1
|
Effects of Cohousing Mice and Rats on Stress Levels, and the Attractiveness of Dyadic Social Interaction in C57BL/6J and CD1 Mice as Well as Sprague Dawley Rats. BIOLOGY 2022; 11:biology11020291. [PMID: 35205157 PMCID: PMC8869709 DOI: 10.3390/biology11020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Rats, including those of the Sprague Dawley strain, may kill mice. Because of this muricidal behavior, it is standard practice in many research animal housing facilities to separate mice from rats (i.e., the predators) to minimize stress for the mice. We tested the effect of cohousing on the stress levels of mice from either the C57BL/6J (BL6) or the CD1 strain and Sprague Dawley rats (SD rat) by quantifying their fecal corticosterone and metabolites (FCM) concentration. We also investigated cohousing impacts a behavioral assay, i.e., conditioned place preference for intragenus (i.e., mouse–mouse or rat–rat) dyadic social interaction (DSI CPP) that was shown be sensitive to social factors, especially to handling by humans. We found that the two delivery batches of BL6 mice or SD rats, respectively, had different stress levels at delivery that were statistically significant for the BL6 mice. Even so, the BL6 mice cohoused with rats had significantly increased FCM concentrations, indicative of higher stress levels, as compared to (1) BL6 mice housed alone or (2) BL6 mice at delivery. In contrast to their elevated stress levels, the attractiveness of contextual cues associated with mouse–mouse social interaction (DSI CPP) even increased in rat-cohoused BL6 mice, albeit non-significantly. Thus, cohousing BL6 mice and rats did not impair a behavioral assay in BL6 mice that was proven to be sensitive to handling stress by humans in our laboratory. SD rats cohoused with BL6- or CD1 mice, and CD1 mice cohoused with SD rats, showed DSI CPP that was not different from our previously published data on SD rats and BL6 mice of the Jackson- or NIH substrain obtained in the absence of cohousing. CD1 mice cohoused with rats did not show an increased FCM concentration compared to delivery. Our findings suggest that the effect of cohousing rats and mice under the conditions described above on their stress levels as opposed to their behavior might be less clearcut than generally assumed and might be overriden by conditions that cannot be controlled, i.e., different deliveries. Our findings can help to use research animal housing resources, which are usually limited, more efficiently.
Collapse
|
2
|
Bregolin T, Pinheiro BS, El Rawas R, Zernig G. Preventive Strength of Dyadic Social Interaction against Reacquisition/Reexpression of Cocaine Conditioned Place Preference. Front Behav Neurosci 2017; 11:225. [PMID: 29167636 PMCID: PMC5682322 DOI: 10.3389/fnbeh.2017.00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/27/2017] [Indexed: 11/15/2022] Open
Abstract
The reorientation away from drugs of abuse and toward social interaction is a highly desirable but as yet elusive goal in the therapy of substance dependence. We could previously show that cocaine preferring Sprague-Dawley rats which engaged in only four 15 min episodes of dyadic social interaction (DSI) did not reacquire and reexpress cocaine conditioned place preference (CPP) after a single cocaine exposure. In the present study, we investigated how strong this preventive effect of DSI is. In corroboration of our previous findings in rats, four 15 min DSI episodes prevented the reacquisition/reexpression of cocaine CPP in mice. However, this effect was only observed if only one cocaine conditioning session (15 min) was used. If mice were counterconditioned with a total of four cocaine sessions, the cocaine CPP reemerged. Interestingly, the opposite also held true: in mice that had acquired/expressed cocaine CPP, one conditioning session with DSI did not prevent the persistence of cocaine CPP, whereas four DSI conditioning sessions reversed CPP for 15 mg/kg intraperitoneal cocaine. Of note, this cocaine dose was a strong reward in C57BL/6J mice, causing CPP in all tested animals. Our findings suggest that both the reversal (reconditioning) of CPP from cocaine to DSI as well as that from DSI to cocaine requires four conditioning sessions. As previously shown in C57BL/6 mice from the NIH substrain, mice from the Jackson substrain also showed a greater relative preference for 15 mg/kg intraperitoneal cocaine over DSI, whereas Sprague-Dawley rats were equally attracted to contextual stimuli associated with this cocaine dose and DSI. Also in corroboration of previous findings, both C57BL/6J mice and experimenters several generations removed from the original ones produced CPP for DSI to a lesser degree than Sprague-Dawley rats. Our findings demonstrate the robustness of our experimental model across several subject- and experimenter generations in two rodent genus (i.e., mouse and rat) and allow the quantification of the strength (i.e., persistence) of the preventive effect of DSI against the reacquisition/reexpression of cocaine CPP, arguably a model for cocaine relapse.
