1
|
Yazdani M. Cellular and Molecular Responses to Mitochondrial DNA Deletions in Kearns-Sayre Syndrome: Some Underlying Mechanisms. Mol Neurobiol 2024; 61:5665-5679. [PMID: 38224444 DOI: 10.1007/s12035-024-03938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Kearns-Sayre syndrome (KSS) is a rare multisystem mitochondrial disorder. It is caused by mitochondrial DNA (mtDNA) rearrangements, mostly large-scale deletions of 1.1-10 kb. These deletions primarily affect energy supply through impaired oxidative phosphorylation and reduced ATP production. This impairment gives rise to dysfunction of several tissues, in particular those with high energy demand like brain and muscles. Over the past decades, changes in respiratory chain complexes and energy metabolism have been emphasized, whereas little attention has been paid to other reports on ROS overproduction, protein synthesis inhibition, myelin vacuolation, demyelination, autophagy, apoptosis, and involvement of lipid raft and oligodendrocytes in KSS. Therefore, this paper draws attention towards these relatively underemphasized findings that might further clarify the pathologic cascades following deletions in the mtDNA.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway.
| |
Collapse
|
2
|
Ding B, Ma X, Liu Y, Ni B, Lu S, Chen Y, Liu X, Zhang W. Arsenic-Induced, Mitochondria-Mediated Apoptosis Is Associated with Decreased Peroxisome Proliferator-Activated Receptor γ Coactivator α in Rat Brains. TOXICS 2023; 11:576. [PMID: 37505542 PMCID: PMC10384476 DOI: 10.3390/toxics11070576] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Chronic exposure to arsenic in drinking water damages cognitive function, and nerve cell apoptosis is one of the primary characteristics. The damage to mitochondrial structure and/or function is one of the main characteristics of apoptosis. Peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) is involved in the regulation of mitochondrial biogenesis, energy metabolism, and apoptosis. In this study, we aimed to study the role of PGC-1α in sodium arsenite (NaAsO2)-induced mitochondrial apoptosis in rat hippocampal cells. We discovered that increased arsenic-induced apoptosis in rat hippocampus increased with NaAsO2 (0, 2, 10, and 50 mg/L, orally via drinking water for 12 weeks) exposure by TUNEL assay, and the structure of mitochondria was incomplete and swollen and had increased lysosomes, lipofuscins, and nuclear membrane shrinkage observed via transmission electron microscopy. Furthermore, NaAsO2 reduced the levels of Bcl-2 and PGC-1α and increased the levels of Bax and cytochrome C expression. Moreover, correlation analysis showed that brain arsenic content was negatively correlated with PGC-1α levels and brain ATP content; PGC-1α levels were negatively correlated with apoptosis rate; and brain ATP content was positively correlated with PGC-1α levels, but no significant correlation between ATP content and apoptosis has been observed in this study. Taken together, the results of this study indicate that NaAsO2-induced mitochondrial pathway apoptosis is related to the reduction of PGC-1α, accompanied by ATP depletion.
Collapse
Affiliation(s)
- Bo Ding
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Xinbo Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Bangyao Ni
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Siqi Lu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuting Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| |
Collapse
|
3
|
Huseby CJ, Delvaux E, Brokaw DL, Coleman PD. Blood RNA transcripts reveal similar and differential alterations in fundamental cellular processes in Alzheimer's disease and other neurodegenerative diseases. Alzheimers Dement 2023; 19:2618-2632. [PMID: 36541444 DOI: 10.1002/alz.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysfunctional processes in Alzheimer's disease and other neurodegenerative diseases lead to neural degeneration in the central and peripheral nervous system. Research demonstrates that neurodegeneration of any kind is a systemic disease that may even begin outside of the region vulnerable to the disease. Neurodegenerative diseases are defined by the vulnerabilities and pathology occurring in the regions affected. METHOD A random forest machine learning analysis on whole blood transcriptomes from six neurodegenerative diseases generated unbiased disease-classifying RNA transcripts subsequently subjected to pathway analysis. RESULTS We report that transcripts of the blood transcriptome selected for each of the neurodegenerative diseases represent fundamental biological cell processes including transcription regulation, degranulation, immune response, protein synthesis, apoptosis, cytoskeletal components, ubiquitylation/proteasome, and mitochondrial complexes that are also affected in the brain and reveal common themes across six neurodegenerative diseases. CONCLUSION Neurodegenerative diseases share common dysfunctions in fundamental cellular processes. Identifying regional vulnerabilities will reveal unique disease mechanisms. HIGHLIGHTS Transcriptomics offer information about dysfunctional processes. Comparing multiple diseases will expose unique malfunctions within diseases. Blood RNA can be used ante mortem to track expression changes in neurodegenerative diseases. Protocol standardization will make public datasets compatible.
