1
|
Zhang Y, Johannesen PT, Molaee-Ardekani B, Wijetillake A, Attili Chiea R, Hasan PY, Segovia-Martínez M, Lopez-Poveda EA. Comparison of Performance for Cochlear-Implant Listeners Using Audio Processing Strategies Based on Short-Time Fast Fourier Transform or Spectral Feature Extraction. Ear Hear 2024:00003446-990000000-00339. [PMID: 39288360 DOI: 10.1097/aud.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
OBJECTIVES We compared sound quality and performance for a conventional cochlear-implant (CI) audio processing strategy based on short-time fast-Fourier transform (Crystalis) and an experimental strategy based on spectral feature extraction (SFE). In the latter, the more salient spectral features (acoustic events) were extracted and mapped into the CI stimulation electrodes. We hypothesized that (1) SFE would be superior to Crystalis because it can encode acoustic spectral features without the constraints imposed by the short-time fast-Fourier transform bin width, and (2) the potential benefit of SFE would be greater for CI users who have less neural cross-channel interactions. DESIGN To examine the first hypothesis, 6 users of Oticon Medical Digisonic SP CIs were tested in a double-blind design with the SFE and Crystalis strategies on various aspects: word recognition in quiet, speech-in-noise reception threshold (SRT), consonant discrimination in quiet, listening effort, melody contour identification (MCI), and subjective sound quality. Word recognition and SRTs were measured on the first and last day of testing (4 to 5 days apart) to assess potential learning and/or acclimatization effects. Other tests were run once between the first and last testing day. Listening effort was assessed by measuring pupil dilation. MCI involved identifying a five-tone contour among five possible contours. Sound quality was assessed subjectively using the multiple stimulus with hidden reference and anchor (MUSHRA) paradigm for sentences, music, and ambient sounds. To examine the second hypothesis, cross-channel interaction was assessed behaviorally using forward masking. RESULTS Word recognition was similar for the two strategies on the first day of testing and improved for both strategies on the last day of testing, with Crystalis improving significantly more. SRTs were worse with SFE than Crystalis on the first day of testing but became comparable on the last day of testing. Consonant discrimination scores were higher for Crystalis than for the SFE strategy. MCI scores and listening effort were not substantially different across strategies. Subjective sound quality scores were lower for the SFE than for the Crystalis strategy. The difference in performance with SFE and Crystalis was greater for CI users with higher channel interaction. CONCLUSIONS CI-user performance was similar with the SFE and Crystalis strategies. Longer acclimatization times may be required to reveal the full potential of the SFE strategy.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Research and Technology, Oticon Medical, Vallauris, France
| | - Peter T Johannesen
- Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | - Aswin Wijetillake
- Department of Research and Technology, Oticon Medical, Smørum, Denmark
| | | | - Pierre-Yves Hasan
- Department of Research and Technology, Oticon Medical, Smørum, Denmark
| | | | - Enrique A Lopez-Poveda
- Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Grupo de Audiología, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Aldag N, Nogueira W. Psychoacoustic and electroencephalographic responses to changes in amplitude modulation depth and frequency in relation to speech recognition in cochlear implantees. Sci Rep 2024; 14:8181. [PMID: 38589483 PMCID: PMC11002021 DOI: 10.1038/s41598-024-58225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Temporal envelope modulations (TEMs) are one of the most important features that cochlear implant (CI) users rely on to understand speech. Electroencephalographic assessment of TEM encoding could help clinicians to predict speech recognition more objectively, even in patients unable to provide active feedback. The acoustic change complex (ACC) and the auditory steady-state response (ASSR) evoked by low-frequency amplitude-modulated pulse trains can be used to assess TEM encoding with electrical stimulation of individual CI electrodes. In this study, we focused on amplitude modulation detection (AMD) and amplitude modulation frequency discrimination (AMFD) with stimulation of a basal versus an apical electrode. In twelve adult CI users, we (a) assessed behavioral AMFD thresholds and (b) recorded cortical auditory evoked potentials (CAEPs), AMD-ACC, AMFD-ACC, and ASSR in a combined 3-stimulus paradigm. We found that the electrophysiological responses were significantly higher for apical than for basal stimulation. Peak amplitudes of AMFD-ACC were small and (therefore) did not correlate with speech-in-noise recognition. We found significant correlations between speech-in-noise recognition and (a) behavioral AMFD thresholds and (b) AMD-ACC peak amplitudes. AMD and AMFD hold potential to develop a clinically applicable tool for assessing TEM encoding to predict speech recognition in CI users.
Collapse
Affiliation(s)
- Nina Aldag
- Department of Otolaryngology, Hannover Medical School and Cluster of Excellence 'Hearing4all', Hanover, Germany
| | - Waldo Nogueira
- Department of Otolaryngology, Hannover Medical School and Cluster of Excellence 'Hearing4all', Hanover, Germany.
| |
Collapse
|
3
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Andren KG, Duffin K, Ryan MT, Riley CA, Tolisano AM. Postoperative optimization of cochlear implantation for single sided deafness and asymmetric hearing loss: a systematic review. Cochlear Implants Int 2023; 24:342-353. [PMID: 37490782 DOI: 10.1080/14670100.2023.2239512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
OBJECTIVE Identify and evaluate the effectiveness of methods for improving postoperative cochlear implant (CI) hearing performance in subjects with single-sided deafness (SSD) and asymmetric hearing loss (AHL). DATA SOURCES Embase, PubMed, Scopus. REVIEW METHODS Systematic review and narrative synthesis. English language studies of adult CI recipients with SSD and AHL reporting a postoperative intervention and comparative audiometric data pertaining to speech in noise, speech in quiet and sound localization were included. RESULTS 32 studies met criteria for full text review and 6 (n = 81) met final inclusion criteria. Interventions were categorized as: formal auditory training, programming techniques, or hardware optimization. Formal auditory training (n = 10) found no objective improvement in hearing outcomes. Experimental CI maps did not improve audiologic outcomes (n = 9). Programed CI signal delays to improve synchronization demonstrated improved sound localization (n = 12). Hardware optimization, including multidirectional (n = 29) and remote (n = 11) microphones, improved sound localization and speech in noise, respectively. CONCLUSION Few studies meeting inclusion criteria and small sample sizes highlight the need for further study. Formal auditory training did not appear to improve hearing outcomes. Programming techniques, such as CI signal delay, and hardware optimization, such as multidirectional and remote microphones, show promise to improve outcomes for SSD and AHL CI users.
Collapse
Affiliation(s)
- Kristofer G Andren
- Department of Otolaryngology - Head & Neck Surgery, San Antonio Uniformed Services Health Education Consortium, San Antonio, TX, USA
| | - Kevin Duffin
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew T Ryan
- Department of Otolaryngology - Head & Neck Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Charles A Riley
- Department of Otolaryngology - Head & Neck Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Anthony M Tolisano
- Department of Otolaryngology - Head & Neck Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
5
|
Skidmore J, Oleson JJ, Yuan Y, He S. The Relationship Between Cochlear Implant Speech Perception Outcomes and Electrophysiological Measures of the Electrically Evoked Compound Action Potential. Ear Hear 2023; 44:1485-1497. [PMID: 37194125 DOI: 10.1097/aud.0000000000001389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OBJECTIVE This study assessed the relationship between electrophysiological measures of the electrically evoked compound action potential (eCAP) and speech perception scores measured in quiet and in noise in postlingually deafened adult cochlear implant (CI) users. It tested the hypothesis that how well the auditory nerve (AN) responds to electrical stimulation is important for speech perception with a CI in challenging listening conditions. DESIGN Study participants included 24 postlingually deafened adult CI users. All participants used Cochlear Nucleus CIs in their test ears. In each participant, eCAPs were measured at multiple electrode locations in response to single-pulse, paired-pulse, and pulse-train stimuli. Independent variables included six metrics calculated from the eCAP recordings: the electrode-neuron interface (ENI) index, the neural adaptation (NA) ratio, NA speed, the adaptation recovery (AR) ratio, AR speed, and the amplitude modulation (AM) ratio. The ENI index quantified the effectiveness of the CI electrodes in stimulating the targeted AN fibers. The NA ratio indicated the amount of NA at the AN caused by a train of constant-amplitude pulses. NA speed was defined as the speed/rate of NA. The AR ratio estimated the amount of recovery from NA at a fixed time point after the cessation of pulse-train stimulation. AR speed referred to the speed of recovery from NA caused by previous pulse-train stimulation. The AM ratio provided a measure of AN sensitivity to AM cues. Participants' speech perception scores were measured using Consonant-Nucleus-Consonant (CNC) word lists and AzBio sentences presented in quiet, as well as in noise at signal-to-noise ratios (SNRs) of +10 and +5 dB. Predictive models were created for each speech measure to identify eCAP metrics with meaningful predictive power. RESULTS The ENI index and AR speed individually explained at least 10% of the variance in most of the speech perception scores measured in this study, while the NA ratio, NA speed, the AR ratio, and the AM ratio did not. The ENI index was identified as the only eCAP metric that had unique predictive power for each of the speech test results. The amount of variance in speech perception scores (both CNC words and AzBio sentences) explained by the eCAP metrics increased with increased difficulty under the listening condition. Over half of the variance in speech perception scores measured in +5 dB SNR noise (both CNC words and AzBio sentences) was explained by a model with only three eCAP metrics: the ENI index, NA speed, and AR speed. CONCLUSIONS Of the six electrophysiological measures assessed in this study, the ENI index is the most informative predictor for speech perception performance in CI users. In agreement with the tested hypothesis, the response characteristics of the AN to electrical stimulation are more important for speech perception with a CI in noise than they are in quiet.
