1
|
Stamatopoulos K, Mistry N, Fotaki N, Turner DB, Swift B. Physiologically Based Biopharmaceutics Model (PBBM) of Minimally Absorbed Locally Acting Drugs in the Gastrointestinal Tract-Case Study: Tenapanor. Pharmaceutics 2023; 15:2726. [PMID: 38140067 PMCID: PMC10747343 DOI: 10.3390/pharmaceutics15122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
A physiologically based biopharmaceutics model (PBBM) was developed to predict stool and urine sodium content in response to tenapanor administration in healthy subjects. Tenapanor is a minimally absorbed small molecule that inhibits the sodium/hydrogen isoform 3 exchanger (NHE3). It is used to treat irritable bowel syndrome with constipation (IBS-C). Its mode of action in the gastrointestinal tract reduces the uptake of sodium, resulting in an increase in water secretion in the intestinal lumen and accelerating intestinal transit time. The strategy employed was to perform drug-drug interaction (DDI) modelling between sodium and tenapanor, with sodium as the "victim" administered as part of daily food intake and tenapanor as the "perpetrator" altering sodium absorption. Food effect was modelled, including meal-induced NHE3 activity using sodium as an inducer by normalising the induction kinetics of butyrate to sodium equivalents. The presented model successfully predicted both urine and stool sodium content in response to tenapanor dosed in healthy subjects (within 1.25-fold error) and provided insight into the clinical observations of tenapanor dosing time relative to meal ingestion. The PBBM model was applied retrospectively to assess the impact of different forms of tenapanor (free base vs. HCl salt) on its pharmacodynamic (PD) effect. The developed modelling strategy can be effectively adopted to increase confidence in using PBBM models for the prediction of the in vivo behaviour of minimally absorbed, locally acting drugs in the gastrointestinal tract, when other approaches (e.g., biomarkers or PD data) are not available.
Collapse
Affiliation(s)
| | - Nena Mistry
- Biopharmaceutics, DPD, MDS, GSK, Ware SG12 0DP, UK;
| | - Nikoletta Fotaki
- Centre for Therapeutic Innovation, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | | | | |
Collapse
|
2
|
Zhu R, Yang G, Cao Z, Shen K, Zheng L, Xiao J, You L, Zhang T. The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star. Ther Adv Med Oncol 2020; 12:1758835920940946. [PMID: 32728395 PMCID: PMC7364809 DOI: 10.1177/1758835920940946] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is an AGC kinase that has been reported to be involved in a variety of physiological and pathological processes. Recent evidence has accumulated that SGK1 acts as an essential Akt-independent mediator of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway in cancer. SGK1 is overexpressed in several tumors, including prostate cancer, colorectal carcinoma, glioblastoma, breast cancer, and endometrial cancer. The functions of SGK1 include regulating tumor growth, survival, metastasis, autophagy, immunoregulation, calcium (Ca2+) signaling, cancer stem cells, cell cycle, and therapeutic resistance. In this review, we introduce the pleiotropic role of SGK1 in the development and progression of tumors, summarize its downstream targets, and integrate the knowledge provided by preclinical studies that the prospect of SGK1 inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Ruizhe Zhu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Shen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing 100730, China
| |
Collapse
|
3
|
Nakamura T, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, Mitsuishi Y, Morisaki M, Kohata N, Oshima Y, Minami Y, Shibata H, Itoh H. Intestinal Mineralocorticoid Receptor Contributes to Epithelial Sodium Channel-Mediated Intestinal Sodium Absorption and Blood Pressure Regulation. J Am Heart Assoc 2018; 7:JAHA.117.008259. [PMID: 29929989 PMCID: PMC6064907 DOI: 10.1161/jaha.117.008259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Mineralocorticoid receptor (MR) has pathological roles in various cell types, including renal tubule cells, myocytes, and smooth muscle cells; however, the role of MR in intestinal epithelial cells (IECs) has not been sufficiently evaluated. The intestine is the sensing organ of ingested sodium; accordingly, intestinal MR is expected to have essential roles in blood pressure (BP) regulation. Methods and Results We generated IEC‐specific MR knockout (IEC‐MR‐KO) mice. With a standard diet, fecal sodium excretion was 1.5‐fold higher in IEC‐MR‐KO mice, with markedly decreased colonic expression of β‐ and γ‐epithelial sodium channel, than in control mice. Urinary sodium excretion in IEC‐MR‐KO mice decreased by 30%, maintaining sodium balance; however, a low‐salt diet caused significant reductions in body weight and BP in IEC‐MR‐KO mice, and plasma aldosterone exhibited a compensatory increase. With a high‐salt diet, intestinal sodium absorption markedly increased to similar levels in both genotypes, without an elevation in BP. Deoxycorticosterone/salt treatment elevated BP and increased intestinal sodium absorption in both genotypes. Notably, the increase in BP was significantly smaller in IEC‐MR‐KO mice than in control mice. The addition of the MR antagonist spironolactone to deoxycorticosterone/salt treatment eliminated the differences in BP and intestinal sodium absorption between genotypes. Conclusions Intestinal MR regulates intestinal sodium absorption in the colon and contributes to BP regulation. These regulatory effects are associated with variation in epithelial sodium channel expression. These findings suggest that intestinal MR is a new target for studying the molecular mechanism of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Toshifumi Nakamura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Isao Kurihara