Collapse
Affiliation(s)
- Carol J Huseby
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Elaine Delvaux
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Danielle L Brokaw
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul D Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Salamon A, Maszlag-Török R, Veres G, Boros FA, Vágvölgyi-Sümegi E, Somogyi A, Vécsei L, Klivényi P, Zádori D. Cerebellar Predominant Increase in mRNA Expression Levels of Sirt1 and Sirt3 Isoforms in a Transgenic Mouse Model of Huntington's Disease. Neurochem Res 2020; 45:2072-2081. [PMID: 32524313 PMCID: PMC7423862 DOI: 10.1007/s11064-020-03069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 01/28/2023]
Abstract
The potential role of Sirt1 and Sirt2 subtypes of Sirtuins (class III NAD+-dependent deacetylases) in the pathogenesis of Huntington’s disease (HD) has been extensively studied yielding some controversial results. However, data regarding the involvement of Sirt3 and their variants in HD are considerably limited. The aim of this study was to assess the expression pattern of Sirt1 and three Sirt3 mRNA isoforms (Sirt3-M1/2/3) in the striatum, cortex and cerebellum in respect of the effect of gender, age and the presence of the transgene using the N171-82Q transgenic mouse model of HD. Striatal, cortical and cerebellar Sirt1-Fl and Sirt3-M1/2/3 mRNA levels were measured in 8, 12 and 16 weeks old N171-82Q transgenic mice and in their wild-type littermates. Regarding the striatum and cortex, the presence of the transgene resulted in a significant increase in Sirt3-M3 and Sirt1 mRNA levels, respectively, whereas in case of the cerebellum the transgene resulted in increased expression of all the assessed subtypes and isoforms. Aging exerted minor influence on Sirt mRNA expression levels, both in transgene carriers and in their wild-type littermates, and there was no interaction between the presence of the transgene and aging. Furthermore, there was no difference between genders. The unequivocal cerebellar Sirtuin activation with presumed compensatory role suggests that the cerebellum might be another key player in HD in addition to the most severely affected striatum. The mitochondrially acting Sirt3 may serve as an interesting novel therapeutic target in this deleterious condition.
Collapse
Affiliation(s)
- Andras Salamon
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Rita Maszlag-Török
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Gábor Veres
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Fanni Annamária Boros
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Evelin Vágvölgyi-Sümegi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Anett Somogyi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary.
