1
|
Das A, Smith RJ, Andreadis ST. Harnessing the potential of monocytes/macrophages to regenerate tissue-engineered vascular grafts. Cardiovasc Res 2024; 120:839-854. [PMID: 38742656 PMCID: PMC11218695 DOI: 10.1093/cvr/cvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Cell-free tissue-engineered vascular grafts provide a promising alternative to treat cardiovascular disease, but timely endothelialization is essential for ensuring patency and proper functioning post-implantation. Recent studies from our lab showed that blood cells like monocytes (MCs) and macrophages (Mϕ) may contribute directly to cellularization and regeneration of bioengineered arteries in small and large animal models. While MCs and Mϕ are leucocytes that are part of the innate immune response, they share common developmental origins with endothelial cells (ECs) and are known to play crucial roles during vessel formation (angiogenesis) and vessel repair after inflammation/injury. They are highly plastic cells that polarize into pro-inflammatory and anti-inflammatory phenotypes upon exposure to cytokines and differentiate into other cell types, including EC-like cells, in the presence of appropriate chemical and mechanical stimuli. This review focuses on the developmental origins of MCs and ECs; the role of MCs and Mϕ in vessel repair/regeneration during inflammation/injury; and the role of chemical signalling and mechanical forces in Mϕ inflammation that mediates vascular graft regeneration. We postulate that comprehensive understanding of these mechanisms will better inform the development of strategies to coax MCs/Mϕ into endothelializing the lumen and regenerate the smooth muscle layers of cell-free bioengineered arteries and veins that are designed to treat cardiovascular diseases and perhaps the native vasculature as well.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
| | - Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY 14203, USA
- Cell, Gene and Tissue Engineering (CGTE) Center, University at Buffalo, The State University of New York, 813 Furnas Hall, Buffalo, NY 14260-4200, USA
| |
Collapse
|
2
|
Pickett JR, Wu Y, Zacchi LF, Ta HT. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc Res 2023; 119:2278-2293. [PMID: 37595265 PMCID: PMC10597632 DOI: 10.1093/cvr/cvad130] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.
Collapse
Affiliation(s)
- Jessica R Pickett
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
| | - Lucia F Zacchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hang T Ta
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
3
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
4
|
Tritz R, Hudson FZ, Harris V, Ghoshal P, Singla B, Lin H, Csanyi G, Stansfield BK. MEK inhibition exerts temporal and myeloid cell-specific effects in the pathogenesis of neurofibromatosis type 1 arteriopathy. Sci Rep 2021; 11:24345. [PMID: 34934133 PMCID: PMC8692602 DOI: 10.1038/s41598-021-03750-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Mutations in the NF1 tumor suppressor gene are linked to arteriopathy. Nf1 heterozygosity (Nf1+/–) results in robust neointima formation, similar to humans, and myeloid-restricted Nf1+/– recapitulates this phenotype via MEK-ERK activation. Here we define the contribution of myeloid subpopulations to NF1 arteriopathy. Neutrophils from WT and Nf1+/– mice were functionally assessed in the presence of MEK and farnesylation inhibitors in vitro and neutrophil recruitment to lipopolysaccharide was assessed in WT and Nf1+/– mice. Littermate 12–15 week-old male wildtype and Nf1+/– mice were subjected to carotid artery ligation and provided either a neutrophil depleting antibody (1A8), liposomal clodronate to deplete monocytes/macrophages, or PD0325901 and neointima size was assessed 28 days after injury. Bone marrow transplant experiments assessed monocyte/macrophage mobilization during neointima formation. Nf1+/– neutrophils exhibit enhanced proliferation, migration, and adhesion via p21Ras activation of MEK in vitro and in vivo. Neutrophil depletion suppresses circulating Ly6Clow monocytes and enhances neointima size, while monocyte/macrophage depletion and deletion of CCR2 in bone marrow cells abolish neointima formation in Nf1+/– mice. Taken together, these findings suggest that neurofibromin-MEK-ERK activation in circulating neutrophils and monocytes during arterial remodeling is nuanced and points to important cross-talk between these populations in the pathogenesis of NF1 arteriopathy.