Collapse
Affiliation(s)
- Tanja Bregolin
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Barbara S. Pinheiro
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Rana El Rawas
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Gerald Zernig
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
3
|
Grasing K. A threshold model for opposing actions of acetylcholine on reward behavior: Molecular mechanisms and implications for treatment of substance abuse disorders. Behav Brain Res 2016; 312:148-62. [PMID: 27316344 DOI: 10.1016/j.bbr.2016.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022]
Abstract
The cholinergic system plays important roles in both learning and addiction. Medications that modify cholinergic tone can have pronounced effects on behaviors reinforced by natural and drug reinforcers. Importantly, enhancing the action of acetylcholine (ACh) in the nucleus accumbens and ventral tegmental area (VTA) dopamine system can either augment or diminish these behaviors. A threshold model is presented that can explain these seemingly contradictory results. Relatively low levels of ACh rise above a lower threshold, facilitating behaviors supported by drugs or natural reinforcers. Further increases in cholinergic tone that rise above a second upper threshold oppose the same behaviors. Accordingly, cholinesterase inhibitors, or agonists for nicotinic or muscarinic receptors, each have the potential to produce biphasic effects on reward behaviors. Pretreatment with either nicotinic or muscarinic antagonists can block drug- or food- reinforced behavior by maintaining cholinergic tone below its lower threshold. Potential threshold mediators include desensitization of nicotinic receptors and biphasic effects of ACh on the firing of medium spiny neurons. Nicotinic receptors with high- and low- affinity appear to play greater roles in reward enhancement and inhibition, respectively. Cholinergic inhibition of natural and drug rewards may serve as mediators of previously described opponent processes. Future studies should evaluate cholinergic agents across a broader range of doses, and include a variety of reinforced behaviors.
Collapse
Affiliation(s)
- Kenneth Grasing
- From the Substance Abuse Research Laboratory, 151, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, United States; From the Division of Clinical Pharmacology, Department of Medicine, University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
4
|
Zernig G, Pinheiro BS. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor. Behav Pharmacol 2015; 26:580-94. [PMID: 26221832 PMCID: PMC4523229 DOI: 10.1097/fbp.0000000000000167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023]
Abstract
Impaired social interaction is a hallmark symptom of many psychiatric disorders. In substance use disorders, impaired social interaction is triply harmful (a) because addicts increasingly prefer the drug of abuse to the natural reward of drug-free social interaction, thus worsening the progression of the disease by increasing their drug consumption, (b) because treatment adherence and, consequently, treatment success itself depends on the ability of the recovering addict to maintain social interaction and adhere to treatment, and (c) because socially interacting with an individual suffering from a substance use disorder may be harmful for others. Helping the addict reorient his/her behavior away from the drug of abuse toward social interaction would therefore be of considerable therapeutic benefit. This article reviews our work on the neural basis of such a reorientation from cocaine, as a prototypical drug of abuse, toward dyadic (i.e. one-to-one) social interaction and compares our findings with the effects of other potentially beneficial interventions, that is, environmental enrichment or paired housing, on the activation of the accumbens and other brain regions involved in behavior motivated by drugs of abuse or nondrug stimuli. Our experimental models are based on the conditioned place preference paradigm. As the therapeutically most promising finding, only four 15 min episodes of