Collapse
Affiliation(s)
- Jeffrey Skidmore
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Jacob J Oleson
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Yi Yuan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Shuman He
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
- Department of Audiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
6
|
Sander KL, Warren SE, Mendel LL. Survey of selective electrode deactivation attitudes and practices by cochlear implant audiologists. Cochlear Implants Int 2023; 24:167-175. [PMID: 36732065 DOI: 10.1080/14670100.2023.2166571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The purpose of this study was to explore clinician attitudes regarding selective electrode deactivation and to investigate the primary methodology used to identify poorly encoded electrodes, deactivate identified electrodes, and measure outcomes. METHODS An online survey consisting of 32 questions was administered to certified clinical and research cochlear implant (CI) audiologists. Questions asked participants about their demographic information, device programming patterns, and attitudes regarding selective electrode deactivation. RESULTS Fifty-four audiologists completed the survey. When asked whether they believed selectively deactivating poorly encoded electrodes could improve speech perception outcomes, 43% of respondents selected 'Probably Yes,' 39% selected 'Definitely Yes,' and 18% selected 'Might or Might Not.' Of those who reported deactivating electrodes as part of CI programming, various methodology was reported to identify and deactivate poorly encoding electrodes and evaluate effectiveness of deactivation. General reasons against deactivation were also reported. DISCUSSION CI audiologists generally believed selective electrode deactivation could be used to improve speech perception outcomes for patients; however, few reported implementing selective electrode deactivation in practice. Among those who do perform selective electrode deactivation, the reported methodology was highly variable. CONCLUSION These findings support the need for clinical practice guidelines to assist audiologists in performing selective electrode deactivation.
Collapse
Affiliation(s)
- Kara L Sander
- Department of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA
| | - Sarah E Warren
- Department of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA
| | - Lisa Lucks Mendel
- Department of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA
| |
Collapse
|
7
|
Warren SE, Atcherson SR. Evaluation of a clinical method for selective electrode deactivation in cochlear implant programming. Front Hum Neurosci 2023; 17:1157673. [PMID: 37063101 PMCID: PMC10101326 DOI: 10.3389/fnhum.2023.1157673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundCochlear implants are a neural prosthesis used to restore the perception of hearing in individuals with severe-to-profound hearing loss by stimulating the auditory nerve with electrical current through a surgically implanted electrode array. The integrity of the interface between the implanted electrode array and the auditory nerve contributes to the variability in outcomes experienced by cochlear implant users. Strategies to identify and eliminate poorly encoding electrodes have been found to be effective in improving outcomes with the device, but application is limited in a clinical setting.ObjectiveThe purpose of this study was to evaluate a clinical method used to identify and selectively deactivate cochlear implants (CI) electrodes related to poor electrode-neural interface.MethodsThirteen adult CI users participated in a pitch ranking task to identify indiscriminate electrode pairs. Electrodes associated with indiscriminate pairs were selectively deactivated, creating an individualized experimental program. Speech perception was evaluated in the baseline condition and with the experimental program before and after an acclimation period. Participant preference responses were recorded at each visit.ResultsStatistically significant improvements using the experimental program were found in at least one measure of speech perception at the individual level in four out of 13 participants when tested before acclimation. Following an acclimation period, ten out of 13 participants demonstrated statistically significant improvements in at least one measure of speech perception. Statistically significant improvements were found with the experimental program at the group level for both monosyllabic words (p = 0.006) and sentences in noise (p = 0.020). Additionally, ten participants preferred the experimental program prior to the acclimation period and eleven preferred the experimental program following the acclimation period.ConclusionResults from this study suggest that electrode deactivation may yield improvement in speech perception following an acclimation period. A majority of CI users in our study reported a preference for the experimental program. This method proved to be a suitable clinical strategy for identifying and deactivating poorly encoding electrodes in adult CI users.
Collapse
Affiliation(s)
- Sarah E. Warren
- Cochlear Implant Research Laboratory, School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
- Department of Audiology, Arkansas Children’s Hospital, Little Rock, AR, United States
- Department of Audiology and Speech Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Sarah E. Warren,
| | - Samuel R. Atcherson
- Department of Audiology and Speech Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Zhou N, Shi X, Dixit O, Firszt JB, Holden TA. Relationship between electrode position and temporal modulation sensitivity in cochlear implant users: Are close electrodes always better? Heliyon 2023; 9:e12467. [PMID: 36852047 PMCID: PMC9958279 DOI: 10.1016/j.heliyon.2022.e12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Temporal modulation sensitivity has been studied extensively for cochlear implant (CI) users due to its strong correlation to speech recognition outcomes. Previous studies reported that temporal modulation detection thresholds (MDTs) vary across the tonotopic axis and attributed this variation to patchy neural survival. However, correlates of neural health identified in animal models depend on electrode position in humans. Nonetheless, the relationship between MDT and electrode location has not been explored. We tested 13 ears for the effect of distance on modulation sensitivity, specifically targeting the question of whether electrodes closer to the modiolus are universally beneficial. Participants in this study were postlingually deafened and users of Cochlear Nucleus CIs. The distance of each electrode from the medial wall (MW) of the cochlea and mid-modiolar axis (MMA) was measured from scans obtained using computerized tomography (CT) imaging. The distance measures were correlated with slopes of spatial tuning curves measured on selected electrodes to investigate if electrode position accounts, at least in part, for the width of neural excitation. In accordance with previous findings, electrode position explained 24% of the variance in slopes of the spatial tuning curves. All functioning electrodes were also measured for MDTs. Five ears showed a positive correlation between MDTs and at least one distance measure across the array; 6 ears showed negative correlations and the remaining two ears showed no relationship. The ears showing positive MDT-distance correlations, thus benefiting from electrodes being close to the neural elements, were those who performed better on the two speech recognition measures, i.e., speech reception thresholds (SRTs) and recognition of the AzBio sentences. These results could suggest that ears able to take advantage of the proximal placement of electrodes are likely to have better speech recognition outcomes. Previous histological studies of humans demonstrated that speech recognition is correlated with spiral ganglion cell counts. Alternatively, ears with good speech recognition outcomes may have good overall neural health, which is a precondition for close electrodes to produce spatially confined neural excitation patterns that facilitate modulation sensitivity. These findings suggest that the methods to reduce channel interaction, e.g., perimodiolar electrode array or current focusing, may only be beneficial for a subgroup of CI users. Additionally, it suggests that estimating neural survival preoperatively is important for choosing the most appropriate electrode array type (perimodiolar vs. lateral wall) for optimal implant function.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27834, USA
| | - Xuyang Shi
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27834, USA
| | - Omkar Dixit
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27834, USA
| | - Jill B Firszt
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Timothy A Holden
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| |
Collapse
|
9
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope sensitivity: Within- and across-ear envelope comparisons in listeners with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3294. [PMID: 36586876 PMCID: PMC9731674 DOI: 10.1121/10.0016365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For listeners with bilateral cochlear implants (BiCIs), patient-specific differences in the interface between cochlear implant (CI) electrodes and the auditory nerve can lead to degraded temporal envelope information, compromising the ability to distinguish between targets of interest and background noise. It is unclear how comparisons of degraded temporal envelope information across spectral channels (i.e., electrodes) affect the ability to detect differences in the temporal envelope, specifically amplitude modulation (AM) rate. In this study, two pulse trains were presented simultaneously via pairs of electrodes in different places of stimulation, within and/or across ears, with identical or differing AM rates. Results from 11 adults with BiCIs indicated that sensitivity to differences in AM rate was greatest when stimuli were paired between different places of stimulation in the same ear. Sensitivity from pairs of electrodes was predicted by the poorer electrode in the pair or the difference in fidelity between both electrodes in the pair. These findings suggest that electrodes yielding poorer temporal fidelity act as a bottleneck to comparisons of temporal information across frequency and ears, limiting access to the cues used to segregate sounds, which has important implications for device programming and optimizing patient outcomes with CIs.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
10
|
Image-Guided Cochlear Implant Programming: A Systematic Review and Meta-analysis. Otol Neurotol 2022; 43:e924-e935. [PMID: 35973035 DOI: 10.1097/mao.0000000000003653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To review studies evaluating clinically implemented image-guided cochlear implant programing (IGCIP) and to determine its effect on cochlear implant (CI) performance. DATA SOURCES PubMed, EMBASE, and Google Scholar were searched for English language publications from inception to August 1, 2021. STUDY SELECTION Included studies prospectively compared intraindividual CI performance between an image-guided experimental map and a patient's preferred traditional map. Non-English studies, cadaveric studies, and studies where imaging did not directly inform programming were excluded. DATA EXTRACTION Seven studies were identified for review, and five reported comparable components of audiological testing and follow-up times appropriate for meta-analysis. Demographic, speech, spectral modulation, pitch accuracy, and quality-of-life survey data were collected. Aggregate data were used when individual data were unavailable. DATA SYNTHESIS Audiological test outcomes were evaluated as standardized mean change (95% confidence interval) using random-effects meta-analysis with raw score standardization. Improvements in speech and quality-of-life measures using the IGCIP map demonstrated nominal effect sizes: consonant-nucleus-consonant words, 0.15 (-0.12 to 0.42); AzBio quiet, 0.09 (-0.05 to 0.22); AzBio +10 dB signal-noise ratio, 0.14 (-0.01 to 0.30); Bamford-Kowel-Bench sentence in noise, -0.11 (-0.35 to 0.12); Abbreviated Profile of Hearing Aid Benefit, -0.14 (-0.28 to 0.00); and Speech Spatial and Qualities of Hearing Scale, 0.13 (-0.02 to 0.28). Nevertheless, 79% of patients allowed to keep their IGCIP map opted for continued use after the investigational period. CONCLUSION IGCIP has potential to precisely guide CI programming. Nominal effect sizes for objective outcome measures fail to reflect subjective benefits fully given discordance with the percentage of patients who prefer to maintain their IGCIP map.