Collapse
Affiliation(s)
- Rebekah Tritz
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Farlyn Z Hudson
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Valerie Harris
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | | | - Bhupesh Singla
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Huiping Lin
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Brian K Stansfield
- Vascular Biology Center, Augusta University, Augusta, GA, USA. .,Division of Neonatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta University, 1120 15th St, BIW6033, Augusta, GA, 30912, USA.
| |
Collapse
|
5
|
Testerman TL, Semino-Mora C, Cann JA, Qiang B, Peña EA, Liu H, Olsen CH, Chen H, Appt SE, Kaplan JR, Register TC, Merrell DS, Dubois A. Both diet and Helicobacter pylori infection contribute to atherosclerosis in pre- and postmenopausal cynomolgus monkeys. PLoS One 2019; 14:e0222001. [PMID: 31490998 PMCID: PMC6730863 DOI: 10.1371/journal.pone.0222001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
A number of viruses and bacterial species have been implicated as contributors to atherosclerosis, potentially providing novel pathways for prevention. Epidemiological studies examining the association between Helicobacter pylori and cardiovascular disease have yielded variable results and no studies have been conducted in nonhuman primates. In this investigation, we examined the relationship between H. pylori infection and atherosclerosis development in socially housed, pre- and postmenopausal cynomolgus macaques consuming human-like diets. Ninety-four premenopausal cynomolgus monkeys (Macaca fascicularis) were fed for 36 months an atherogenic diet deriving its protein from either casein lactalbumin(CL) or high isoflavone soy (SOY). Animals were then ovariectomized and fed either the same or the alternate diet for an additional 36 months. Iliac artery biopsies were obtained at the time of ovariectomy and iliac and coronary artery sections were examined at the end of the study. Evidence of H. pylori infection was found in 64% of the monkeys and 46% of animals had live H. pylori within coronary atheromas as determined by mRNA-specific in situ hybridization. There was a significant linear relationship between the densities of gastric and atheroma organisms. Helicobactor pylori infection correlated with increased intimal plaque area and thickness at both the premenopausal and postmenopausal time points and regardless of diet (p< 0.01), although animals consuming the SOY diet throughout had the least amount of atherosclerosis. Additionally, plasma lipid profiles, intimal collagen accumulation, ICAM-1, and plaque macrophage densities were adversely affected by H. pylori infection among animals consuming the CL diet, while the SOY diet had the opposite effect. Plaque measurements were more highly associated with the densities of cagA-positive H. pylori within coronary atheromas than with the densities of gastric organisms, whereas plasma lipid changes were associated with H. pylori infection, but not cagA status. This study provides strong evidence that live H. pylori infects atheromas, exacerbates atherosclerotic plaque development, and alters plasma lipid profiles independently of diet or hormonal status. Finally, socially subordinate animals relative to their dominant counterparts had a greater prevalence of H. pylori, suggesting a stress effect. The results indicate that early H. pylori eradication could prevent or delay development of cardiovascular disease.
Collapse
Affiliation(s)
- Traci L. Testerman
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Cristina Semino-Mora
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | | | - Beidi Qiang
- Department of Mathematics and Statistics, Southern Illinois University at Edwardsville, Edwardsville, IL, United States of America
| | - Edsel A. Peña
- Department of Statistics, University of South Carolina, Columbia, SC, United States of America
| | - Hui Liu
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Cara H. Olsen
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Haiying Chen
- Wake Forest University Primate Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Susan E. Appt
- Wake Forest University Primate Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Jay R. Kaplan
- Wake Forest University Primate Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Thomas C. Register
- Wake Forest University Primate Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - D. Scott Merrell
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Andre Dubois
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
6
|
Roig C, Daemen M, Lutgens E, Soehnlein O, Hartwig H. Neutrophils in atherosclerosis. Hamostaseologie 2017; 35:121-7. [DOI: 10.5482/hamo-14-09-0040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022] Open
Abstract
SummaryAtherosclerosis is a chronic inflammation of the arterial wall and the continuous infiltration of leukocytes into the plaque enhances the progression of the lesion. Because of the scarce detection of neutrophils in atherosclerotic plaques compared to other immune cells, their contribution was largely neglected. However, in the last years studies have accumulated pointing towards the contribution of neutrophils to atherogenesis. In addition, studies are emerging implying a role for neutrophils in advanced atherosclerosis and/or plaque destabilization. Thus, this brief review delivers an overview of the role of neutrophils during early and late stage atherosclerosis.