| |
Collapse
|
5
|
McMeekin LJ, Bartley AF, Bohannon AS, Adlaf EW, van Groen T, Boas SM, Fox SN, Detloff PJ, Crossman DK, Overstreet-Wadiche LS, Hablitz JJ, Dobrunz LE, Cowell RM. A Role for PGC-1α in Transcription and Excitability of Neocortical and Hippocampal Excitatory Neurons. Neuroscience 2020; 435:73-94. [PMID: 32222555 DOI: 10.1016/j.neuroscience.2020.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a critical regulator of genes involved in neuronal metabolism, neurotransmission, and morphology. Reduced PGC-1α expression has been implicated in several neurological and psychiatric disorders. An understanding of PGC-1α's roles in different cell types will help determine the functional consequences of PGC-1α dysfunction and/or deficiency in disease. Reports from our laboratory and others suggest a critical role for PGC-1α in inhibitory neurons with high metabolic demand such as fast-spiking interneurons. Here, we document a previously unrecognized role for PGC-1α in maintenance of gene expression programs for synchronous neurotransmitter release, structure, and metabolism in neocortical and hippocampal excitatory neurons. Deletion of PGC-1α from these neurons caused ambulatory hyperactivity in response to a novel environment and enhanced glutamatergic transmission in neocortex and hippocampus, along with reductions in mRNA levels from several PGC-1α neuron-specific target genes. Given the potential role for a reduction in PGC-1α expression or activity in Huntington Disease (HD), we compared reductions in transcripts found in the neocortex and hippocampus of these mice to that of an HD knock-in model; few of these transcripts were reduced in this HD model. These data provide novel insight into the function of PGC-1α in glutamatergic neurons and suggest that it is required for the regulation of structural, neurosecretory, and metabolic genes in both glutamatergic neuron and fast-spiking interneuron populations in a region-specific manner. These findings should be considered when inferring the functional relevance of changes in PGC-1α gene expression in the context of disease.
Collapse
Affiliation(s)
- L J McMeekin
- Department of Neuroscience, Drug Discovery Division at Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - A F Bartley
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - A S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - E W Adlaf
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - T van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - S M Boas
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - S N Fox
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - P J Detloff
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - L S Overstreet-Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - L E Dobrunz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - R M Cowell
- Department of Neuroscience, Drug Discovery Division at Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
Gunn TM, Silvius D, Lester A, Gibbs B. Chronic and age-dependent effects of the spongiform neurodegeneration-associated MGRN1 E3 ubiquitin ligase on mitochondrial homeostasis. Mamm Genome 2019; 30:151-165. [PMID: 31089807 DOI: 10.1007/s00335-019-09802-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Spongiform encephalopathy is an intriguing yet poorly understood neuropathology characterized by vacuoles, demyelination, and gliosis. It is observed in patients with prion disease, primary mitochondrial disease, HIV-1 infection of the brain, and some inherited disorders, but the underlying mechanism of disease remains unclear. The brains of mice lacking the MGRN1 E3 ubiquitin ligase develop vacuoles by 9 months of age. MGRN1-dependent ubiquitination has been reported to regulate mitofusin 1 and GP78, suggesting MGRN1 may have a direct effect on mitochondrial homeostasis. Here, we demonstrate that some MGRN1 localizes to mitochondria, most likely due to N-myristoylation, and mitochondria in cells from Mgrn1 null mutant mice display fragmentation and depolarization without recruitment of the parkin E3 ubiquitin ligase. The late onset of pathology in the brains of Mgrn1 null mutant mice suggests that a further, age-dependent effect on mitochondrial homeostasis may be required to trigger vacuolation. Parkin protein and mRNA levels showed a significant decline in the brains of Mgrn1 null mutant mice by 12 months of age. To test whether loss of parkin triggers vacuolation through a synergistic effect, we generated Mgrn1; parkin double mutant mice. By 1 month of age, their brains demonstrated more severe mitochondrial dysfunction than Mgrn1 null mutants, but there was no effect on the age-of-onset of spongiform neurodegeneration. Expression of the ATF4 transcription factor, a key regulator of the mitochondrial stress response, also declined in the brains of aged Mgrn1 null mutant mice. Together, the data presented here indicate that loss of MGRN1 has early, direct effects on mitochondrial homeostasis and late, indirect effects on the ability of cells to respond to mitochondrial stress.
Collapse
Affiliation(s)
- Teresa M Gunn
- McLaughlin Research Institute, 1520 23rd St S, Great Falls, MT, USA.