Collapse
|
11
|
Abstract
OBJECTIVES This study aimed to determine the effect of advanced age on how effectively a cochlear implant (CI) electrode stimulates the targeted cochlear nerve fibers (i.e., the electrode-neuron interface [ENI]) in postlingually deafened adult CI users. The study tested the hypothesis that the quality of the ENI declined with advanced age. It also tested the hypothesis that the effect of advanced age on the quality of the ENI would be greater in basal regions of the cochlea compared to apical regions. DESIGN Study participants included 40 postlingually deafened adult CI users. The participants were separated into two age groups based on age at testing in accordance with age classification terms used by the World Health Organization and the Medical Literature Analysis and Retrieval System Online bibliographic database. The middle-aged group included 16 participants between the ages of 45 and 64 years and the elderly group included 24 participants older than 65 years. Results were included from one ear for each participant. All participants used Cochlear Nucleus CIs in their test ears. For each participant, electrophysiological measures of the electrically evoked compound action potential (eCAP) were used to measure refractory recovery functions and amplitude growth functions (AGFs) at three to seven electrode sites across the electrode array. The eCAP parameters used in this study included the refractory recovery time estimated based on the eCAP refractory recovery function, the eCAP threshold, the slope of the eCAP AGF, and the negative-peak (i.e., N1) latency. The electrode-specific ENI was evaluated using an optimized combination of the eCAP parameters that represented the responsiveness of cochlear nerve fibers to electrical stimulation delivered by individual electrodes along the electrode array. The quality of the electrode-specific ENI was quantified by the local ENI index, a value between 0 and 100 where 0 and 100 represented the lowest- and the highest-quality ENI across all participants and electrodes in the study dataset, respectively. RESULTS There were no significant age group differences in refractory times, eCAP thresholds, N1 latencies or local ENI indices. Slopes of the eCAP AGF were significantly larger in the middle-aged group compared to the elderly group. There was a significant effect of electrode location on each eCAP parameter, except for N1 latency. In addition, the local ENI index was significantly larger (i.e., better ENI) in the apical region than in the basal and middle regions of the cochlea for both age groups. CONCLUSIONS The model developed in this study can be used to estimate the quality of the ENI at individual electrode locations in CI users. The quality of the ENI is affected by the location of the electrode along the length of the cochlea. The method for estimating the quality of the ENI developed in this study holds promise for identifying electrodes with poor ENIs that could be deactivated from the clinical programming map. The ENI is not strongly affected by advanced age in middle-aged and elderly CI users.
Collapse
|
12
|
Carlyon RP, Goehring T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J Assoc Res Otolaryngol 2021; 22:481-508. [PMID: 34432222 PMCID: PMC8476711 DOI: 10.1007/s10162-021-00811-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cochlear implants (CIs) are the world's most successful sensory prosthesis and have been the subject of intense research and development in recent decades. We critically review the progress in CI research, and its success in improving patient outcomes, from the turn of the century to the present day. The review focuses on the processing, stimulation, and audiological methods that have been used to try to improve speech perception by human CI listeners, and on fundamental new insights in the response of the auditory system to electrical stimulation. The introduction of directional microphones and of new noise reduction and pre-processing algorithms has produced robust and sometimes substantial improvements. Novel speech-processing algorithms, the use of current-focusing methods, and individualised (patient-by-patient) deactivation of subsets of electrodes have produced more modest improvements. We argue that incremental advances have and will continue to be made, that collectively these may substantially improve patient outcomes, but that the modest size of each individual advance will require greater attention to experimental design and power. We also briefly discuss the potential and limitations of promising technologies that are currently being developed in animal models, and suggest strategies for researchers to collectively maximise the potential of CIs to improve hearing in a wide range of listening situations.
Collapse
Affiliation(s)
- Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
| | - Tobias Goehring
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
13
|
Jahn KN, Arenberg JG. Electrophysiological Estimates of the Electrode-Neuron Interface Differ Between Younger and Older Listeners With Cochlear Implants. Ear Hear 2021; 41:948-960. [PMID: 32032228 PMCID: PMC10424265 DOI: 10.1097/aud.0000000000000827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The primary objective of this study was to quantify differences in evoked potential correlates of spiral ganglion neuron (SGN) density between younger and older individuals with cochlear implants (CIs) using the electrically evoked compound action potential (ECAP). In human temporal bone studies and in animal models, SGN density is the lowest in older subjects and in those who experienced long durations of deafness during life. SGN density also varies as a function of age at implantation and hearing loss etiology. Taken together, it is likely that younger listeners who were deafened and implanted during childhood have denser populations of SGNs than older individuals who were deafened and implanted later in life. In animals, ECAP amplitudes, amplitude growth function (AGF) slopes, and their sensitivity to stimulus interphase gap (IPG) are predictive of SGN density. The authors hypothesized that younger listeners who were deafened and implanted as children would demonstrate larger ECAP amplitudes, steeper AGF slopes, and greater IPG sensitivity than older, adult-deafened and implanted listeners. DESIGN Data were obtained from 22 implanted ears (18 individuals). Thirteen ears (9 individuals) were deafened and implanted as children (child-implanted group), and nine ears (9 individuals) were deafened and implanted as adults (adult-implanted group). The groups differed significantly on a number of demographic variables that are implicitly related to SGN density: (1) chronological age; (2) age at implantation; and (3) duration of preimplantation hearing loss. ECAP amplitudes, AGF linear slopes, and thresholds were assessed on a subset of electrodes in each ear in response to two IPGs (7 and 30 µsec). Speech recognition was assessed using a medial vowel identification task. RESULTS Compared with the adult-implanted listeners, individuals in the child-implanted group demonstrated larger changes in ECAP amplitude when the IPG of the stimulus was increased from 7 to 30 µsec (i.e., greater IPG sensitivity). On average, child-implanted participants also had larger ECAP amplitudes and steeper AGF linear slopes than the adult-implanted participants, irrespective of IPG. IPG sensitivity for AGF linear slope and ECAP threshold did not differ between age groups. Vowel recognition performance was not correlated with any of the ECAP measures assessed in this study. CONCLUSIONS The results of this study support the theory that young CI listeners who were deafened and implanted during childhood may have denser neural populations than older listeners who were deafened and implanted as adults. Potential between-group differences in SGN integrity emphasize a need to investigate optimized CI programming parameters for younger and older listeners.
Collapse
Affiliation(s)
- Kelly N. Jahn
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| | - Julie G. Arenberg
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| |
Collapse
|
14
|
Jahn KN, Arenberg JG. Identifying Cochlear Implant Channels With Relatively Poor Electrode-Neuron Interfaces Using the Electrically Evoked Compound Action Potential. Ear Hear 2021; 41:961-973. [PMID: 31972772 PMCID: PMC10443089 DOI: 10.1097/aud.0000000000000844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The primary objective of this study was to quantify local (within ear) and global (between ear) variation in the cochlear implant (CI) electrode-neuron interface (ENI) using the electrically evoked compound action potential (ECAP). We tested the hypothesis that, within an ear, ECAP measures can be used to identify channels with presumed good and poor ENIs, which may be influenced by a combination of spiral ganglion neuron (SGN) density, electrode position, and cochlear resistivity. We also hypothesized that ECAP responses would reflect age-related differences in the global quality of the ENI between younger and older listeners who theoretically differ in SGN density. DESIGN Data were obtained from 18 implanted ears (13 individuals) with Advanced Bionics HiRes 90K devices. Six participants (8 ears) were adolescents or young adults (age range: 14-32 years), and 7 participants (10 ears) were older adults (age range: 54-88 years). In each ear, single-channel auditory detection thresholds were measured on channels 2 through 15 in response to a spatially focused electrode configuration (steered quadrupolar; focusing coefficient = 0.9). ECAP amplitudes, amplitude growth function (AGF) slopes, and thresholds were assessed on a subset of channels in each ear in response to three interphase gaps (0, 7, and 30 µs). ECAP peak amplitudes were assessed on all channels between 2 and 15. AGFs and ECAP thresholds were measured on the two nonadjacent channels with the lowest and highest focused behavioral thresholds in each ear. ECAP responses were compared across low- and high-threshold channels and between younger and older CI listeners. RESULTS Channels that were estimated to interface poorly with the auditory nerve (i.e., high-focused-threshold channels) had steeper ECAP AGF slopes, smaller dynamic ranges, and higher ECAP thresholds than channels with low focused thresholds. Younger listeners had steeper ECAP AGF slopes and larger ECAP peak amplitudes than older listeners. Moreover, younger listeners showed greater interphase gap sensitivity for ECAP amplitude than older listeners. CONCLUSIONS ECAP responses may be used to quantify both local (within ear) and global (between ear) variation in the quality of the ENI. Results of this study support future investigation into the use of ECAP responses in site-selection CI programming strategies. The present results also support a growing body of evidence suggesting that adolescents and young adults with CIs may have denser populations of functional SGNs relative to older adults. Potential differences in global SGN integrity between younger and older listeners warrant investigation of optimal CI programming interventions based on their divergent hearing histories.