Collapse
|
7
|
Buscher K, Marcovecchio P, Hedrick CC, Ley K. Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Front Cardiovasc Med 2017; 4:80. [PMID: 29312957 PMCID: PMC5742122 DOI: 10.3389/fcvm.2017.00080] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Non-classical monocytes have emerged as the preeminent vascular housekeepers. Continuous intravascular screening is enabled by slow patrolling on the endothelium and allows a rapid response to local perturbations. Intravital imaging has been crucial to elucidate the molecular mechanisms and migratory phenotype of patrolling. In this review, we discuss technical requirements of intravital microscopy such as imaging modalities, labeling strategies, and data analysis. We further focus on patrolling kinetics and adhesion receptors in different organs and vascular beds including arteries during homeostasis and vascular inflammation and define pertinent questions in the field.
Collapse
Affiliation(s)
- Konrad Buscher
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| |
Collapse
|
8
|
Hanna DB, Lin J, Post WS, Hodis HN, Xue X, Anastos K, Cohen MH, Gange SJ, Haberlen SA, Heath SL, Lazar JM, Liu C, Mack WJ, Ofotokun I, Palella FJ, Tien PC, Witt MD, Landay AL, Kingsley LA, Tracy RP, Kaplan RC. Association of Macrophage Inflammation Biomarkers With Progression of Subclinical Carotid Artery Atherosclerosis in HIV-Infected Women and Men. J Infect Dis 2017; 215:1352-1361. [PMID: 28199691 DOI: 10.1093/infdis/jix082] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022] Open
Abstract
Background Monocytes and monocyte-derived macrophages promote atherosclerosis through increased inflammation and vascular remodeling. This may be especially true in chronic human immunodeficiency virus (HIV) infection. Methods We examined 778 women (74% HIV+) in the Women's Interagency HIV Study and 503 men (65% HIV+) in the Multicenter AIDS Cohort Study who underwent repeated B-mode carotid artery ultrasound imaging in 2004-2013. We assessed baseline associations of the serum macrophage inflammation markers soluble (s)CD163, sCD14, galectin-3 (Gal-3), and Gal-3 binding protein (Gal-3BP) with carotid plaque formation (focal intima-media thickness >1.5 mm) over 7 years. Results Marker levels were higher in HIV+ persons versus HIV- persons. Presence of focal plaque increased over time: from 8% to 15% in women, and 24% to 34% in men. After adjustment for demographic, behavioral, and cardiometabolic factors, and CRP and interleukin-6, each standard deviation increase in sCD14 was associated with increased plaque formation (risk ratio [RR] 1.24, 95% confidence interval [CI] 1.07-1.43). This pattern was consistentby sex. sCD163 was associated with plaque formation in virally suppressed HIV+ men (RR 1.52, 95% CI 1.04-2.22); Gal-3BP and Gal-3 were not associated with increased plaque. Conclusions sCD14 and sCD163 may play important roles in atherogenesis among HIV+ persons.
