could be reproduced in basophils derived from germ-free recipients of aging-associated microbiota. Conclusions Collectively, these results show the influence of aging on basophils. Furthermore, this study shows that aging-associated microbiota altered activation of BM-derived basophils in a similar fashion as observed in BM-derived basophils from aged mice.
Collapse
Affiliation(s)
- Adriaan A van Beek
- 1Cell Biology and Immunology Group, Wageningen University, Wageningen, the Netherlands.,2Top Institute Food and Nutrition, Wageningen, the Netherlands.,3Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Floris Fransen
- 2Top Institute Food and Nutrition, Wageningen, the Netherlands.,4Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
| | - Ben Meijer
- 1Cell Biology and Immunology Group, Wageningen University, Wageningen, the Netherlands
| | - Paul de Vos
- 2Top Institute Food and Nutrition, Wageningen, the Netherlands.,4Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
| | - Edward F Knol
- 5Department of Immunology, University Medical Center, Utrecht, the Netherlands.,6Dermatology/Allergology, University Medical Center, Utrecht, the Netherlands
| | - Huub F J Savelkoul
- 1Cell Biology and Immunology Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
7
|
Multifaceted roles of basophils in health and disease. J Allergy Clin Immunol 2018; 142:370-380. [DOI: 10.1016/j.jaci.2017.10.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023]
|
8
|
The role of extracellular vesicles when innate meets adaptive. Semin Immunopathol 2018; 40:439-452. [PMID: 29616308 PMCID: PMC6208666 DOI: 10.1007/s00281-018-0681-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.
Collapse
|
9
|
Breedveld A, Groot Kormelink T, van Egmond M, de Jong EC. Granulocytes as modulators of dendritic cell function. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4mr0217-048rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Klein O, Ngo-Nyekel F, Stefanache T, Torres R, Salomonsson M, Hallgren J, Rådinger M, Bambouskova M, Campbell M, Cohen-Mor S, Dema B, Rose CG, Abrink M, Charles N, Ainooson G, Paivandy A, Pavlova VG, Serrano-Candelas E, Yu Y, Hellman L, Jensen BM, Van Anrooij B, Grootens J, Gura HK, Stylianou M, Tobio A, Blank U, Öhrvik H, Maurer M. Identification of Biological and Pharmaceutical Mast Cell- and Basophil-Related Targets. Scand J Immunol 2017; 83:465-72. [PMID: 27028428 DOI: 10.1111/sji.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/27/2016] [Indexed: 01/09/2023]
Affiliation(s)
- O Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - F Ngo-Nyekel
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - T Stefanache
- Department of Periodontology, University of Medicine and Pharmacy 'Gr. T. Popa', Iasi, Romania
| | - R Torres
- Safety and Sustainability Division, Leitat Technological Center, Barcelona, Spain
| | - M Salomonsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - J Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - M Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Bambouskova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Campbell
- Institute of Inflammation and Repair and MCCIR, University of Manchester, Manchester, UK
| | - S Cohen-Mor
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - B Dema
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - C G Rose
- Bioengineering, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Immunopharmacology Group, Clinical Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - M Abrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, VHC, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - N Charles
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - G Ainooson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - A Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - V G Pavlova
- Department of Experimental Morphology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - E Serrano-Candelas
- Biochemistry Unit, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Y Yu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - L Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - B M Jensen
- Allergy Clinic, Copenhagen University Hospital - Gentofte Hospital, Hellerup, Denmark
| | - B Van Anrooij
- Department of Allergology, Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Grootens
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - H K Gura
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M Stylianou
- Antifungal Immunity Group, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - A Tobio
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - U Blank
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - H Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - M Maurer
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité -Universitätsmedizin, Berlin, Germany
| |
Collapse
|
11
|