Collapse
Affiliation(s)
- Kelly N. Jahn
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| | - Julie G. Arenberg
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| |
Collapse
|
15
|
Neural Modulation Transmission Is a Marker for Speech Perception in Noise in Cochlear Implant Users. Ear Hear 2021; 41:591-602. [PMID: 31567565 DOI: 10.1097/aud.0000000000000783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cochlear implants (CIs) restore functional hearing in persons with a severe hearing impairment. Despite being one of the most successful bionic prosthesis, performance with CI (in particular speech understanding in noise) varies considerably across its users. The ability of the auditory pathway to encode temporal envelope modulations (TEMs) and the effect of degenerative processes associated with hearing loss on TEM encoding is assumed to be one of the reasons underlying the large intersubject differences in CI performance. The objective of the present study was to investigate how TEM encoding of the stimulated neural ensembles of human CI recipients is related to speech perception in noise (SPIN). DESIGN We used electroencephalography as a noninvasive electrophysiological measure to assess TEM encoding in the auditory pathway of CI users by means of the 40-Hz electrically evoked auditory steady state response (EASSR). Nine CI users with a wide range of SPIN outcome were included in the present study. TEM encoding was assessed for each stimulation electrode of each subject and new metrics; the CI neural modulation transmission difference (CIMTD) and the CI neural modulation transmission index (CIMTI) were developed to quantify the amount of variability in TEM encoding across the stimulated neural ensembles of the CI electrode array. RESULTS EASSR patterns varied across the CI electrode array and subjects. We found a strong correlation (r = 0.89, p = 0.001) between the SPIN outcomes and the variability in EASSR amplitudes across the array as assessed with CIMTD/CIMTI. CONCLUSIONS The results of the present study show that the 40-Hz EASSR can be used to objectively assess the neural encoding of TEMs in human CI recipients. Overall reduced or largely variable TEM encoding of the neural ensembles across the electrode array, as quantified with the CIMTD/CIMTI, is highly correlated with speech perception in noise outcome with a CI.
Collapse
|
16
|
Liu JS, Liu YW, Yu YF, Galvin JJ, Fu QJ, Tao DD. Segregation of competing speech in adults and children with normal hearing and in children with cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:339. [PMID: 34340485 DOI: 10.1121/10.0005597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Children with normal hearing (CNH) have greater difficulty segregating competing speech than do adults with normal hearing (ANH). Children with cochlear implants (CCI) have greater difficulty segregating competing speech than do CNH. In the present study, speech reception thresholds (SRTs) in competing speech were measured in Chinese Mandarin-speaking ANH, CNH, and CCIs. Target sentences were produced by a male Mandarin-speaking talker. Maskers were time-forward or -reversed sentences produced by a native Mandarin-speaking male (different from the target) or female or a non-native English-speaking male. The SRTs were lowest (best) for the ANH group, followed by the CNH and CCI groups. The masking release (MR) was comparable between the ANH and CNH group, but much poorer in the CCI group. The temporal properties differed between the native and non-native maskers and between forward and reversed speech. The temporal properties of the maskers were significantly associated with the SRTs for the CCI and CNH groups but not for the ANH group. Whereas the temporal properties of the maskers were significantly associated with the MR for all three groups, the association was stronger for the CCI and CNH groups than for the ANH group.
Collapse
Affiliation(s)
- Ji-Sheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yang-Wenyi Liu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Ya-Feng Yu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - John J Galvin
- House Ear Institute, Los Angeles, California 90057, USA
| | - Qian-Jie Fu
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Duo-Duo Tao
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
17
|
The effect of increased channel interaction on speech perception with cochlear implants. Sci Rep 2021; 11:10383. [PMID: 34001987 PMCID: PMC8128897 DOI: 10.1038/s41598-021-89932-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Cochlear implants (CIs) are neuroprostheses that partially restore hearing for people with severe-to-profound hearing loss. While CIs can provide good speech perception in quiet listening situations for many, they fail to do so in environments with interfering sounds for most listeners. Previous research suggests that this is due to detrimental interaction effects between CI electrode channels, limiting their function to convey frequency-specific information, but evidence is still scarce. In this study, an experimental manipulation called spectral blurring was used to increase channel interaction in CI listeners using Advanced Bionics devices with HiFocus 1J and MS electrode arrays to directly investigate its causal effect on speech perception. Instead of using a single electrode per channel as in standard CI processing, spectral blurring used up to 6 electrodes per channel simultaneously to increase the overlap between adjacent frequency channels as would occur in cases with severe channel interaction. Results demonstrated that this manipulation significantly degraded CI speech perception in quiet by 15% and speech reception thresholds in babble noise by 5 dB when all channels were blurred by a factor of 6. Importantly, when channel interaction was increased just on a subset of electrodes, speech scores were mostly unaffected and were only significantly degraded when the 5 most apical channels were blurred. These apical channels convey information up to 1 kHz at the apical end of the electrode array and are typically located at angular insertion depths of about 250 up to 500°. These results confirm and extend earlier findings indicating that CI speech perception may not benefit from deactivating individual channels along the array and that efforts should instead be directed towards reducing channel interaction per se and in particular for the most-apical electrodes. Hereby, causal methods such as spectral blurring could be used in future research to control channel interaction effects within listeners for evaluating compensation strategies.
Collapse
|
18
|
Schvartz-Leyzac KC, Zwolan TA, Pfingst BE. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Hear Res 2021; 406:108257. [PMID: 34020316 DOI: 10.1016/j.heares.2021.108257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Studies in cochlear implanted animals show that the IPG Effect for ECAP growth functions (i.e., the magnitude of the change in ECAP amplitude growth function (AGF) slope or peak amplitude when the interphase gap (IPG) is increased) can be used to estimate the densities of spiral ganglion neurons (SGNs) near the electrode stimulation and recording sites. In humans, the same ECAP IPG Effect measures correlate with speech recognition performance. The present study examined the efficacy of selecting electrode sites for stimulation based on the IPG Effect, in order to improve performance of CI users on speech recognition tasks. We measured the ECAP IPG Effect for peak amplitude in adult (>18 years old) CI users (N= 18 ears), and created experimental programs to stimulate electrodes with either the highest or lowest ECAP IPG Effect for peak amplitude. Subjects also listened to a program without any electrodes deactivated. In a subset of subject ears (11/18), we compared performance differences between the experimental programs to post-operative computerized tomography (CT) scans to examine underlying factors that might contribute to the efficacy of an electrode site-selection approach. For sentences-in-noise, average performance was better when subjects listened to the experimental program that stimulated electrodes with the highest rather than the lowest IPG Effect for ECAP peak amplitude. A similar pattern was noted for transmission and perception of consonant place cues in a consonant recognition task. However, on average, performance when listening to a program with higher IPG Effect values was equal to that when listening with all electrodes activated. Results also suggest that scalar location (scala tympani or vestibuli) should be considered when using an ECAP-based electrode site-selection procedure to optimize CI performance.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, United States; Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, United States.
| | - Teresa A Zwolan
- Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, United States
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, United States
| |
Collapse
|
19
|
The Sensitivity of the Electrically Stimulated Auditory Nerve to Amplitude Modulation Cues Declines With Advanced Age. Ear Hear 2021; 42:1358-1372. [PMID: 33795616 DOI: 10.1097/aud.0000000000001035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to investigate effects of aging and duration of deafness on sensitivity of the auditory nerve (AN) to amplitude modulation (AM) cues delivered using trains of biphasic pulses in adult cochlear implant (CI) users. DESIGN There were 21 postlingually deaf adult CI users who participated in this study. All study participants used a Cochlear Nucleus device with a full electrode array insertion in the test ear. The stimulus was a 200-ms pulse train with a pulse rate of 2000 pulses per second. This carrier pulse train was sinusodially AM at four modulation rates (20, 40, 100, 200 Hz). The peak amplitude of the modulated pulse train was the maximum comfortable level (i.e., C level) measured for the carrier pulse train. The electrically evoked compound action potential (eCAP) to each of the 20 pulses selected over the last two AM cycles were measured. In addition, eCAPs to single pulses were measured with the probe levels corresponding to the levels of 20 selected pulses from each AM pulse train. There were seven electrodes across the array evaluated in 16 subjects (i.e., electrodes 3 or 4, 6, 9, 12, 15, 18, and 21). For the remaining five subjects, 4 to 5 electrodes were tested due to impedance issues or time constraints. The modulated response amplitude ratio (MRAR) was calculated as the ratio of the difference in the maximum and the minimum eCAP amplitude measured for the AM pulse train to that measured for the single pulse, and served as the dependent variable. Age at time of testing and duration of deafness measured/defined using three criteria served as the independent variables. Linear Mixed Models were used to assess the effects of age at testing and duration of deafness on the MRAR. RESULTS Age at testing had a strong, negative effect on the MRAR. For each subject, the duration of deafness varied substantially depending on how it was defined/measured, which demonstrates the difficulty of accurately measuring the duration of deafness in adult CI users. There was no clear or reliable trend showing a relationship between the MRAR measured at any AM rate and duration of deafness defined by any criteria. After controlling for the effect of age at testing, MRARs measured at 200 Hz and basal electrode locations (i.e., electrodes 3 and 6) were larger than those measured at any other AM rate and apical electrode locations (i.e., electrodes 18 and 21). CONCLUSIONS The AN sensitivity to AM cues implemented in the pulse-train stimulation significantly declines with advanced age. Accurately measuring duration of deafness in adult CI users is challenging, which, at least partially, might have accounted for the inconclusive findings in the relationship between the duration of deafness and the AN sensitivity to AM cues in this study.