Collapse
Affiliation(s)
- David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Juan Lin
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Wendy S Post
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Howard N Hodis
- Department of Medicine, University of Southern California, Los Angeles
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Mardge H Cohen
- Department of Medicine, John H. Stroger, Jr Hospital of Cook County, Chicago, Illinois
| | - Stephen J Gange
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Sabina A Haberlen
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham
| | - Jason M Lazar
- Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York
| | - Chenglong Liu
- Department of Medicine, Georgetown University Medical Center, Washington, DC
| | - Wendy J Mack
- Department of Preventive Medicine, University of Southern California, Los Angeles
| | - Igho Ofotokun
- Department of Medicine, Emory University and Grady Healthcare System, Atlanta, Georgia
| | - Frank J Palella
- Department of Medicine, Northwestern University Medical Center, Chicago, Illinois
| | - Phyllis C Tien
- Department of Medicine, University of California-San Francisco and the Department of Veterans Affairs
| | - Mallory D Witt
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, California
| | - Alan L Landay
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Lawrence A Kingsley
- Departments of Epidemiology and Infectious Diseases and Microbiology, University of Pittsburgh, Pennsylvania; and
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
9
|
de Jong R, Leoni G, Drechsler M, Soehnlein O. The advantageous role of annexin A1 in cardiovascular disease. Cell Adh Migr 2016; 11:261-274. [PMID: 27860536 DOI: 10.1080/19336918.2016.1259059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inflammatory response protects the human body against infection and injury. However, uncontrolled and unresolved inflammation can lead to tissue damage and chronic inflammatory diseases. Therefore, active resolution of inflammation is essential to restore tissue homeostasis. This review focuses on the pro-resolving molecule annexin A1 (ANXA1) and its derived peptides. Mechanisms instructed by ANXA1 are multidisciplinary and affect leukocytes as well as endothelial cells and tissue resident cells like macrophages and mast cells. ANXA1 has an outstanding role in limiting leukocyte recruitment and different aspects of ANXA1 as modulator of the leukocyte adhesion cascade are discussed here. Additionally, this review details the therapeutic relevance of ANXA1 and its derived peptides in cardiovascular diseases since atherosclerosis stands out as a chronic inflammatory disease with impaired resolution and continuous leukocyte recruitment.
Collapse
Affiliation(s)
- Renske de Jong
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands
| | - Giovanna Leoni
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands
| | - Maik Drechsler
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands.,c DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance , Munich , Germany
| | - Oliver Soehnlein
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands.,c DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance , Munich , Germany
| |
Collapse
|
10
|
Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques. Sci Rep 2016; 6:35089. [PMID: 27731409 PMCID: PMC5059718 DOI: 10.1038/srep35089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022] Open
Abstract
Given the important role of inflammation and the potential association of the leukocyte trafficking-associated adhesion molecule vascular adhesion protein 1 (VAP-1) with atherosclerosis, this study examined whether functional VAP-1 is expressed in atherosclerotic lesions and, if so, whether it could be targeted by positron emission tomography (PET). First, immunohistochemistry revealed that VAP-1 localized to endothelial cells of intra-plaque neovessels in human carotid endarterectomy samples from patients with recent ischemic symptoms. In low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100 (LDLR-/-ApoB100/100), VAP-1 was expressed on endothelial cells lining inflamed atherosclerotic lesions; normal vessel walls in aortas of C57BL/6N control mice were VAP-1-negative. Second, we discovered that the focal uptake of VAP-1 targeting sialic acid-binding immunoglobulin-like lectin 9 based PET tracer [68Ga]DOTA-Siglec-9 in atherosclerotic plaques was associated with the density of activated macrophages (r = 0.58, P = 0.022). As a final point, we found that the inhibition of VAP-1 activity with small molecule LJP1586 decreased the density of macrophages in inflamed atherosclerotic plaques in mice. Our results suggest for the first time VAP-1 as a potential imaging target for inflamed atherosclerotic plaques, and corroborate VAP-1 inhibition as a therapeutic approach in the treatment of atherosclerosis.