dyadic social interaction were able to inhibit both the subsequent reacquisition/re-expression of preference for cocaine and the neural activation associated with this behavior, that is, an increase in the expression of the immediate early gene Early Growth Response protein 1 (EGR1, Zif268) in the nucleus accumbens, basolateral and central amygdala, and the ventral tegmental area. The time spent in the cocaine-associated conditioning compartment was correlated with the density of EGR1-activated neurons not only in the medial core (AcbCm) and medial shell (AcbShm) of the nucleus accumbens, but was observed in all regions medial to the anterior commissure ('accumbens corridor'), including (from medial to lateral), the vertical limb of the diagonal band and the medial septum (VDB+MS), the major island of Calleja and the intermediate nucleus of the lateral septum (ICjM+LSI), the AcbShm, and the AcbCm. All effects were limited to GABAergic projection neurons (called 'medium spiny neurons', in the accumbens), encompassing both dopamine D1 receptor-expressing and D2 receptor-expressing medium spiny neuron subtypes. Our EGR1 expression findings were mirrored in multielectrode array recordings. Finally, we have validated our paradigm in C57BL/6 mice to make use of the plethora of transgenic models available in this genus.
Collapse
Affiliation(s)
- Gerald Zernig
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Medical University of Innsbruck
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Barbara S. Pinheiro
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Medical University of Innsbruck
| |
Collapse
|
5
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Prast JM, Schardl A, Sartori SB, Singewald N, Saria A, Zernig G. Increased conditioned place preference for cocaine in high anxiety related behavior (HAB) mice is associated with an increased activation in the accumbens corridor. Front Behav Neurosci 2014; 8:441. [PMID: 25566008 PMCID: PMC4273636 DOI: 10.3389/fnbeh.2014.00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/04/2014] [Indexed: 01/21/2023] Open
Abstract
Anxiety disorders and substance use disorders are strongly associated in humans. Accordingly, a widely held but controversial concept in the addiction field, the so-called “self-medication hypothesis,” posits that anxious individuals are more vulnerable for drug dependence because they use drugs of abuse to alleviate their anxiety. We tested this hypothesis under controlled experimental conditions by quantifying the conditioned place preference (CPP) to 15 mg/kg i.p. cocaine given contingently (COCAINE) in CD1 mice selectively bred for high anxiety-related behavior (HAB) vs. normal anxiety-related behavior (NAB). Cocaine was conditioned to the initially non-preferred compartment in an alternate day design (cocaine vs. saline, four pairings each). HAB and NAB mice were also tested for the effects of non-contingent (NONCONT) cocaine administration. HAB mice showed a slightly higher bias for one of the conditioning compartments during the pretest than NAB mice that became statistically significant (p = 0.045) only after pooling COCAINE and NONCONT groups. Cocaine CPP was higher (p = 0.0035) in HAB compared to NAB mice. The increased cocaine CPP was associated with an increased expression of the immediate early genes (IEGs) c-Fos and Early Growth Related Protein 1 (EGR1) in the accumbens corridor, i.e., a region stretching from the anterior commissure to the interhemispheric border and comprising the medial nucleus accumbens core and shell, the major island of Calleja and intermediate part of the lateral septum, as well as the vertical limb of the diagonal band and medial septum. The cocaine CPP-induced EGR1 expression was only observed in D1- and D2-medium spiny neurons, whereas other types of neurons or glial cells were not involved. With respect to the activation by contingent vs. non-contingent cocaine EGR1 seemed to be a more sensitive marker than c-Fos. Our findings suggest that cocaine may be more rewarding in high anxiety individuals, plausibly due to an anxiolytic effect.