Collapse
|
20
|
Schvartz-Leyzac KC, Colesa DJ, Buswinka CJ, Rabah AM, Swiderski DL, Raphael Y, Pfingst BE. How electrically evoked compound action potentials in chronically implanted guinea pigs relate to auditory nerve health and electrode impedance. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3900. [PMID: 33379919 PMCID: PMC7863685 DOI: 10.1121/10.0002882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
This study examined how multiple measures based on the electrically evoked compound action potential (ECAP) amplitude-growth functions (AGFs) were related to estimates of neural [spiral ganglion neuron (SGN) density and cell size] and electrode impedance measures in 34 specific pathogen free pigmented guinea pigs that were chronically implanted (4.9-15.4 months) with a cochlear implant electrode array. Two interphase gaps (IPGs) were used for the biphasic pulses and the effect of the IPG on each ECAP measure was measured ("IPG effect"). When using a stimulus with a constant IPG, SGN density was related to the across-subject variance in ECAP AGF linear slope, peak amplitude, and N1 latency. The SGN density values also help to explain a significant proportion of variance in the IPG effect for AGF linear slope and peak amplitude measures. Regression modeling revealed that SGN density was the primary dependent variable contributing to across-subject variance for ECAP measures; SGN cell size did not significantly improve the fitting of the model. Results showed that simple impedance measures were weakly related to most ECAP measures but did not typically improve the fit of the regression model.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Deborah J Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Christopher J Buswinka
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Andrew M Rabah
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| |
Collapse
|
21
|
Zhou N, Dixon S, Zhu Z, Dong L, Weiner M. Spectrotemporal Modulation Sensitivity in Cochlear-Implant and Normal-Hearing Listeners: Is the Performance Driven by Temporal or Spectral Modulation Sensitivity? Trends Hear 2020; 24:2331216520948385. [PMID: 32895024 PMCID: PMC7482033 DOI: 10.1177/2331216520948385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study examined the contribution of temporal and spectral modulation sensitivity to discrimination of stimuli modulated in both the time and frequency domains. The spectrotemporally modulated stimuli contained spectral ripples that shifted systematically across frequency over time at a repetition rate of 5 Hz. As the ripple density increased in the stimulus, modulation depth of the 5 Hz amplitude modulation (AM) reduced. Spectrotemporal modulation discrimination was compared with subjects’ ability to discriminate static spectral ripples and the ability to detect slow AM. The general pattern from both the cochlear implant (CI) and normal hearing groups showed that spectrotemporal modulation thresholds were correlated more strongly with AM detection than with static ripple discrimination. CI subjects’ spectrotemporal modulation thresholds were also highly correlated with speech recognition in noise, when partialing out static ripple discrimination, but the correlation was not significant when partialing out AM detection. The results indicated that temporal information was more heavily weighted in spectrotemporal modulation discrimination, and for CI subjects, it was AM sensitivity that drove the correlation between spectrotemporal modulation thresholds and speech recognition. The results suggest that for the rates tested here, temporal information processing may limit performance more than spectral information processing in both CI users and normal hearing listeners.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Susannah Dixon
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Zhen Zhu
- Department of Engineering, East Carolina University, Greenville, North Carolina, United States
| | - Lixue Dong
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Marti Weiner
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
22
|
Shader MJ, Gordon-Salant S, Goupell MJ. Impact of Aging and the Electrode-to-Neural Interface on Temporal Processing Ability in Cochlear-Implant Users: Amplitude-Modulation Detection Thresholds. Trends Hear 2020; 24:2331216520936160. [PMID: 32833587 PMCID: PMC7448135 DOI: 10.1177/2331216520936160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although cochlear implants (CIs) are a viable treatment option for severe hearing loss in adults of any age, older adults may be at a disadvantage compared with younger adults. CIs deliver signals that contain limited spectral information, requiring CI users to attend to the temporal information within the signal to recognize speech. Older adults are susceptible to acquiring auditory temporal processing deficits, presenting a potential age-related limitation for recognizing speech signals delivered by CIs. The goal of this study was to measure auditory temporal processing ability via amplitude-modulation (AM) detection as a function of age in CI users. The contribution of the electrode-to-neural interface, in addition to age, was estimated using electrically evoked compound action potential (ECAP) amplitude growth functions. Within each participant, two electrodes were selected: one with the steepest ECAP slope and one with the shallowest ECAP slope, in order to represent electrodes with varied estimates of the electrode-to-neural interface. Single-electrode AM detection thresholds were measured using direct stimulation at these two electrode locations. Results revealed that AM detection ability significantly declined as a function of chronological age. ECAP slope did not significantly impact AM detection, but ECAP slope decreased (became shallower) with increasing age, suggesting that factors influencing the electrode-to-neural interface change with age. Results demonstrated a significant negative impact of chronological age on auditory temporal processing. The locus of the age-related limitation (peripheral vs. central origin), however, is difficult to evaluate because the peripheral influence (ECAPs) was correlated with the central factor (age).
Collapse
Affiliation(s)
- Maureen J Shader
- Department of Hearing and Speech Sciences, University of Maryland
| | | | | |
Collapse
|
23
|
Brochier T, Guérit F, Deeks JM, Garcia C, Bance M, Carlyon RP. Evaluating and Comparing Behavioural and Electrophysiological Estimates of Neural Health in Cochlear Implant Users. J Assoc Res Otolaryngol 2020; 22:67-80. [PMID: 33150541 PMCID: PMC7822986 DOI: 10.1007/s10162-020-00773-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Variations in neural health along the cochlea can degrade the spectral and temporal representation of sounds conveyed by cochlear implants (CIs). We evaluated and compared one electrophysiological measure and two behavioural measures that have been proposed as estimates of neural health patterns, in order to explore the extent to which the different measures provide converging and consistent neural health estimates. All measures were obtained from the same 11 users of the Cochlear Corporation CI. The two behavioural measures were multipulse integration (MPI) and the polarity effect (PE), both measured on each of seven electrodes per subject. MPI was measured as the difference between thresholds at 80 pps and 1000 pps, and PE as the difference in thresholds between cathodic- and anodic-centred quadraphasic (QP) 80-pps pulse trains. It has been proposed that good neural health corresponds to a large MPI and to a large negative PE (lower thresholds for cathodic than anodic pulses). The electrophysiological measure was the effect of interphase gap (IPG) on the offset of the ECAP amplitude growth function (AGF), which has been correlated with spiral ganglion neuron density in guinea pigs. This 'IPG offset' was obtained on the same subset of electrodes used for the behavioural measures. Despite high test-retest reliability, there were no significant correlations between the neural health estimates for either within-subject comparisons across the electrode array, or between-subject comparisons of the means. A phenomenological model of a population of spiral ganglion neurons was then used to investigate physiological mechanisms that might underlie the different neural health estimates. The combined experimental and modelling results provide evidence that PE, MPI and IPG offset may reflect different characteristics of the electrode-neural interface.
Collapse
Affiliation(s)
- Tim Brochier
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK. .,Cambridge Hearing Group, Cambridge University Hospitals Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - François Guérit
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - John M Deeks
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Charlotte Garcia
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Manohar Bance
- Cambridge Hearing Group, Cambridge University Hospitals Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
24
|
Brochier T, McKay CM, Carlyon RP. Interpreting the Effect of Stimulus Parameters on the Electrically Evoked Compound Action Potential and on Neural Health Estimates. J Assoc Res Otolaryngol 2020; 22:81-94. [PMID: 33108575 PMCID: PMC7823000 DOI: 10.1007/s10162-020-00774-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/14/2020] [Indexed: 02/03/2023] Open
Abstract
Variations in the condition of the neural population along the length of the cochlea can degrade the spectral and temporal representation of sounds conveyed by CIs, thereby limiting speech perception. One measurement that has been proposed as an estimate of neural survival (the number of remaining functional neurons) or neural health (the health of those remaining neurons) is the effect of stimulation parameters, such as the interphase gap (IPG), on the amplitude growth function (AGF) of the electrically evoked compound action potential (ECAP). The extent to which such measures reflect neural factors, rather than non-neural factors (e.g. electrode orientation, electrode-modiolus distance, and impedance), depends crucially upon how the AGF data are analysed. However, there is currently no consensus in the literature for the correct method to interpret changes in the ECAP AGF due to changes in stimulation parameters. We present a simple theoretical model for the effect of IPG on ECAP AGFs, along with a re-analysis of both animal and human data that measured the IPG effect. Both the theoretical model and the re-analysis of the animal data suggest that the IPG effect on ECAP AGF slope (IPG slope effect), measured using either a linear or logarithmic input-output scale, does not successfully control for the effects of non-neural factors. Both the model and the data suggest that the appropriate method to estimate neural health is by measuring the IPG offset effect, defined as the dB offset between the linear portions of ECAP AGFs for two stimuli differing only in IPG.
