1
|
Kasprzyk PG, Tremaine L, Fahmi OA, Weng JK. In Vitro Evaluation of the Potential for Drug Interactions by Salidroside. Nutrients 2023; 15:3723. [PMID: 37686755 PMCID: PMC10489644 DOI: 10.3390/nu15173723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Several studies utilizing Rhodiola rosea, which contains a complex mixture of phytochemicals, reported some positive drug-drug interaction (DDI) findings based on in vitro CYP450's enzyme inhibition, MAO-A and MAO-B inhibition, and preclinical pharmacokinetic studies in either rats or rabbits. However, variation in and multiplicity of constituents present in Rhodiola products is a cause for concern for accurately evaluating drug-drug interaction (DDI) risk. In this report, we examined the effects of bioengineered, nature-identical salidroside on the inhibition potential of salidroside on CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 utilizing human liver microsomes, the induction potential of salidroside on CYP1A2, CYP2B6 and CYP3A4 in cryopreserved human hepatocytes, the inhibitory potential of salidroside against recombinant human MAO-A and MAO-B, and the OATP human uptake transport inhibitory potential of salidroside using transfected HEK293-OATP1B1 and OATP1B3 cells. The results demonstrate that the bioengineered salidroside at a concentration exceeding the predicted plasma concentrations of <2 µM (based on 60 mg PO) shows no risk for drug-drug interaction due to CYP450, MAO enzymes, or OATP drug transport proteins. Our current studies further support the safe use of salidroside in combination with other drugs cleared by CYP or MAO metabolism or OATP-mediated disposition.
Collapse
Affiliation(s)
| | - Larry Tremaine
- Tremaine DMPK Consulting, LLC, Merritt Island, FL 32899, USA;
| | | | - Jing-Ke Weng
- DoubleRainbow Biosciences Inc., Lexington, MA 02421, USA;
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Bertuccioli A, Cardinali M, Di Pierro F, Magi S, Zonzini G. A Practical Perspective on the Use of Botanicals During the COVID-19 Pandemic: From Proven to Potential Interactions. J Med Food 2022; 25:1-11. [PMID: 34788575 PMCID: PMC8787711 DOI: 10.1089/jmf.2021.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we examined the top 10 nutraceutical products sold in Italian pharmacies and parapharmacies as well as hypermarkets and supermarkets; in the first, three product categories saw the greatest increase in sales (vitamins and minerals, immunostimulants, and sleep products) for the 12-month period between October 2019 and October 2020 (including first pandemic wave of SARS-CoV-2). We are investigating their respective formulas and isolating the botanicals that are used to make them. Many of these products have undergone preclinical and clinical studies. We performed a systematic literature search in the MEDLINE database using PubMed and Google Scholar from November 15, 2020 to December 15, 2020 (including studies carried out between 1980 and 2020). The search terms that were used included the complete name of the medicinal plant in English or Latin and the terms "cytochrome" or "drug interactions," crossing, respectively, the Latin name and English common names with "cytochrome" and "drug interactions." The search included in vitro and in vivo studies describing the effects of interaction between the plant (extract or botanical medicine) and human cytochromes. Despite their great complexity, there is decidedly limited clinical data on botanical medicine. In fact, of the 28 botanicals that were examined, only 2 (Citrus paradisi and Rhodiola rosea) show in vivo pharmacological interactions in human subjects. On the contrary, for the other botanicals, there is only weak evidence of dubious clinical significance or potential interactions shown in animal models or in vitro without clinical confirmation. This study provides a rational assessment of the most widely used products, including those used in self-medication, to simplify patient management during the COVID-19 health emergency.