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Sakiko Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kenichi Yokota
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Ayano Murai-Takeda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yuko Mitsuishi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Mitsuha Morisaki
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nao Kohata
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yosuke Oshima
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yukiko Minami
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
4
|
Lang F, Guelinckx I, Lemetais G, Melander O. Two Liters a Day Keep the Doctor Away? Considerations on the Pathophysiology of Suboptimal Fluid Intake in the Common Population. Kidney Blood Press Res 2017; 42:483-494. [PMID: 28787716 DOI: 10.1159/000479640] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
Suboptimal fluid intake may require enhanced release of antidiuretic hormone (ADH) or vasopressin for the maintenance of adequate hydration. Enhanced copeptin levels (reflecting enhanced vasopressin levels) in 25% of the common population are associated with enhanced risk of metabolic syndrome with abdominal obesity, type 2 diabetes, hypertension, coronary artery disease, heart failure, vascular dementia, cognitive impairment, microalbuminuria, chronic kidney disease, inflammatory bowel disease, cancer, and premature mortality. Vasopressin stimulates the release of glucocorticoids which in turn up-regulate the serum- and glucocorticoid-inducible kinase 1 (SGK1). Moreover, dehydration upregulates the transcription factor NFAT5, which in turn stimulates SGK1 expression. SGK1 is activated by insulin, growth factors and oxidative stress via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase PDK1 and mTOR. SGK1 is a powerful stimulator of Na+/K+-ATPase, carriers (e.g. the Na+,K+,2Cl- cotransporter NKCC, the NaCl cotransporter NCC, the Na+/H+ exchanger NHE3, and the Na+ coupled glucose transporter SGLT1), and ion channels (e.g. the epithelial Na+ channel ENaC, the Ca2+ release activated Ca2+ channel Orai1 with its stimulator STIM1, and diverse K+ channels). SGK1 further participates in the regulation of the transcription factors nuclear factor kappa-B NFκB, p53, cAMP responsive element binding protein (CREB), activator protein-1, and forkhead transcription factor FKHR-L1 (FOXO3a). Enhanced SGK1 activity fosters the development of hypertension, obesity, diabetes, thrombosis, stroke, inflammation including inflammatory bowel disease and autoimmune disease, cardiac fibrosis, proteinuria, renal failure as well as tumor growth. The present brief review makes the case that suboptimal fluid intake in the common population may enhance vasopressin and glucocorticoid levels thus up-regulating SGK1 expression and favouring the development of SGK1 related pathologies.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tuebingen, Tuebingen, Germany
| | | | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Bai JA, Xu GF, Yan LJ, Zeng WW, Ji QQ, Wu JD, Tang QY. SGK1 inhibits cellular apoptosis and promotes proliferation via the MEK/ERK/p53 pathway in colitis. World J Gastroenterol 2015; 21:6180-6193. [PMID: 26034353 PMCID: PMC4445095 DOI: 10.3748/wjg.v21.i20.6180] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/12/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) in colitis and its potential pathological mechanisms.
METHODS: SGK1 expression in mucosal biopsies from patients with active Crohn’s disease (CD) and normal controls was detected by immunohistochemistry. We established an acute colitis model in mice induced by 2,4,6-trinitrobenzene sulfonicacid, and demonstrated the presence of colitis using the disease activity index, the histologic activity index and hematoxylin and eosin staining. The cellular events and potential mechanisms were implemented with small interference RNA and an inhibitor of signaling molecule (i.e., U0126) in intestinal epithelial cells (IECs). The interaction between SGK1 and the signaling molecule was assessed by co-immunoprecipitation.
RESULTS: SGK1 expression was significantly increased in the inflamed epithelia of patients with active CD and TNBS-induced colitis model (0.58 ± 0.055 vs 0.85 ± 0.06, P < 0.01). At the cellular level, silencing of SGK1 by small interference RNA (siSGK1) significantly inhibited the phosphorylation of mitogen-activated protein kinase kinase 1 (MEK1) and the downstream molecule extracellular signal regulated protein kinase (ERK) 1/2, which induced the upregulation of p53 and Bcl-2-associated X protein, mediating the subsequent cellular apoptosis and proliferation in IECs. Cells treated with MEK1 inhibitor (i.e., U0126) before siSGK1 transfection showed a reversal of the siSGK1-induced cellular apoptosis.