Collapse
Affiliation(s)
- Tim Brochier
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Colette M McKay
- Bionics Institute, 384-388 Albert Street, East Melbourne, VIC, 3002, Australia
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
25
|
Gransier R, Carlyon RP, Wouters J. Electrophysiological assessment of temporal envelope processing in cochlear implant users. Sci Rep 2020; 10:15406. [PMID: 32958791 PMCID: PMC7506023 DOI: 10.1038/s41598-020-72235-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 11/12/2022] Open
Abstract
Cochlear-implant (CI) users rely on temporal envelope modulations (TEMs) to understand speech, and clinical outcomes depend on the accuracy with which these TEMs are encoded by the electrically-stimulated neural ensembles. Non-invasive EEG measures of this encoding could help clinicians identify and disable electrodes that evoke poor neural responses so as to improve CI outcomes. However, recording EEG during CI stimulation reveals huge stimulation artifacts that are up to orders of magnitude larger than the neural response. Here we used a custom-built EEG system having an exceptionally high sample rate to accurately measure the artefact, which we then removed using linear interpolation so as to reveal the neural response during continuous electrical stimulation. In ten adult CI users, we measured the 40-Hz electrically evoked auditory steady-state response (eASSR) and electrically evoked auditory change complex (eACC) to amplitude-modulated 900-pulses-per-second pulse trains, stimulated in monopolar mode (i.e. the clinical default), and at different modulation depths. We successfully measured artifact-free 40-Hz eASSRs and eACCs. Moreover, we found that the 40-Hz eASSR, in contrast to the eACC, showed substantial responses even at shallow modulation depths. We argue that the 40-Hz eASSR is a clinically feasible objective measure to assess TEM encoding in CI users.
Collapse
Affiliation(s)
- Robin Gransier
- Department of Neurosciences, KU Leuven, ExpORL, Herestraat 49, Box 721, 3000, Leuven, Belgium.
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Jan Wouters
- Department of Neurosciences, KU Leuven, ExpORL, Herestraat 49, Box 721, 3000, Leuven, Belgium
| |
Collapse
|
26
|
Goehring T, Arenberg JG, Carlyon RP. Using Spectral Blurring to Assess Effects of Channel Interaction on Speech-in-Noise Perception with Cochlear Implants. J Assoc Res Otolaryngol 2020; 21:353-371. [PMID: 32519088 PMCID: PMC7445227 DOI: 10.1007/s10162-020-00758-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 01/07/2023] Open
Abstract
Cochlear implant (CI) listeners struggle to understand speech in background noise. Interactions between electrode channels due to current spread increase the masking of speech by noise and lead to difficulties with speech perception. Strategies that reduce channel interaction therefore have the potential to improve speech-in-noise perception by CI listeners, but previous results have been mixed. We investigated the effects of channel interaction on speech-in-noise perception and its association with spectro-temporal acuity in a listening study with 12 experienced CI users. Instead of attempting to reduce channel interaction, we introduced spectral blurring to simulate some of the effects of channel interaction by adjusting the overlap between electrode channels at the input level of the analysis filters or at the output by using several simultaneously stimulated electrodes per channel. We measured speech reception thresholds in noise as a function of the amount of blurring applied to either all 15 electrode channels or to 5 evenly spaced channels. Performance remained roughly constant as the amount of blurring applied to all channels increased up to some knee point, above which it deteriorated. This knee point differed across listeners in a way that correlated with performance on a non-speech spectro-temporal task, and is proposed here as an individual measure of channel interaction. Surprisingly, even extreme amounts of blurring applied to 5 channels did not affect performance. The effects on speech perception in noise were similar for blurring at the input and at the output of the CI. The results are in line with the assumption that experienced CI users can make use of a limited number of effective channels of information and tolerate some deviations from their everyday settings when identifying speech in the presence of a masker. Furthermore, these findings may explain the mixed results by strategies that optimized or deactivated a small number of electrodes evenly distributed along the array by showing that blurring or deactivating one-third of the electrodes did not harm speech-in-noise performance.
Collapse
Affiliation(s)
- Tobias Goehring
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Julie G Arenberg
- Massachusetts Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA
| | - Robert P Carlyon
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
27
|
Auditory performance of post-lingually deafened adult cochlear implant recipients using electrode deactivation based on postoperative cone beam CT images. Eur Arch Otorhinolaryngol 2020; 278:977-986. [PMID: 32588169 DOI: 10.1007/s00405-020-06156-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE The use of image processing techniques to estimate the position of intra-cochlear electrodes has enabled the creation of personalized maps to meet the individual stimulation needs of cochlear implant (CI) recipients. The aim of this study was to evaluate a novel technique of electrode deactivation based on postoperative cone beam computed tomography (CBCT) images in post-lingually deafened adult CI recipients. METHODS Based on postoperative CBCT images, the positioning of the electrodes was estimated in relation to the modiolus in 14 ears of 13 post-lingually deafened adult CI recipients. The electrodes sub-optimally positioned or involved in kinking and tip fold-over were deactivated. Speech perception scores in silence and in noise were obtained from subjects using the standard map and were followed up 4 weeks after image-based electrode deactivation reprogramming technique (IBEDRT). The participants selected their preferred map after 4 weeks of IBEDRT use. RESULTS There were statistically significant improvements in the speech recognition tests in silence and noise when comparing IBEDRT performance to the standard map. All participants elected the IBEDRT as their new preferred map. CONCLUSIONS IBEDRT is a promising technique for fitting CI recipients and minimizing channel interaction increased by the positioning of the electrodes sub-optimally placed, thereby improving their auditory performance. We propose a novel electrode deactivation technique based on postoperative CBCT imaging, with a limited number of deactivated electrodes and a low-dosing scanning which could be applied for clinical routine.
Collapse
|
28
|
Kreft HA, DeVries LA, Arenberg JG, Oxenham AJ. Comparing Rapid and Traditional Forward-Masked Spatial Tuning Curves in Cochlear-Implant Users. Trends Hear 2019; 23:2331216519851306. [PMID: 31134842 PMCID: PMC6540501 DOI: 10.1177/2331216519851306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A rapid forward-masked spatial tuning curve measurement procedure, based on Bekesy tracking, was adapted and evaluated for use with cochlear implants. Twelve postlingually-deafened adult cochlear-implant users participated. Spatial tuning curves using the new procedure and using a traditional forced-choice adaptive procedure resulted in similar estimates of parameters. The Bekesy-tracking method was almost 3 times faster than the forced-choice procedure, but its test-retest reliability was significantly poorer. Although too time-consuming for general clinical use, the new method may have some benefits in individual cases, where identifying electrodes with poor spatial selectivity as candidates for deactivation is deemed necessary.
Collapse
Affiliation(s)
- Heather A Kreft
- 1 Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Lindsay A DeVries
- 2 Department Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Julie G Arenberg
- 3 Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Andrew J Oxenham
- 1 Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Schvartz-Leyzac KC, Colesa DJ, Buswinka CJ, Swiderski DL, Raphael Y, Pfingst BE. Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs. Hear Res 2019; 383:107809. [PMID: 31630082 DOI: 10.1016/j.heares.2019.107809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022]
Abstract
The electrically-evoked compound action potential (ECAP) is correlated with spiral ganglion neuron (SGN) density in cochlear implanted animals. In a previous study, we showed that ECAP amplitude growth function (AGF) linear slopes for stimuli with a constant interphase gap (IPG) changed significantly over time following implantation. Related studies have also shown that 1) IPG sensitivity for ECAP measures ("IPG Effect") is related to SGN density in animals and 2) the ECAP IPG Effect is related to speech recognition performance in humans with cochlear implants. The current study examined how the ECAP IPG Effect changed following cochlear implantation in four non-deafened guinea pigs with residual inner hair cells (IHCs) and 5 deafened, neurotrophin-treated guinea pigs. Simple impedances were measured on the same days as the ECAP measures. Generally, non-deafened implanted animals with higher SGN survival demonstrated higher ECAP AGF linear slope and peak amplitude values than the deafened, implanted guinea pigs. The ECAP IPG Effect for the AGF slopes and peak amplitudes was also larger in the hearing animals. The N1 latencies for a constant IPG were not different between groups, but the N1 latency IPG Effect was smaller in the non-deafened, implanted animals. Similar to previously reported results, ECAP measures using a fixed or changing IPG required as many as three months after implantation before a stable point could be calculated, but this was dependent on the animal and condition. For all ECAP measures most animals showed greater variance in the first 30 days post-implantation. Post-implantation changes in ECAPs and impedances were not correlated with one another. Results from this study are helpful for estimating the mechanisms underlying ECAP characteristics and have implications for clinical application of the ECAP measures in long-term human cochlear implant recipients. Specifically, these measures could help to monitor neural health over a period of time, or during a time of stability these measures could be used to help select electrode sites for activation in clinical programming.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA; Hearing Rehabilitation Center, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI, 48108.