Collapse
Affiliation(s)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Francesco Di Pierro
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, Brescia, Italy
- Scientific & Research Department, Velleja Research, Milano, Italy
| | - Simone Magi
- Italian Association of Fitness e Medicine (AIFeM), Ravenna, Italy
| | - Giordano Zonzini
- Italian Association of Fitness e Medicine (AIFeM), Ravenna, Italy
| |
Collapse
|
3
|
Multifaceted Factors Causing Conflicting Outcomes in Herb-Drug Interactions. Pharmaceutics 2020; 13:pharmaceutics13010043. [PMID: 33396770 PMCID: PMC7824553 DOI: 10.3390/pharmaceutics13010043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic enzyme and/or transporter-mediated pharmacokinetic (PK) changes in a drug caused by concomitant herbal products have been a primary issue of herb and drug interactions (HDIs), because PK changes of a drug may result in the alternation of efficacy and toxicity. Studies on HDIs have been carried out by predictive in vitro and in vivo preclinical studies, and clinical trials. Nevertheless, the discrepancies between predictive data and the clinical significance on HDIs still exist, and different reports of HDIs add to rather than clarify the confusion regarding the use of herbal products and drug combinations. Here, we briefly review the underlying mechanisms causing PK-based HDIs, and more importantly summarize challenging issues, such as dose and treatment period effects, to be considered in study designs and interpretations of HDI evaluations.
Collapse
|
4
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Ahad A, Raish M, Bin Jardan YA, Alam MA, Al-Mohizea AM, Al-Jenoobi FI. Potential pharmacodynamic and pharmacokinetic interactions of Nigella Sativa and Trigonella Foenum-graecum with losartan in L-NAME induced hypertensive rats. Saudi J Biol Sci 2020; 27:2544-2550. [PMID: 32994710 PMCID: PMC7499079 DOI: 10.1016/j.sjbs.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
The objective of this investigation was to study whether Nigella Sativa and Trigonella Foenum-graecum, could modulate the losartan pharmacodynamic (PD) and pharmacokinetic (PK) in experimental L-NAME induced hypertensive rats. For in vivo study, the systolic blood pressure (SBP) of rats was measured by the “tail-cuff system” after the treatment of rats with herb alone and herb + losartan in hypertensive rats. The SBP of rats treated with L-NAME + losartan also recorded. For the PK study, blood samples were obtained for up to 12 h to determine the concentrations of the drug, and various PK parameters were calculated. The data displayed that the SBP was significantly (p < 0.05) decreased in the rats when administered with L-NAME + N. Sativa or L-NAME + T. Foenum-graecum in contrast to the rats administered with L-NAME alone. A more prominent decline (p < 0.05) in SBP was detected in rats administered with L-NAME + N. Sativa + losartan and L-NAME + T. Foenum-graecum + losartan. In a PK study, higher losartan Cmax and AUC0-t were noted in rats treated with N. Sativa + losartan and T. Foenum-graecum + losartan, although the difference was not significant in contrast to the control group. This study proposed that the interaction between N. Sativa & losartan and T. Foenum-graecum & losartan could take place on concurrent administration; consequently, the dose of losartan may need to be accustomed when they are utilized simultaneously.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Spanakis M, Sfakianakis S, Sakkalis V, Spanakis EG. PharmActa: Empowering Patients to Avoid Clinical Significant Drug⁻Herb Interactions. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E26. [PMID: 30781500 PMCID: PMC6473432 DOI: 10.3390/medicines6010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022]
Abstract
Herbal medicinal products (HMPs) are the subject of increasing interest regarding their benefits for health. However, a serious concern is the potential appearance of clinically significant drug⁻herb interactions in patients. This work provides an overview of drug⁻herb interactions and an evaluation of their clinical significance. We discuss how personalized health services and mobile health applications can utilize tools that provide essential information to patients to avoid drug⁻HMP interactions. There is a specific mention to PharmActa, a dedicated mobile app for personalized pharmaceutical care with information regarding drug⁻HMPs interactions. Several studies over the years have shown that for some HMPs, the potential to present clinically significant interactions is evident, especially for many of the top selling HMPs. Towards that, PharmActa presents how we can improve the way that information regarding potential drug⁻herb interactions can be disseminated to the public. The utilization of technologies focusing on medical information and context awareness introduce a new era in healthcare. The exploitation of eHealth tools and pervasive mobile monitoring technologies in the case of HMPs will allow the citizens to be informed and avoid potential drug⁻HMPs interactions enhancing the effectiveness and ensuring safety for HMPs.