| | - Derek Silvius
- McLaughlin Research Institute, 1520 23rd St S, Great Falls, MT, USA
| | - Andrew Lester
- McLaughlin Research Institute, 1520 23rd St S, Great Falls, MT, USA
| | - Britney Gibbs
- McLaughlin Research Institute, 1520 23rd St S, Great Falls, MT, USA
| |
Collapse
|
7
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
8
|
Szalardy L, Molnar MF, Zadori D, Cseh EK, Veres G, Kovacs GG, Vecsei L, Klivenyi P. Non-motor Behavioral Alterations of PGC-1α-Deficient Mice - A Peculiar Phenotype With Slight Male Preponderance and No Apparent Progression. Front Behav Neurosci 2018; 12:180. [PMID: 30210314 PMCID: PMC6119962 DOI: 10.3389/fnbeh.2018.00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α) has been linked to various neurodegenerative and neuropsychiatric disorders; however, reports on psychic behavioral alterations on PGC-1α-deficient animals are sparse. The present study revisited prior observations of anxiety-related, depression-related, and hippocampal memory-related observations having been made on different PGC-1α-deficient murine strains, in a large-scale analysis on whole-body full-length (FL-)PGC-1α-deficient mice. The examinations were performed on animals covering a wide age range enrolled from both sexes, and included paradigms such as the open-field, elevated plus maze, light-dark box, tail suspension test, and spatial recognition two-trial Y-maze. The findings revealed no signs of previously reported anxiety-like behavior, but revealed an unexpected phenotype with decreased anxiety behavior consistent throughout different paradigms, with slight male preponderance. This was associated with despair-like anhedonic behavior, consistent with that reported previously, but did not associate with either peripheral or brain alterations in kynurenic acid synthesis, which was previously proposed. Though male FL-PGC-1α-deficient mice tended to perform poorer in the hippocampus-based spatial learning paradigm, the genotype overall was not associated with impairment in spatial memory, contradicting with prior observations. None of the observed alterations deteriorated with age, similarly to motor alterations as reported previously. The most likely contributors of this peculiar phenotype are discussed, with clinicopathological correlations drawn. Being the first to address these behavioral domains within the same PGC-1α-deficient strain, our findings extend the knowledge about the complex in vivo effect of PGC-1α dysfunction and add important notes to research in the field of PGC-1α in connection with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Mate F Molnar
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Denes Zadori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Edina K Cseh
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gabor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Cell-Specific Deletion of PGC-1α from Medium Spiny Neurons Causes Transcriptional Alterations and Age-Related Motor Impairment. J Neurosci 2018; 38:3273-3286. [PMID: 29491012 DOI: 10.1523/jneurosci.0848-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 01/24/2023] Open
Abstract
Multiple lines of evidence indicate that a reduction in the expression and function of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is associated with neurodegeneration in diseases such as Huntington's disease (HD). Polymorphisms in the PGC-1α gene modify HD progression and PGC-1α expression is reduced in striatal medium spiny neurons (MSNs) of HD patients and mouse models. However, neither the MSN-specific function of PGC-1α nor the contribution of PGC-1α deficiency to motor dysfunction is known. We identified novel, PGC-1α-dependent transcripts involved in RNA processing, signal transduction, and neuronal morphology and confirmed reductions in these transcripts in male and female mice lacking PGC-1α specifically in MSNs, indicating a cell-autonomous effect in this population. MSN-specific PGC-1α deletion caused reductions in previously identified neuronal and metabolic PGC-1α-dependent genes without causing striatal vacuolizations. Interestingly, these mice exhibited a hypoactivity with age, similar to several HD animal models. However, these newly identified PGC-1α-dependent genes were upregulated with disease severity and age in knock-in HD mouse models independent of changes in PGC-1α transcript, contrary to what would be predicted from a loss-of-function etiological mechanism. These data indicate that PGC-1α is necessary for MSN transcriptional homeostasis and function with age and that, whereas PGC-1α loss in MSNs does not replicate an HD-like phenocopy, its downstream genes are altered in a repeat-length and age-dependent fashion. Understanding the additive effects of PGC-1α gene functional variation and mutant huntingtin on transcription in this cell type may provide insight into the selective vulnerability of MSNs in HD.SIGNIFICANCE STATEMENT Reductions in peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)-mediated transcription have been implicated in the pathogenesis of Huntington's disease (HD). We show that, although PGC-1α-dependent transcription is necessary to maintain medium spiny neuron (MSN) function with age, its loss is insufficient to cause striatal atrophy in mice. We also highlight a set of genes that can serve as proxies for PGC-1α functional activity in the striatum for target engagement studies. Furthermore, we demonstrate that PGC-1α-dependent genes are upregulated in a dose- and age-dependent fashion in HD mouse models, contrary to what would be predicted from a loss-of-function etiological mechanism. However, given this role for PGC-1α in MSN transcriptional homeostasis, it is important to consider how genetic variation in PGC-1α could contribute to mutant-huntingtin-induced cell death and disease progression.