| | - Deborah J Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Christopher J Buswinka
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| |
Collapse
|
30
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope encoding: Implications for within- and across-ear envelope comparison. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1189. [PMID: 31472559 PMCID: PMC7051005 DOI: 10.1121/1.5121423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 05/17/2023]
Abstract
Separating sound sources in acoustic environments relies on making ongoing, highly accurate spectro-temporal comparisons. However, listeners with hearing impairment may have varying quality of temporal encoding within or across ears, which may limit the listeners' ability to make spectro-temporal comparisons between places-of-stimulation. In this study in normal hearing listeners, depth of amplitude modulation (AM) for sinusoidally amplitude modulated (SAM) tones was manipulated in an effort to reduce the coding of periodicity in the auditory nerve. The ability to judge differences in AM rates was studied for stimuli presented to different cochlear places-of-stimulation, within- or across-ears. It was hypothesized that if temporal encoding was poorer for one tone in a pair, then sensitivity to differences in AM rate of the pair would decrease. Results indicated that when the depth of AM was reduced from 50% to 20% for one SAM tone in a pair, sensitivity to differences in AM rate decreased. Sensitivity was greatest for AM rates near 90 Hz and depended upon the places-of-stimulation being compared. These results suggest that degraded temporal representations in the auditory nerve for one place-of-stimulation could lead to deficits comparing that temporal information with other places-of-stimulation.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
31
|
|
32
|
Goehring T, Archer-Boyd A, Deeks JM, Arenberg JG, Carlyon RP. A Site-Selection Strategy Based on Polarity Sensitivity for Cochlear Implants: Effects on Spectro-Temporal Resolution and Speech Perception. J Assoc Res Otolaryngol 2019; 20:431-448. [PMID: 31161338 PMCID: PMC6646483 DOI: 10.1007/s10162-019-00724-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Thresholds of asymmetric pulses presented to cochlear implant (CI) listeners depend on polarity in a way that differs across subjects and electrodes. It has been suggested that lower thresholds for cathodic-dominant compared to anodic-dominant pulses reflect good local neural health. We evaluated the hypothesis that this polarity effect (PE) can be used in a site-selection strategy to improve speech perception and spectro-temporal resolution. Detection thresholds were measured in eight users of Advanced Bionics CIs for 80-pps, triphasic, monopolar pulse trains where the central high-amplitude phase was either anodic or cathodic. Two experimental MAPs were then generated for each subject by deactivating the five electrodes with either the highest or the lowest PE magnitudes (cathodic minus anodic threshold). Performance with the two experimental MAPs was evaluated using two spectro-temporal tests (Spectro-Temporal Ripple for Investigating Processor EffectivenesS (STRIPES; Archer-Boyd et al. in J Acoust Soc Am 144:2983–2997, 2018) and Spectral-Temporally Modulated Ripple Test (SMRT; Aronoff and Landsberger in J Acoust Soc Am 134:EL217–EL222, 2013)) and with speech recognition in quiet and in noise. Performance was also measured with an experimental MAP that used all electrodes, similar to the subjects’ clinical MAP. The PE varied strongly across subjects and electrodes, with substantial magnitudes relative to the electrical dynamic range. There were no significant differences in performance between the three MAPs at group level, but there were significant effects at subject level—not all of which were in the hypothesized direction—consistent with previous reports of a large variability in CI users’ performance and in the potential benefit of site-selection strategies. The STRIPES but not the SMRT test successfully predicted which strategy produced the best speech-in-noise performance on a subject-by-subject basis. The average PE across electrodes correlated significantly with subject age, duration of deafness, and speech perception scores, consistent with a relationship between PE and neural health. These findings motivate further investigations into site-specific measures of neural health and their application to CI processing strategies.
Collapse
Affiliation(s)
- Tobias Goehring
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Alan Archer-Boyd
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Julie G Arenberg
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA
| | - Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
33
|
Abstract
Supplemental Digital Content is available in the text. Objectives: The standard, monopolar (MP) electrode configuration used in commercially available cochlear implants (CI) creates a broad electrical field, which can lead to unwanted channel interactions. Use of more focused configurations, such as tripolar and phased array, has led to mixed results for improving speech understanding. The purpose of the present study was to assess the efficacy of a physiologically inspired configuration called dynamic focusing, using focused tripolar stimulation at low levels and less focused stimulation at high levels. Dynamic focusing may better mimic cochlear excitation patterns in normal acoustic hearing, while reducing the current levels necessary to achieve sufficient loudness at high levels. Design: Twenty postlingually deafened adult CI users participated in the study. Speech perception was assessed in quiet and in a four-talker babble background noise. Speech stimuli were closed-set spondees in noise, and medial vowels at 50 and 60 dB SPL in quiet and in noise. The signal to noise ratio was adjusted individually such that performance was between 40 and 60% correct with the MP strategy. Subjects were fitted with three experimental strategies matched for pulse duration, pulse rate, filter settings, and loudness on a channel-by-channel basis. The strategies included 14 channels programmed in MP, fixed partial tripolar (σ = 0.8), and dynamic partial tripolar (σ at 0.8 at threshold and 0.5 at the most comfortable level). Fifteen minutes of listening experience was provided with each strategy before testing. Sound quality ratings were also obtained. Results: Speech perception performance for vowel identification in quiet at 50 and 60 dB SPL and for spondees in noise was similar for the three tested strategies. However, performance on vowel identification in noise was significantly better for listeners using the dynamic focusing strategy. Sound quality ratings were similar for the three strategies. Some subjects obtained more benefit than others, with some individual differences explained by the relation between loudness growth and the rate of change from focused to broader stimulation. Conclusions: These initial results suggest that further exploration of dynamic focusing is warranted. Specifically, optimizing such strategies on an individual basis may lead to improvements in speech perception for more adult listeners and improve how CIs are tailored. Some listeners may also need a longer period of time to acclimate to a new program.
Collapse
|
34
|
DiNino M, O'Brien G, Bierer SM, Jahn KN, Arenberg JG. The Estimated Electrode-Neuron Interface in Cochlear Implant Listeners Is Different for Early-Implanted Children and Late-Implanted Adults. J Assoc Res Otolaryngol 2019; 20:291-303. [PMID: 30911952 PMCID: PMC6513958 DOI: 10.1007/s10162-019-00716-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 03/03/2019] [Indexed: 12/01/2022] Open
Abstract
Cochlear implant (CI) programming is similar for all CI users despite limited understanding of the electrode-neuron interface (ENI). The ENI refers to the ability of each CI electrode to effectively stimulate target auditory neurons and is influenced by electrode position, neural health, cochlear geometry, and bone and tissue growth in the cochlea. Hearing history likely affects these variables, suggesting that the efficacy of each channel of stimulation differs between children who were implanted at young ages and adults who lost hearing and received a CI later in life. This study examined whether ENI quality differed between early-implanted children and late-implanted adults. Auditory detection thresholds and most comfortable levels (MCLs) were obtained with monopolar and focused electrode configurations. Channel-to-channel variability and dynamic range were calculated for both types of stimulation. Electrical field imaging data were also acquired to estimate levels of intracochlear resistance. Children exhibited lower average auditory perception thresholds and MCLs compared with adults, particularly with focused stimulation. However, neither dynamic range nor channel-to-channel threshold variability differed between groups, suggesting that children’s range of perceptible current was shifted downward. Children also demonstrated increased intracochlear resistance levels relative to the adult group, possibly reflecting greater ossification or tissue growth after CI surgery. These results illustrate physical and perceptual differences related to the ENI of early-implanted children compared with late-implanted adults. Evidence from this study demonstrates a need for further investigation of the ENI in CI users with varying hearing histories.
Collapse
Affiliation(s)
- Mishaela DiNino
- Department of Psychology, Carnegie Mellon University, 5000 Forbes, Ave., Pittsburgh, PA, 15213, USA.
| | - Gabrielle O'Brien
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Box 354875, Seattle, WA, 98105, USA
| | - Steven M Bierer
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Box 354875, Seattle, WA, 98105, USA
| | - Kelly N Jahn
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Box 354875, Seattle, WA, 98105, USA
| | - Julie G Arenberg
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles St., Boston, MA, 02114, USA
| |
Collapse
|
35
|
Gifford RH, Noble JH, Camarata SM, Sunderhaus LW, Dwyer RT, Dawant BM, Dietrich MS, Labadie RF. The Relationship Between Spectral Modulation Detection and Speech Recognition: Adult Versus Pediatric Cochlear Implant Recipients. Trends Hear 2019; 22:2331216518771176. [PMID: 29716437 PMCID: PMC5949922 DOI: 10.1177/2331216518771176] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Adult cochlear implant (CI) recipients demonstrate a reliable relationship between spectral modulation detection and speech understanding. Prior studies documenting this relationship have focused on postlingually deafened adult CI recipients—leaving an open question regarding the relationship between spectral resolution and speech understanding for adults and children with prelingual onset of deafness. Here, we report CI performance on the measures of speech recognition and spectral modulation detection for 578 CI recipients including 477 postlingual adults, 65 prelingual adults, and 36 prelingual pediatric CI users. The results demonstrated a significant correlation between spectral modulation detection and various measures of speech understanding for 542 adult CI recipients. For 36 pediatric CI recipients, however, there was no significant correlation between spectral modulation detection and speech understanding in quiet or in noise nor was spectral modulation detection significantly correlated with listener age or age at implantation. These findings suggest that pediatric CI recipients might not depend upon spectral resolution for speech understanding in the same manner as adult CI recipients. It is possible that pediatric CI users are making use of different cues, such as those contained within the temporal envelope, to achieve high levels of speech understanding. Further investigation is warranted to investigate the relationship between spectral and temporal resolution and speech recognition to describe the underlying mechanisms driving peripheral auditory processing in pediatric CI users.