Collapse
Affiliation(s)
- Marios Spanakis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, GR-70013 Crete, Greece.
| | - Stelios Sfakianakis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, GR-70013 Crete, Greece.
| | - Vangelis Sakkalis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, GR-70013 Crete, Greece.
| | - Emmanouil G Spanakis
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, GR-70013 Crete, Greece.
| |
Collapse
|
7
|
Tao H, Wu X, Cao J, Peng Y, Wang A, Pei J, Xiao J, Wang S, Wang Y. Rhodiola
species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med Res Rev 2019; 39:1779-1850. [PMID: 30652331 DOI: 10.1002/med.21564] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/23/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University; Luzhou Sichuan China
| | - Jiliang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Anqi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Jin Pei
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine; Chengdu Sichuan China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| |
Collapse
|
8
|
Dong B, Yuan S, Hu J, Yan Y. Effects of Ginkgo leaf tablets on the pharmacokinetics of losartan and its metabolite EXP3174 in rats and its mechanism. PHARMACEUTICAL BIOLOGY 2018; 56:333-336. [PMID: 29953302 PMCID: PMC6130633 DOI: 10.1080/13880209.2018.1481107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Ginkgo leaf tablets (GLTs) and losartan are often simultaneously used for the treatment of hypertension in Chinese clinics. However, the herb-drug interaction between GLT and losartan is still unknown. OBJECTIVE This study investigates the effects of GLT on the pharmacokinetics of losartan and its metabolite EXP3174 in rats and its potential mechanism. MATERIALS AND METHODS The pharmacokinetic profiles of losartan and EXP3174 of orally administered losartan (10 mg/kg) with or without GLT pretreatment (80 mg/kg/day for 10 days) in Sprague-Dawley rats were determined. In vitro, the effects of GLT on the metabolic stability of losartan were investigated with rat liver microsomes. RESULTS The Cmax (1.22 ± 0.25 vs 1.85 ± 0.37 μg/mL) and the AUC(0-t) (6.99 ± 1.05 vs 11.94 ± 1.79 mg·h/L) of losartan increased significantly (p < 0.05) with GLT pretreatment, while the Cmax (1.05 ± 0.19 vs 0.72 ± 0.12 μg/mL) of EXP3174 decreased significantly (p < 0.05) compared to the control. The t1/2 of losartan was prolonged significantly from 3.94 ± 0.62 to 4.75 ± 0.52 h (p < 0.05). The metabolic stability of losartan was increased from 37.4 min to 59.6 min with GLT pretreatment. DISCUSSION AND CONCLUSIONS The results indicate that GLT might increase the plasma concentration of losartan and decrease the concentration of EXP3174 through inhibiting the metabolism of losartan.