CONCLUSION: Our data suggested that SGK1 may protect IECs in colitis from tumor necrosis factor-α-induced apoptosis partly by triggering MEK/ERK activation.
Collapse
|
6
|
Wilkens M, Praechter C, Breves G, Schröder B. Stimulating effects of a diet negative in dietary cation-anion difference on calcium absorption from the rumen in sheep. J Anim Physiol Anim Nutr (Berl) 2015; 100:156-66. [DOI: 10.1111/jpn.12296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/17/2015] [Indexed: 11/27/2022]
Affiliation(s)
- M.R. Wilkens
- Department of Physiology; University of Veterinary Medicine, Foundation; Hannover Germany
| | - C. Praechter
- Department of Physiology; University of Veterinary Medicine, Foundation; Hannover Germany
| | - G. Breves
- Department of Physiology; University of Veterinary Medicine, Foundation; Hannover Germany
| | - B. Schröder
- Department of Physiology; University of Veterinary Medicine, Foundation; Hannover Germany
| |
Collapse
|
7
|
Lang F, Gawaz M, Borst O. The serum- & glucocorticoid-inducible kinase in the regulation of platelet function. Acta Physiol (Oxf) 2015; 213:181-90. [PMID: 24947805 DOI: 10.1111/apha.12334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/02/2014] [Accepted: 06/15/2014] [Indexed: 12/23/2022]
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is expressed in megakaryocytes and circulating platelets. In megakaryocytes, SGK1 activates transcription factor nuclear factor kappa-B (NF-κB), which in turn stimulates expression of Orai1, a Ca(2+) channel protein accomplishing store-operated Ca(2+) enrty (SOCE). SGK1 enhances SOCE and several Ca(2+) -sensitive platelet functions, including degranulation, integrin αII b β3 activation, phosphatidylserine exposure, aggregation and thrombus formation. As shown in other cell types, stimulators of SGK1 expression include ischaemia, oxidative stress, hyperglycaemia, advanced glycation end products (AGEs) and a variety of hormones such as glucocorticoids, mineralocorticoids, transforming growth factor beta (TGFβ), interleukin 6 (IL-6), platelet-derived growth factor (PDGF), thrombin and endothelin. Thus, SGK1-sensitive Ca(2+) signalling may contribute to altered platelet function in several clinical conditions including inflammation, metabolic syndrome, diabetes mellitus and chronic renal failure. Nevertheless, further studies are needed defining the contribution of altered SGK1 expression and activity to physiology and pathophysiology of platelets.
Collapse
Affiliation(s)
- F. Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - M. Gawaz
- Department of Cardiology & Cardiovascular Medicine; University of Tübingen; Tübingen Germany
| | - O. Borst
- Department of Physiology; University of Tübingen; Tübingen Germany
- Department of Cardiology & Cardiovascular Medicine; University of Tübingen; Tübingen Germany
| |
Collapse
|
8
|
Artunc F, Lang F. Mineralocorticoid and SGK1-sensitive inflammation and tissue fibrosis. Nephron Clin Pract 2014; 128:35-9. [PMID: 25377230 DOI: 10.1159/000368267] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Effects of mineralocorticoids are not restricted to regulation of epithelial salt transport, extracellular volume and blood pressure; mineralocorticoids also influence a wide variety of seemingly unrelated functions such as inflammation and fibrosis. The present brief review addresses the role of mineralocorticoids in the orchestration of these latter processes. Mineralocorticoids foster inflammation as well as vascular, cardiac, renal and peritoneal fibrosis. Mechanisms involved in mineralocorticoid-sensitive inflammation and fibrosis include the serum- and glucocorticoid-inducible kinase 1 (SGK1), which is genomically upregulated by mineralocorticoids and transforming growth factor β (TGF-β), and stimulated by mineralocorticoid-sensitive phosphatidylinositide 3-kinase. SGK1 upregulates the inflammatory transcription factor nuclear factor-κB, which in turn stimulates the expression of diverse inflammatory mediators including connective tissue growth factor. Moreover, SGK1 inhibits the degradation of the TGF-β-dependent transcription factors Smad2/3. Mineralocorticoids foster the development of TH17 cells, which is compromised following SGK1 deletion. Excessive SGK1 expression is observed in a wide variety of fibrosing diseases including lung fibrosis, diabetic nephropathy, glomerulonephritis, obstructive kidney disease, experimental nephrotic syndrome, obstructive nephropathy, liver cirrhosis, fibrosing pancreatitis, peritoneal fibrosis, Crohn's disease and celiac disease. The untoward inflammatory and fibrosing effects of mineralocorticoids could be blunted or even reversed by mineralocorticoid receptor blockers, which may thus be considered in the treatment of inflammatory and/or fibrosing disease.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