Collapse
|
10
|
Szalardy L, Zadori D, Bencsik K, Vecsei L, Klivenyi P. Unlike PPARgamma, neither other PPARs nor PGC-1alpha is elevated in the cerebrospinal fluid of patients with multiple sclerosis. Neurosci Lett 2017; 651:128-133. [PMID: 28483651 DOI: 10.1016/j.neulet.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Corroborating with prior experimental findings, we recently reported the pronounced elevation of peroxisome proliferator-activated receptor gamma (PPARγ) protein concentration in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS), in association with neuroinflammatory markers and clinical severity. Based on subsequent reports on the possible involvement of other PPARs and PPARγ coactivator-1alpha (PGC-1α) in neuroinflammation in MS, we analyzed the protein levels of PPARα, PPARβ/δ, and PGC-1α in a subset of CSF samples from the same cohort of relapsing-remitting MS patients. Unlike PPARγ, none of these proteins were found elevated in MS patients (n=25) compared to non-inflammatory controls (n=16), with the levels of PPARα and PPARβ/δ found generally below the limit of detection, and that of PGC-1α being detectable but comparable in both groups. The clinical and laboratory associations previously reported with PPARγ were however significant even in this smaller subset. The potential underlying causes of these differential alterations are discussed. The findings suggest that despite their proposed involvement in the regulation of inflammatory processes in MS, PPARα, PPARβ/δ, and PGC-1α proteins are not potential biomarkers of neuroinflammation in MS, and indicate a preferential role of PPARγ in the endogenous regulation of autoimmune response in the human CNS within its receptor family.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Denes Zadori
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Krisztina Bencsik
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Laszlo Vecsei
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725, Szeged, Semmelweis u. 6, Hungary
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, H-6725, Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
11
|
Szalardy L, Molnar M, Torok R, Zadori D, Kovacs GG, Vecsei L, Klivenyi P. Lack of age-related clinical progression in PGC-1α-deficient mice - implications for mitochondrial encephalopathies. Behav Brain Res 2016; 313:272-281. [PMID: 27424777 DOI: 10.1016/j.bbr.2016.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Impaired peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) function has been demonstrated in several neurodegenerative diseases, and murine whole-body knockouts of PGC-1α have been considered as models for Huntington's disease. Recent neuropathological studies, however, rather propose these animals to be morphological models of mitochondrial encephalopathies, with special reminiscence of Kearns-Sayre syndrome. PGC-1α-deficient animals have already been subjected to behavioral assessments; however, the contradictory findings and the paucity of data assessing long-term progression necessitated further examinations. This study provides a comprehensive neurological phenotypic profiling of full-length-(FL-)PGC-1α-deficient mice in a broad age spectrum, with special focus on previously controversial findings, the issue of long-term phenotypic progression, the histopathological assessment of previously non-characterized tissues of potential clinicopathological relevance, and the gene expression profile of novel brain-specific isoforms of PGC-1α. Our findings demonstrate moderate hypomotility with signs of gait and trunk ataxia in addition to severe impairments in coordination and muscle strength in FL-PGC-1α-deficient mice, phenotypic features consistent of a mitochondrial disease. Intriguingly, however, these early alterations did not progress with age, the understanding of which may unveil mechanisms of potential therapeutic relevance, as discussed. The observed phenotype did not associate with retinal or spinal cord alterations, and was accompanied by mild myopathic changes. Based on these, FL-PGC-1α-deficient mice can be regarded not only as morphological but behavioral models of mitochondrial encephalopathies, with an important temporal limitation that has now been clarified. The mechanisms capable of halting a potentially lethal phenotype are to be unveiled, as they may hold therapeutic value for mitochondrial diseases.