Collapse
Affiliation(s)
- Baiping Dong
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong Province, China
| | - Suowei Yuan
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong Province, China
| | - Jinsheng Hu
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong Province, China
| | - Yanzhen Yan
- Department of Neurology, Caoxian People’s Hospital, Heze, Shandong Province, China
- CONTACT Yanzhen Yan Department of Neurology, Caoxian People’s Hospital, No. 1, Fuminda Road, Heze274400, Shandong Province, China
| |
Collapse
|
9
|
Thu OKF, Spigset O, Hellum B. Noncompetitive inhibition of human CYP2C9 in vitro by a commercial Rhodiola rosea product. Pharmacol Res Perspect 2017; 5. [PMID: 28805981 PMCID: PMC5684854 DOI: 10.1002/prp2.324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
A commercial Rhodiola rosea (R. rosea) product has previously demonstrated CYP2C9 inhibition in humans. The purpose of this study was to provide in vitro inhibitory data for this particular interaction and to classify the mechanism of the interaction. Another aim was to examine the in vitro influence of ethanol on the CYP2C9 activity. Human CYP2C9 (wild type) isolated from a baculovirus‐infected cell system was incubated with 0.8 μmol/L losartan for 20 min. Sulfaphenazole was used as a positive control. The commercial R. rosea product “Arctic Root” was used as test inhibitor. Formation of the CYP2C9‐produced losartan metabolite EXP‐3174 was determined by validated LC‐MS/MS methodology. Possible mechanism‐based (irreversible) inhibition was evaluated using time‐ and NADPH‐dependent inhibition assays. Kinetic constants (Km, Vmax, and Ki) were calculated from a Lineweaver‐Burk plot. Mode of inhibition was determined. CYP2C9 was inhibited by “Arctic Root” with an IC50 (extract concentration yielding 50% reduction in enzyme activity) of 19.2 ± 2.7 μg/mL. Inhibitor concentrations of 20 μg/mL and 40 μg/mL yielded Ki values of 16.37 μg/mL and 5.59 μg/mL, respectively. The Lineweaver‐Burk plot showed noncompetitive inhibition mode. No time‐ or NADPH‐dependent inhibition was observed. The presence of ethanol inhibited CYP2C9 activity in a concentration‐dependent manner. In conclusion, the commercial R. rosea product “Arctic Root” demonstrated noncompetitive inhibition of CYP2C9 in vitro. Further work identifying the constituents responsible for this inhibition is needed.
Collapse
Affiliation(s)
- Ole Kristian Forstrønen Thu
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bent Hellum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
| |
Collapse
|
10
|
Thu OK, Nilsen OG, Hellum B. In vitro inhibition of cytochrome P-450 activities and quantification of constituents in a selection of commercial Rhodiola rosea products. PHARMACEUTICAL BIOLOGY 2016; 54:3249-3256. [PMID: 27572116 DOI: 10.1080/13880209.2016.1223145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 05/17/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Rhodiola rosea L. (Crassulaceae) products are popular natural remedies with a worldwide distribution. Recent studies have revealed potent CYP inhibition by R. rosea extracts both in vitro and in vivo, but information on in vitro CYP inhibition by commercial products are lacking. Variations in commercial R. rosea product quality have also been published. OBJECTIVE This study evaluates the variation of in vitro CYP inhibition potential and product quality of six commercially available R. rosea products. MATERIALS AND METHODS Human CYPs isolated from baculovirus-infected cell system were incubated with testosterone (CYP3A4), dextromethorphan (CYP2D6) or phenacetin (CYP1A2). Positive CYP inhibitors ketoconazole (CYP3A4), quinidine (CYP2D6) and β-naphtoflavone (CYP1A2) were used as controls. Quantification of rosavin, rosarin, rosin, tyrosol and salidroside were used to evaluate R. rosea content. RESULTS IC50 values ranged from 7.2-106.6 μg/mL for CYP3A4, 13.0-186.1 μg/mL for 2D6 and 10.7-116.0 μg/mL for 1A2. The tincture formulation of R. rosea was the strongest inhibitor giving the lowest IC50 values of 7.2 ± 0.7, 13 ± 1.7 and 10.7 ± 5.6 μg/mL, respectively. CYP3A4 was significantly more inhibited by the different products than CYP1A2 (p < .05). One of the six products did not contain any rosavin, rosarin or rosin and is not a R. rosea product. Constituent concentrations were not linked to enzyme inhibition. DISCUSSION AND CONCLUSION The present results show a large variation in inhibitory potential between the products. Several of the products demonstrate similar inhibition levels as the product Arctic Root already proven to inhibit CYP enzyme activity in man.