Kim YH, Choi YR, Kim JY, Kwak SH. Anti-Allergic Effect of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose on RBL-2H3 Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.3746/jkfn.2016.45.4.613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Kratzer B, Pickl WF. Years in Review: Recent Progress in Cellular Allergology. Int Arch Allergy Immunol 2016; 169:1-12. [PMID: 26953825 PMCID: PMC7058417 DOI: 10.1159/000444753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This review highlights the recent key advances in the biology of CD4+ effector T cells, antigen-presenting cells, Th17 and T regulatory cells, as well as immediate effector cells, such as mast cells, basophils and eosinophils, which are critically contributing to the better understanding of the pathophysiology of allergic diseases and are helping to improve their diagnosis and therapy. Some of the key advances with a direct impact on allergic asthma research and treatment are summarized.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
13
|
Nutman TB. Looking beyond the induction of Th2 responses to explain immunomodulation by helminths. Parasite Immunol 2015; 37:304-13. [PMID: 25869527 DOI: 10.1111/pim.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 01/01/2023]
Abstract
Although helminth infections are characteristically associated with Th2-mediated responses that include the production of the prototypical cytokines IL-4, IL-5 and IL-13 by CD4(+) cells, the production of IgE, peripheral blood eosinophilia and mucus production in localized sites, these responses are largely attenuated when helminth infections become less acute. This modulation of the immune response that occurs with chronic helminth infection is often induced by molecules secreted by helminth parasites, by non-Th2 regulatory CD4(+) cells, and by nonclassical B cells, macrophages and dendritic cells. This review will focus on those parasite- and host-mediated mechanisms underlying the modulated T-cell response that occurs as the default in chronic helminth infections.
Collapse
Affiliation(s)
- T B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Di C, Lin X, Zhang Y, Zhong W, Yuan Y, Zhou T, Liu J, Xia Z. Basophil-associated OX40 ligand participates in the initiation of Th2 responses during airway inflammation. J Biol Chem 2015; 290:12523-36. [PMID: 25839234 DOI: 10.1074/jbc.m115.642637] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
Asthma is characterized by increased airway submucosal infiltration of T helper (Th) cells and myeloid cells that co-conspire to sustain a chronic inflammation. While recent studies have demonstrated that the myeloid basophils promote Th2 cells in response to various types of allergens, the underlying mechanisms are poorly understood. Here, we found for the first time that in a mouse model of allergic asthma basophils highly expressed OX40 ligand (OX40L) after activation. Interestingly, blockade of OX40-OX40L interaction suppressed basophils-primed Th2 cell differentiation in vitro and ameliorated ovalbumin (OVA)-induced allergic eosinophilic inflammation mediated by Th2 activation. In accordance, the adoptive transfer of basophils derived from mediastinal lymph nodes (MLN) of OVA-immunized mice triggered a robust Th2 response and eosinophilic inflammation in wild-type mice but largely muted in OX40(-/-) mice and mice receiving OX40L-blocked basophils. Taken together, our results reveal a critical role of OX40L presented by the activated basophils to initiate Th2 responses in an allergic asthma model, implicating OX40-OX40L signaling as a potential therapeutic target in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Caixia Di
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xiaoliang Lin
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yanjie Zhang
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wenwei Zhong
- Department of Pediatrics, Shanghai Children's Medical Center affiliated with Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China, and
| | - Yufan Yuan
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Tong Zhou
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhenwei Xia
- From the Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China,
| |
Collapse
|
15
|
Correlation of basophil infiltration in nasal polyps with the severity of chronic rhinosinusitis. Ann Allergy Asthma Immunol 2014; 114:30-5. [PMID: 25455520 DOI: 10.1016/j.anai.2014.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/19/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
|
16
|
Abstract
A 9-year-old female spayed English Springer Spaniel was evaluated for a cranial mediastinal mass and lymphocytosis. Flow cytometric immunophenotyping of peripheral blood lymphocytes revealed 97% as CD3 positive, confirming a T-cell lineage. Additionally, T-cell subset assessment showed 53.2% to be double-negative T-lymphocytes, expressing neither CD4 nor CD8 surface markers. The number of double-negative lymphocytes in circulation coincided with the number of T-cell receptor (TCR) γδ-expressing T-cells in circulation. Molecular T-cell clonality analysis of TCR Gamma (TCRG) gene rearrangement showed a polyclonal expansion of T-lymphocytes. Histopathology confirmed the mass to be a thymoma, supporting the diagnosis of thymoma-associated T-cell lymphocytosis. Resolution of the lymphocytosis after removal of the thymoma provided further evidence for this diagnosis. To the authors' knowledge, this case is only the second report of thymoma-associated peripheral lymphocytosis in the veterinary literature, and is the first to report a confirmed thymoma-associated peripheral γδ T-cell lymphocytosis in a dog.