9
|
Qadri SM, Su Y, Cayabyab FS, Liu L. Endothelial Na+/H+ exchanger NHE1 participates in redox-sensitive leukocyte recruitment triggered by methylglyoxal. Cardiovasc Diabetol 2014; 13:134. [PMID: 25270604 PMCID: PMC4193979 DOI: 10.1186/s12933-014-0134-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/16/2014] [Indexed: 11/17/2022] Open
Abstract
Background Excessive levels of methylglyoxal (MG) encountered in diabetes foster enhanced leukocyte-endothelial cell interactions, mechanisms of which are incompletely understood. MG genomically upregulates endothelial serum- and glucocorticoid-inducible kinase 1 (SGK1) which orchestrates leukocyte recruitment by regulating the activation and expression of transcription factors and adhesion molecules. SGK1 regulates a myriad of ion channels and carriers including the Na+/H+ exchanger NHE1. Here, we explored the effect of MG on SGK1-dependent NHE1 activation and the putative role of NHE1 activation in MG-induced leukocyte recruitment and microvascular hyperpermeability. Methods Using RT-PCR and immunoblotting, we analyzed NHE1 mRNA and protein levels in murine microvascular SVEC4-10EE2 endothelial cells (EE2 ECs). NHE1 phosphorylation was detected using a specific antibody against the 14-3-3 binding motif at phospho-Ser703. SGK in EE2 ECs was silenced using targeted siRNA. ROS production was determined using DCF-dependent fluorescence. Leukocyte recruitment and microvascular permeability in murine cremasteric microvasculature were measured using intravital microscopy. The expression of endothelial adhesion molecules was determined by immunoblotting and confocal imaging analysis. Results MG treatment significantly upregulated NHE1 mRNA and dose-dependently increased total- and phospho-NHE1. Treatment with SGK1 inhibitor GSK650394, antioxidant Tempol and silencing SGK all blunted MG-triggered phospho-NHE1 upregulation in EE2 ECs. NHE1 inhibitor cariporide attenuated MG-triggered ROS production, leukocyte adhesion and emigration and microvascular hyperpermeability, without affecting leukocyte rolling. Cariporide treatment did not alter MG-triggered upregulation of P- and E-selectins, but reduced endothelial ICAM-1 expression. Conclusion MG elicits SGK1-dependent activation of endothelial Na+/H+ exchanger NHE1 which participates in MG-induced ROS production, upregulation of endothelial ICAM-1, leukocyte recruitment and microvascular hyperpermeability. Pharmacological inhibition of NHE1 attenuates the proinflammatory effects of excessive MG and may, thus, be beneficial in diabetes-associated inflammation.
Collapse
|
10
|
Lang F, Stournaras C, Alesutan I. Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1. Mol Membr Biol 2014; 31:29-36. [PMID: 24417516 DOI: 10.3109/09687688.2013.874598] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is genomically upregulated by cell stress including energy depletion and hyperosmotic shock as well as a variety of hormones including glucocorticoids, mineralocorticoids and TGFβ. SGK1 is activated by insulin, growth factors and oxidative stress via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase PDK1 and mTOR. SGK1 is a powerful stimulator of Na(+)/K(+)-ATPase, carriers (e.g., NCC, NKCC, NHE1, NHE3, SGLT1, several amino acid transporters) and ion channels (e.g., ENaC, SCN5A, TRPV4-6, ORAI1/STIM1, ROMK, KCNE1/KCNQ1, GluR6, CFTR). Mechanisms employed by SGK1 in transport regulation include direct phosphorylation of target transport proteins, phosphorylation and thus activation of other transport regulating kinases, stabilization of membrane proteins by phosphorylation and thus inactivation of the ubiquitin ligase NEDD4-2, as well as stimulation of transport protein expression by upregulation transcription factors (e.g., nuclear factor kappa-B [NFκB]) and by fostering of protein translation. SGK1 sensitivity of pump, carrier and channel activities participate in the regulation of epithelial transport, cardiac and neuronal excitability, degranulation, platelet function, migration, cell proliferation and apoptosis. SGK1-sensitive functions do not require the presence of SGK1 but are markedly upregulated by SGK1. Accordingly, the phenotype of SGK1 knockout mice is mild. The mice are, however, less sensitive to excessive activation of transport by glucocorticoids, mineralocorticoids, insulin and inflammation. Moreover, excessive SGK1 activity contributes to the pathophysiology of hypertension, obesity, diabetes, thrombosis, stroke, inflammation, autoimmune disease, fibrosis and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Germany and
| | | | | |
Collapse
|