Collapse
Affiliation(s)
- Ole Kristian Thu
- a Department of Cancer Research and Molecular Medicine, Faculty of Medicine , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Odd Georg Nilsen
- a Department of Cancer Research and Molecular Medicine, Faculty of Medicine , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Bent Hellum
- a Department of Cancer Research and Molecular Medicine, Faculty of Medicine , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| |
Collapse
|
11
|
Bo L, Baosheng Z, Yang L, Mingmin T, Beiran L, Zhiqiang L, Huaqiang Z. Herb-drug enzyme-mediated interactions and the associated experimental methods: a review. J TRADIT CHIN MED 2016; 36:392-408. [DOI: 10.1016/s0254-6272(16)30054-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Effect of commercial Rhodiola rosea on CYP enzyme activity in humans. Eur J Clin Pharmacol 2015; 72:295-300. [DOI: 10.1007/s00228-015-1988-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/22/2015] [Indexed: 10/22/2022]
|
13
|
Liu MW, Su MX, Zhang W, Zhang LM, Wang YH, Qian CY. Rhodiola rosea suppresses thymus T-lymphocyte apoptosis by downregulating tumor necrosis factor-α-induced protein 8-like-2 in septic rats. Int J Mol Med 2015; 36:386-98. [PMID: 26063084 PMCID: PMC4501664 DOI: 10.3892/ijmm.2015.2241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/18/2015] [Indexed: 12/26/2022] Open
Abstract
In recent years, several studies have shown that Rhodiola rosea can enhance cellular immunity and humoral immune function in mice, and thus, it has become a research hotspot. However, its underlying mechanism of action has remained elusive. The present study investigated whether Rhodiola rosea was able to downregulate the expression of tumor necrosis factor-α-inducible protein 8-like 2 (TIPE2), thereby inhibiting the expression of apoptotic genes, attenuating T-lymphocyte apoptosis and improving immunity in septic mice. A mouse model of caecal ligation and puncture (CLP)-induced sepsis was established, and animals in the treatment group were pre-treated with an intraperitoneal injection of Rhodiola rosea extract, while animals in the control group and sham-operated group were injected with an equivalent amount of normal saline. TIPE2, B-cell lymphoma 2 (Bcl-2), Fas and Fas ligand (FasL) mRNA and protein levels in thymic T cells were determined using reverse transcription quantitative polymerase chain reaction and western blot analysis, respectively. Furthermore, the thymus T-lymphocyte apoptosis rate, thymus T-lymphocyte count and thymus T-lymphocyte sub-sets were assessed using flow cytometry. Levels of T-helper cell type 1 (Th1) cytokines [Interleukin (IL)-2, IL-12 and interferon (IFN)-γ] and Th2 cytokines (IL-4 and IL-10) were determined using ELISA. The results showed that, compared to that in the CLP group, the expression of TIPE2, Fas and FasL in the treatment group was significantly decreased, while the expression of Bcl-2 was increased (P<0.05). The thymus lymphocyte count in the CLP group was significantly higher compared with that in the treatment group (P<0.05). Furthermore, the apoptotic rate of thymus T-lymphocytes in the treatment group was significantly lower than that in the CLP group (P<0.05). In addition, treatment with Rhodiola rosea rescued decreased in the counts of the CD3+ T and CD4+ T sub-sets of thymus T lymphocytes in the CLP group (P<0.05), while not affecting the increased levels of Th2 cytokines (IL-4 and IL-10) in the CLP group compared with those in the control groups. In addition, the Th1 cytokines (IL-12, IL-2 and IFN-γ) were significantly increased (P<0.05) in the CLP group, and treatment with Rhodiola rosea led to further increases. The thymus index of septic mice treated with Rhodiola rosea as well as their survival rate were improved as compared with those in the CLP group. These findings suggested that Rhodiola rosea has protective effects against sepsis by decreasing apoptosis, increasing Th1 cytokines and enhancing the host’s immunity via the regulation of TIPE2 expression.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mei-Xian Su
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wei Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Lin-Ming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun-Hui Wang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chuan-Yun Qian