Collapse
Affiliation(s)
- Janine M Prast
- Department of General Psychiatry and Psychiatry, Experimental Psychiatry Unit, Medical University of Innsbruck Innsbruck, Austria
| | - Aurelia Schardl
- Department of General Psychiatry and Psychiatry, Experimental Psychiatry Unit, Medical University of Innsbruck Innsbruck, Austria
| | - Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Alois Saria
- Department of General Psychiatry and Psychiatry, Experimental Psychiatry Unit, Medical University of Innsbruck Innsbruck, Austria
| | - Gerald Zernig
- Department of General Psychiatry and Psychiatry, Experimental Psychiatry Unit, Medical University of Innsbruck Innsbruck, Austria ; Department of Psychology, University of Innsbruck Innsbruck, Austria
| |
Collapse
|
7
|
Prast JM, Schardl A, Schwarzer C, Dechant G, Saria A, Zernig G. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor. Front Behav Neurosci 2014; 8:317. [PMID: 25309368 PMCID: PMC4174134 DOI: 10.3389/fnbeh.2014.00317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/27/2014] [Indexed: 11/13/2022] Open
Abstract
We investigated if counterconditioning with dyadic (i.e., one-to-one) social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP), differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1) region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268) in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs), with D2-MSNs (immunolabeled with an anti-DRD2 antibody) being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders.
Collapse
Affiliation(s)
- Janine M Prast
- Experimental Psychiatry Unit, Innsbruck Medical University Innsbruck, Austria
| | - Aurelia Schardl
- Experimental Psychiatry Unit, Innsbruck Medical University Innsbruck, Austria
| | | | - Georg Dechant
- Institute for Neuroscience, Innsbruck Medical University Innsbruck, Austria
| | - Alois Saria
- Experimental Psychiatry Unit, Innsbruck Medical University Innsbruck, Austria
| | - Gerald Zernig
- Experimental Psychiatry Unit, Innsbruck Medical University Innsbruck, Austria ; Department of Psychology, Leopold-Franzens University of Innsbruck Innsbruck, Austria
| |
Collapse
|
8
|
Zernig G, Kummer KK, Prast JM. Dyadic social interaction as an alternative reward to cocaine. Front Psychiatry 2013; 4:100. [PMID: 24062696 PMCID: PMC3770939 DOI: 10.3389/fpsyt.2013.00100] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022] Open
Abstract
Individuals suffering from substance use disorders often show severely impaired social interaction, preferring drugs of abuse to the contact with others. Their impaired social interaction is doubly harmful for them as (1) therapy itself is based and dependent on social interaction and as (2) social interaction is not available to them as an "alternative", i.e., non-drug reward, decreasing their motivation to stop drug use. We therefore developed an animal experimental model to investigate the neurobiology of dyadic social interaction- vs. cocaine reward. We took care to avoid: (a) engaging sexual attraction-related aspects of such a social interaction and (b) hierarchical difference as confounding stimuli. The cocaine- or social interaction stimulus was offered - in a mutually exclusive setting - within the confines of a conditioned place preference (CPP) apparatus. In our paradigm, only four 15-min episodes of social interaction proved sufficient to (i) switch the rats' preference from cocaine-associated contextual stimuli to social interaction CPP and (ii) inhibit the subsequent reacquisition/reexpression of cocaine CPP. This behavioral effect was paralleled by a reversal of brain activation (i.e., EGR1 expression) in the nucleus accumbens, the central and basolateral amygdala, and the ventral tegmental area. Of relevance for the psychotherapy of addictive disorders, the most rewarding sensory component of the composite stimulus "social interaction" was touch. To test our hypothesis that motivation is encoded in neuron ensembles dedicated to specific reward scenarios, we are currently (1) mapping the neural circuits involved in cocaine- vs. social-interaction reward and (2) adapting our paradigm for C57BL/6 mice to make use of the plethora of transgenic models available in this species.
Collapse
Affiliation(s)
- Gerald Zernig
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Innsbruck Medical University , Innsbruck , Austria ; Department of Psychology, Leopold-Franzens University of Innsbruck , Innsbruck , Austria
| | | | | |
Collapse
|