Collapse
Affiliation(s)
- Andrew G Burton
- Veterinary Medical Teaching Hospital, University of California-Davis, Davis, CA, USA
| | | | | |
Collapse
|
17
|
Zhong W, Su W, Zhang Y, Liu Q, Wu J, Di C, Zhang Z, Xia Z. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation. Immunology 2014; 142:202-15. [PMID: 24383680 DOI: 10.1111/imm.12240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/19/2013] [Accepted: 12/29/2013] [Indexed: 02/03/2023] Open
Abstract
Antigen-induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) -induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up-regulation of activation marker of CD200R. However, depletion of basophils with MAR-1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin-4 level in lung and OVA-special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA-challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA-challenged mice were able to uptake DQ-OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin-4 following stimulation by IgE-antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen-induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin-4.
Collapse
Affiliation(s)
- Wenwei Zhong
- Department of Paediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Verlaet AAJ, Noriega DB, Hermans N, Savelkoul HFJ. Nutrition, immunological mechanisms and dietary immunomodulation in ADHD. Eur Child Adolesc Psychiatry 2014; 23:519-29. [PMID: 24493267 DOI: 10.1007/s00787-014-0522-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/16/2014] [Indexed: 01/07/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) etiology is not completely understood, but common comorbid dysfunction of the gastrointestinal and immune system suggests that these systems may be affected by a common genetic background and molecular mechanisms. For example, increased levels of specific cytokines were observed in ADHD. Moreover, ADHD has a high comorbidity with both Th1- and Th2-mediated disorders like ear infections, eczema and asthma. A common pathophysiological mechanism was suggested to underlie both asthma and ADHD, while several genes that are linked to ADHD have immune functions. Furthermore, immunological recognition of food provoking ADHD-like behavior was suggested. An immune imbalance, probably requiring a predisposing genetic background, is therefore suggested to contribute to ADHD etiology, with immune dysregulation being more likely than a single subcellular defect. However, next to allergic mechanisms, also pharmacological mechanisms (especially in case of food additives) might be involved. In addition, though cellular (cytokine-related) rather than antibody-mediated immune mechanisms seem involved, specific immune-inflammatory markers other than antibodies have not been systematically studied in ADHD. Substantial alterations implicated in ADHD apparently occur in the immune system and epigenetic regulation of gene expression. As a result, chronic inflammation and oxidative stress could develop, which can lead to ADHD symptoms, for example by chronic T-cell-mediated neuroinflammation. If immune pathways contribute to ADHD, both its diagnosis and treatment should be reconsidered. Modulation of immune system activity might have potential in ADHD treatment, for example by nutritional approaches providing safe and low-cost ADHD therapy, but further research in these fields is implicated.