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
14
|
Ma J, Zhang J, Yang T, Fan K, Gu J, Yin G. Pharmacokinetics of dexamethasone and nefopam administered alone or in combination using a newly developed prefilled multi-drug injector in rats. Pharmacology 2014; 93:220-4. [PMID: 25012757 DOI: 10.1159/000362844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/11/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM It is significant for patients with traumatic brain injury (TBI) to receive prehospital emergency treatment as early as possible to reduce mortality. Therefore, a new prefilled multi-drug injector was developed to improve the treatment of TBI. Here, we studied the pharmacokinetics of dexamethasone (DXM) and nefopam using the injector to investigate the significance of drug interactions and the necessity of dose adjustment. METHODS Rats were administered DXM and nefopam intramuscularly alone or in combination using the injector. The concentrations of DXM and nefopam were measured by means of HPLC. The noncompartmental approach was used to calculate pharmacokinetic parameters. RESULTS All animals appeared to tolerate the injection very well. The maximum concentration 90% confidence interval (CI) of nefopam was in the bioequivalence range when nefopam was co-administered with DXM. However, the AUC 90% CI of nefopam was out of the range. A statistically significant alteration was also observed in the clearance of nefopam. The co-administration exhibited no significant influence on the pharmacokinetic parameters of DXM. CONCLUSIONS These results indicate that the co-administration of DXM and nefopam using the prefilled multi-drug injector significantly alters some pharmacokinetic parameters of nefopam and has a minor effect on DXM pharmacokinetics.
Collapse
Affiliation(s)
- Jie Ma
- College of Materials Science and Engineering, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
15
|
Montiel-Ruiz RM, González-Trujano ME, Déciga-Campos M. Synergistic interactions between the antinociceptive effect of Rhodiola rosea extract and B vitamins in the mouse formalin test. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1280-1287. [PMID: 23920277 DOI: 10.1016/j.phymed.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/28/2013] [Accepted: 07/02/2013] [Indexed: 06/02/2023]
Abstract
AIM In this study, the pharmacological interactions between a Rhodiola rosea ethanol extract and B-vitamins such as thiamine (B1), riboflavine (B2), pyridoxine (B6), cyanocobalamin (B12) and a mixture of vitamins B1+B6+B12 was investigated in the mouse formalin test. METHODS Individual dose response curves of the Rhodiola rosea ethanol extract, as well as B-vitamins alone or in a mixture were evaluated in mice in which nociception was induced with 2% formalin intraplantarly. The antinociceptive mechanisms of the Rhodiola rosea were investigated by exploring the role of the opioid and serotonin receptors and the nitric oxide pathway. Isobolographic analysis was used to evaluate the pharmacological interactions between the Rhodiola rosea ethanol extract and each B-vitamin individually or the mixture of vitamins B1+B6+B12 by using the ED30 and a fixed 1:1 ratio combination. RESULTS Administration of the Rhodiola rosea extract alone or in combination with all of the vitamins produced a significant and dose-dependent antinociceptive response. The antinociceptive effect of the Rhodiola rosea extract (ED50=81 mg/kg, p.o.) was significant and reverted in the presence of antagonists of the 5-HT1A, GABA/BDZs and opioid receptors and by blocking mediators of the nitric oxide/cGMP/K(+) channels pathway. Isobolograms demonstrate that all of the combinations investigated in this study produced a synergistic interaction experimental ED30 values were significantly smaller than those calculated theoretically. CONCLUSIONS These results provide evidence that a Rhodiola rosea ethanol extract in combination with B-vitamins produces a significant diminution in the nociceptive response in a synergistic manner, which is controlled by various mechanisms. These findings could aid in the design of clinical studies and suggest that these combinations could be applied for pain therapy.
Collapse
Affiliation(s)
- Rosa Mariana Montiel-Ruiz
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF 11340, Mexico
| | | | | |
Collapse
|