Collapse
Affiliation(s)
- Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Mate Molnar
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Rita Torok
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Denes Zadori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, A-1090 Vienna, Währinger Gürtel 18-20, Austria.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Peter Klivenyi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
12
|
Szalárdy L, Zádori D, Klivényi P, Vécsei L. The Role of Cerebrospinal Fluid Biomarkers in the Evolution of Diagnostic Criteria in Alzheimer’s Disease: Shortcomings in Prodromal Diagnosis. J Alzheimers Dis 2016; 53:373-92. [DOI: 10.3233/jad-160037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
13
|
Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:498401. [PMID: 26301042 PMCID: PMC4537740 DOI: 10.1155/2015/498401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson's and Huntington's disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.
Collapse
|
14
|
Török R, Kónya JA, Zádori D, Veres G, Szalárdy L, Vécsei L, Klivényi P. mRNA expression levels of PGC-1α in a transgenic and a toxin model of Huntington's disease. Cell Mol Neurobiol 2015; 35:293-301. [PMID: 25319408 DOI: 10.1007/s10571-014-0124-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator-1 alpha (PGC-1α) is involved in the regulation of mitochondrial biogenesis, respiration, and adaptive thermogenesis. The full-length PGC-1α (FL-PGC-1α) comprises multiple functional domains interacting with several transcriptional regulatory factors such as nuclear respiratory factors, estrogen-related receptors, and PPARs; however, a number of PGC-1α splice variants have also been reported recently. In this study, we examined the expression levels of FL-PGC-1α and N-truncated PGC-1α (NT-PGC-1α), a shorter but functionally active splice variant of PGC-1α protein, in N171-82Q transgenic and 3-nitropropionic acid-induced murine model of Huntington's disease (HD). The expression levels were determined by RT-PCR in three brain areas (striatum, cortex, and cerebellum) in three age groups (8, 12, and 16 weeks). Besides recapitulating prior findings that NT-PGC-1α is preferentially increased in 16 weeks of age in transgenic HD animals, we detected age-dependent alterations in both models, including a cerebellum-predominant upregulation of both PGC-1α variants in transgenic mice, and a striatum-predominant upregulation of both PGC-1α variants after acute 3-nitropropionic acid intoxication. The possible relevance of this expression pattern is discussed. Based on our results, we assume that increased expression of PGC-1α may serve as a compensatory mechanism in response to mitochondrial damage in transgenic and toxin models of HD, which may be of therapeutic relevance.
Collapse
Affiliation(s)
- Rita Török
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | | | | | | | | | | | | |
Collapse
|
15
|
Weydt P, Soyal SM, Landwehrmeyer GB, Patsch W. A single nucleotide polymorphism in the coding region of PGC-1α is a male-specific modifier of Huntington disease age-at-onset in a large European cohort. BMC Neurol 2014; 14:1. [PMID: 24383721 PMCID: PMC3880172 DOI: 10.1186/1471-2377-14-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022] Open
Abstract
Background Genetic modifiers are important clues for the identification of therapeutic targets in neurodegenerative diseases. Huntington disease (HD) is one of the most common autosomal dominant inherited neurodegenerative diseases. The clinical symptoms include motor abnormalities, cognitive decline and behavioral disturbances. Symptom onset is typically between 40 and 50 years of age, but can vary by several decades in extreme cases and this is in part determined by modifying genetic factors. The metabolic master regulator PGC-1α, coded by the PPARGC1A gene, coordinates cellular respiration and was shown to play a role in neurodegenerative diseases, including HD. Methods Using a candidate gene approach we analyzed a large European cohort (n = 1706) from the REGISTRY study for associations between PPARGC1A genotype and age at onset (AO) in HD. Results We report that a coding variant (rs3736265) in PPARGC1A is associated with an earlier motor AO in men but not women carrying the HD mutation. Conclusions These results further strengthen the evidence for a role of PGC-1α in HD and unexpectedly suggest a gender effect.
Collapse
|