Collapse
Affiliation(s)
- Annelies A J Verlaet
- Laboratory of Nutrition and Functional Food Science, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Building A (A.104), 2610, Wilrijk, Belgium,
| | | | | | | |
Collapse
|
19
|
Neunkirchner A, Schmetterer KG, Pickl WF. Lymphocyte-based model systems for allergy research: a historic overview. Int Arch Allergy Immunol 2014; 163:259-91. [PMID: 24777172 PMCID: PMC7617143 DOI: 10.1159/000360163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the last decades, a multitude of studies applying distinct in vitro and in vivo model systems have contributed greatly to our better understanding of the initiation and regulation of inflammatory processes leading to allergic diseases. Over the years, it has become evident that among lymphocytes, not only IgE-producing B cells and allergy-orchestrating CD4(+) helper cells but also cytotoxic CD8(+) T cells, γδ-T cells and innate lymphoid cells, as well as regulatory lymphocytes, might critically shape the immune response towards usually innocuous allergens. In this review, we provide a historic overview of pioneering work leading to the establishment of important lymphocyte-based model systems for allergy research. Moreover, we contrast the original findings with our currently more refined knowledge to appreciate the actual validity of the respective models and to reassess the conclusions obtained from them. Conflicting studies and interpretations are identified and discussed. The tables are intended to provide an easy overview of the field not only for scientists newly entering the field but also for the broader readership interested in updating their knowledge. Along those lines, herein we discuss in vitro and in vivo approaches to the investigation of lymphocyte effector cell activation, polarization and regulation, and describe depletion and adoptive transfer models along with gene knockout and transgenic (tg) methodologies. In addition, novel attempts to establish humanized T cell antigen receptor tg mouse models for allergy research are described and discussed.
Collapse
Affiliation(s)
- Alina Neunkirchner
- Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
20
|
Mogie G, Shanks K, Nkyimbeng-Takwi EH, Smith E, Davila E, Lipsky MM, DeTolla LJ, Keegan AD, Chapoval SP. Neuroimmune semaphorin 4A as a drug and drug target for asthma. Int Immunopharmacol 2013; 17:568-75. [PMID: 23994348 DOI: 10.1016/j.intimp.2013.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/23/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Neuroimmune semaphorin 4A (Sema4A) has been shown to play an important costimulatory role in T cell activation and regulation of Th1-mediated diseases such as multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), and experimental autoimmune myocarditis (EAM). Sema4A has three functional receptors, Tim-2 expressed on CD4+ T cells, Th2 cells in particular, and Plexin B1 and D1 predominantly expressed on epithelial and endothelial cells, correspondingly. We recently showed that Sema4A has a complex expression pattern in lung tissue in a mouse model of asthma. We and others have shown that corresponding Plexin expression can be found on immune cells as well. Moreover, we demonstrated that Sema4A-deficient mice displayed significantly higher lung local and systemic allergic responses pointing to its critical regulatory role in the disease. To determine the utility of Sema4A as a novel immunotherapeutic, we introduced recombinant Sema4A protein to the allergen-sensitized WT and Sema4A(-/-) mice before allergen challenge. We observed significant reductions in the allergic inflammatory lung response in Sema4A-treated mice as judged by tissue inflammation including eosinophilia and mucus production. Furthermore, we demonstrated that in vivo administration of anti-Tim2 Ab led to a substantial upregulation of allergic inflammation in WT mouse lungs. These data highlight the potential to develop Sema4A as a new therapeutic for allergic airway disease.
Collapse
Affiliation(s)
- G Mogie
- Center for Vascular and Inflammatory Diseases, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Innate immune responses in house dust mite allergy. ISRN ALLERGY 2013; 2013:735031. [PMID: 23724247 PMCID: PMC3658386 DOI: 10.1155/2013/735031] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/22/2012] [Indexed: 12/20/2022]
Abstract
Sensitizations to house dust mites (HDM) trigger strong exacerbated allergen-induced inflammation of the skin and airways mucosa from atopic subjects resulting in atopic dermatitis as well as allergic rhinitis and asthma. Initially, the Th2-biased HDM allergic response was considered to be mediated only by allergen B- and T-cell epitopes to promote allergen-specific IgE production as well as IL-4, IL-5, and IL-13 to recruit inflammatory cells. But this general molecular model of HDM allergenicity must be revisited as a growing literature suggests that stimulations of innate immune activation pathways by HDM allergens offer new answers to the following question: what makes an HDM allergen an allergen? Indeed, HDM is a carrier not only for allergenic proteins but also microbial adjuvant compounds, both of which are able to stimulate innate signaling pathways leading to allergy. This paper will describe the multiple ways used by HDM allergens together with microbial compounds to control the initiation of the allergic response through engagement of innate immunity.
Collapse
|