Collapse
|
11
|
Rinchai D, Boughorbel S, Presnell S, Quinn C, Chaussabel D. A curated compendium of monocyte transcriptome datasets of relevance to human monocyte immunobiology research. F1000Res 2016; 5:291. [PMID: 27158452 PMCID: PMC4856112 DOI: 10.12688/f1000research.8182.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Systems-scale profiling approaches have become widely used in translational research settings. The resulting accumulation of large-scale datasets in public repositories represents a critical opportunity to promote insight and foster knowledge discovery. However, resources that can serve as an interface between biomedical researchers and such vast and heterogeneous dataset collections are needed in order to fulfill this potential. Recently, we have developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB). This tool can be used to overlay deep molecular phenotyping data with rich contextual information about analytes, samples and studies along with ancillary clinical or immunological profiling data. In this note, we describe a curated compendium of 93 public datasets generated in the context of human monocyte immunological studies, representing a total of 4,516 transcriptome profiles. Datasets were uploaded to an instance of GXB along with study description and sample annotations. Study samples were arranged in different groups. Ranked gene lists were generated based on relevant group comparisons. This resource is publicly available online at
http://monocyte.gxbsidra.org/dm3/landing.gsp.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | - Sabri Boughorbel
- Biomedical Informatics Division, Sidra Medical and Research Center, Doha, Qatar
| | - Scott Presnell
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Charlie Quinn
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
12
|
Wezel A, van der Velden D, Maassen JM, Lagraauw HM, de Vries MR, Karper JC, Kuiper J, Bot I, Quax PHA. RP105 deficiency attenuates early atherosclerosis via decreased monocyte influx in a CCR2 dependent manner. Atherosclerosis 2014; 238:132-9. [PMID: 25484103 DOI: 10.1016/j.atherosclerosis.2014.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 11/18/2014] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Toll like receptor 4 (TLR4) plays a key role in inflammation and previously it was established that TLR4 deficiency attenuates atherosclerosis. RadioProtective 105 (RP105) is a structural homolog of TLR4 and an important regulator of TLR4 signaling, suggesting that RP105 may also be an important effector in atherosclerosis. We thus aimed to determine the role of RP105 in atherosclerotic lesion development using RP105 deficient mice on an atherosclerotic background. METHODS AND RESULTS Atherosclerosis was induced in Western-type diet fed low density lipoprotein receptor deficient (LDLr(-/-)) and LDLr/RP105 double knockout (LDLr(-/-)/RP105(-/-)) mice by means of perivascular carotid artery collar placement. Lesion size was significantly reduced by 58% in LDLr(-/-)/RP105(-/-) mice, and moreover, plaque macrophage content was markedly reduced by 40%. In a model of acute peritonitis, monocyte influx was almost 3-fold reduced in LDLr(-/-)/RP105(-/-) mice (P = 0.001), while neutrophil influx remained unaltered, suggestive of an altered migratory capacity of monocytes upon deletion of RP105. Interestingly, in vitro stimulation of monocytes with LPS induced a downregulation of CCR2, a chemokine receptor crucially involved in monocyte influx to atherosclerotic lesions, which was more pronounced in LDLr(-/-)/RP105(-/-) monocytes as compared to LDLr(-/-) monocytes. CONCLUSION We here show that RP105 deficiency results in reduced early atherosclerotic plaque development with a marked decrease in lesional macrophage content, which may be due to disturbed migration of RP105 deficient monocytes resulting from CCR2 downregulation.
Collapse
Affiliation(s)
- Anouk Wezel
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël van der Velden
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna M Maassen
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - H Maxime Lagraauw
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacco C Karper
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
13
|
Shrestha S, Irvin MR, Grunfeld C, Arnett DK. HIV, inflammation, and calcium in atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 34:244-50. [PMID: 24265418 DOI: 10.1161/atvbaha.113.302191] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is consistently higher among the HIV-positive patients, with or without treatment, than among the HIV-negative population. Risk factors linked to atherosclerotic cardiovascular disease in HIV infection are both traditional and HIV specific although the underlying mechanisms are not fully delineated. Three key sequential biological processes are postulated to accelerate progression of atherosclerosis in the context of HIV: (1) inflammation, (2) transformation of monocytes to macrophages and then foam cells, and (3) apoptosis of foam cells leading to plaque development through Ca(2+)-dependent endoplasmic reticulum stress. These proatherogenic mechanisms are further affected when HIV interacts with the genes involved in various phases within this network.
Collapse
Affiliation(s)
- Sadeep Shrestha
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham (S.S., M.R.I., D.K.A.); Division of Endocrinology and Metabolism, University of California, San Francisco (C.G.); and Veterans Affairs Medical Center, San Francisco, CA (C.G.)
| | | | | | | |
Collapse
|
14
|
|