Collapse
Affiliation(s)
- René H Gifford
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jack H Noble
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Stephen M Camarata
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Linsey W Sunderhaus
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert T Dwyer
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benoit M Dawant
- 2 Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Mary S Dietrich
- 4 Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Labadie
- 2 Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
36
|
Responsiveness of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency. Ear Hear 2019; 39:238-250. [PMID: 28678078 DOI: 10.1097/aud.0000000000000467] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES This study aimed to (1) investigate the responsiveness of the cochlear nerve (CN) to a single biphasic-electrical pulse in implanted children with cochlear nerve deficiency (CND) and (2) compare their results with those measured in implanted children with normal-size CNs. DESIGN Participants included 23 children with CND (CND1 to CND23) and 18 children with normal-size CNs (S1 to S18). All subjects except for CND1 used Cochlear Nucleus cochlear implants with contour electrode arrays in their test ears. CND1 was implanted with a Cochlear Nucleus Freedom cochlear implant with a straight electrode array in the test ear. For each subject, the CN input/output (I/O) function and the refractory recovery function were measured using electrophysiological measures of the electrically evoked compound action potential (eCAP) at multiple electrode sites across the electrode array. Dependent variables included eCAP threshold, the maximum eCAP amplitude, slope of the I/O function, and time-constants of the refractory recovery function. Slopes of I/O functions were estimated using statistical modeling with a sigmoidal function. Recovery time-constants, including measures of the absolute refractory period and the relative refractory period, were estimated using statistical modeling with an exponential decay function. Generalized linear mixed-effect models were used to evaluate the effects of electrode site on the dependent variables measured in children with CND and to compare results of these dependent variables between subject groups. RESULTS The eCAP was recorded at all test electrodes in children with normal-size CNs. In contrast, the eCAP could not be recorded at any electrode site in 4 children with CND. For all other children with CND, the percentage of electrodes with measurable eCAPs decreased as the stimulating site moved in a basal-to-apical direction. For children with CND, the stimulating site had a significant effect on the slope of the I/O functions and the relative refractory period but showed no significant effect on eCAP threshold and the maximum eCAP amplitude. Children with CND had significantly higher eCAP thresholds, smaller maximum eCAP amplitudes, flatter slopes of I/O functions, and longer absolute refractory periods than children with normal-size CNs. There was no significant difference in the relative refractory period measured in these two subject groups. CONCLUSIONS In children with CND, the functional status of the CN varied along the length of the cochlea. Compared with children with normal-size CNs, children with CND showed reduced CN responsiveness to electrical stimuli. The prolonged CN absolute refractory period in children with CND might account for, at least partially, the observed benefit of using relatively slow pulse rate in these patients.
Collapse
|
37
|
Assessing the Relationship Between the Electrically Evoked Compound Action Potential and Speech Recognition Abilities in Bilateral Cochlear Implant Recipients. Ear Hear 2019; 39:344-358. [PMID: 28885234 DOI: 10.1097/aud.0000000000000490] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The primary objective of the present study was to examine the relationship between suprathreshold electrically evoked compound action potential (ECAP) measures and speech recognition abilities in bilateral cochlear implant listeners. We tested the hypothesis that the magnitude of ear differences in ECAP measures within a subject (right-left) could predict the difference in speech recognition performance abilities between that subject's ears (right-left). DESIGN To better control for across-subject variables that contribute to speech understanding, the present study used a within-subject design. Subjects were 10 bilaterally implanted adult cochlear implant recipients. We measured ECAP amplitudes and slopes of the amplitude growth function in both ears for each subject. We examined how each of these measures changed when increasing the interphase gap of the biphasic pulses. Previous animal studies have shown correlations between these ECAP measures and auditory nerve survival. Speech recognition measures included speech reception thresholds for sentences in background noise, as well as phoneme discrimination in quiet and in noise. RESULTS Results showed that the between-ear difference (right-left) of one specific ECAP measure (increase in amplitude growth function slope as the interphase gap increased from 7 to 30 µs) was significantly related to the between-ear difference (right-left) in speech recognition. Frequency-specific response patterns for ECAP data and consonant transmission cues support the hypothesis that this particular ECAP measure may represent localized functional acuity. CONCLUSIONS The results add to a growing body of literature suggesting that when using a well-controlled research design, there is evidence that underlying neural function is related to postoperative performance with a cochlear implant.
Collapse
|
38
|
Sagi E, Svirsky MA. Deactivating cochlear implant electrodes to improve speech perception: A computational approach. Hear Res 2018; 370:316-328. [PMID: 30396747 DOI: 10.1016/j.heares.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
A potential bottleneck to improving speech perception performance in cochlear implant (CI) users is that some of their electrodes may poorly encode speech information. Several studies have examined the effect of deactivating poorly encoding electrodes on speech perception with mixed results. Many of these studies focused on identifying poorly encoding electrodes by some measure (e.g. electrode discrimination, pitch ordering, threshold, CT-guided, masked modulation detection), but provide inconsistent criteria about which electrodes, and how many, should be deactivated, and without considering how speech information becomes distributed across the electrode array. The present simulation study addresses this issue using computational approaches. Previously validated models were used to generate predictions of speech scores as a function of all possible combinations of active electrodes in a 22-electrode array in three groups of hypothetical subjects representative of relatively better, moderate, and poorer performing CI users. Using high-performance computing, over 500 million predictions were generated. Although deactivation of the poorest encoding electrodes sometimes resulted in predicted benefit, this benefit was significantly less relative to predictions resulting from model-optimized deactivations. This trend persisted when using novel stimuli (i.e. other than those used for optimization) and when using different processing strategies. Optimum electrode deactivation patterns produced an average predicted increase in word scores of 10% with some scores increasing by more than 20%. Optimum electrode deactivation patterns typically included 11 to 19 (out of 22) active electrodes, depending on the performance group. Optimal active electrode combinations were those that maximized discrimination of speech cues, maintaining 80%-100% of the physical span of the array. The present study demonstrates the potential for further improving CI users' speech scores with appropriate selection of active electrodes.
Collapse
Affiliation(s)
- Elad Sagi
- New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
39
|
Brochier T, McKay C, McDermott H. Encoding speech in cochlear implants using simultaneous amplitude and rate modulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2042. [PMID: 30404505 DOI: 10.1121/1.5055989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
To improve speech perception for cochlear implant (CI) users, it is essential to improve the transmission of temporal envelopes. The most common speech processors deliver temporal envelopes via the CI using fixed-rate amplitude modulated (AM) pulse trains. Psychophysical studies suggest that rate modulation (RM) and AM are perceived by a shared temporal integration mechanism, but the potential for them to constructively combine to encode temporal envelopes has yet to be explored. In this experiment, a speech processing strategy called amplitude and rate temporal modulation was developed to encode speech temporal envelopes with simultaneous AM and RM. The strategy was tested for perception of clean speech at 60 and 40 dBA, and 60 dBA speech in noise (+10 dB SNR). The amount of RM was varied and the amount of AM was held constant to determine whether the addition of RM could enhance the perception of temporal envelopes and improve speech understanding. At the lowest RM amount, speech scores were poorest for all speech conditions. For 60 dBA clean speech and speech in noise, speech scores were significantly better at the highest RM amounts, suggesting that RM combined with AM can be used to enhance perception of temporal envelopes.
Collapse
Affiliation(s)
- Tim Brochier
- Department of Medical Bionics, University of Melbourne, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Colette McKay
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Hugh McDermott
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
40
|
Carlyon RP, Cosentino S, Deeks JM, Parkinson W, Arenberg JG. Effect of Stimulus Polarity on Detection Thresholds in Cochlear Implant Users: Relationships with Average Threshold, Gap Detection, and Rate Discrimination. J Assoc Res Otolaryngol 2018; 19:559-567. [PMID: 29881937 PMCID: PMC6226408 DOI: 10.1007/s10162-018-0677-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/18/2018] [Indexed: 12/03/2022] Open
Abstract
Previous psychophysical and modeling studies suggest that cathodic stimulation by a cochlear implant (CI) may preferentially activate the peripheral processes of the auditory nerve, whereas anodic stimulation may preferentially activate the central axons. Because neural degeneration typically starts with loss of the peripheral processes, lower thresholds for cathodic than for anodic stimulation may indicate good local neural survival. We measured thresholds for 99-pulse-per-second trains of triphasic (TP) pulses where the central high-amplitude phase was either anodic (TP-A) or cathodic (TP-C). Thresholds were obtained in monopolar mode from four or five electrodes and a total of eight ears from subjects implanted with the Advanced Bionics CI. When between-subject differences were removed, there was a modest but significant correlation between the polarity effect (TP-C threshold minus TP-A threshold) and the average of TP-C and TP-A thresholds, consistent with the hypothesis that a large polarity effect corresponds to good neural survival. When data were averaged across electrodes for each subject, relatively low thresholds for TP-C correlated with a high "upper limit" (the pulse rate up to which pitch continues to increase) from a previous study (Cosentino et al. J Assoc Otolaryngol 17:371-382). Overall, the results provide modest indirect support for the hypothesis that the polarity effect provides an estimate of local neural survival.
Collapse
Affiliation(s)
- Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Stefano Cosentino
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Wendy Parkinson
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA
| | - Julie G Arenberg
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA
| |
Collapse
|
41
|
Mathew R, Vickers D, Boyle P, Shaida A, Selvadurai D, Jiang D, Undurraga J. Development of electrophysiological and behavioural measures of electrode discrimination in adult cochlear implant users. Hear Res 2018; 367:74-87. [DOI: 10.1016/j.heares.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
42
|
Zhou N, Cadmus M, Dong L, Mathews J. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning. J Assoc Res Otolaryngol 2018; 19:317-330. [PMID: 29696448 DOI: 10.1007/s10162-018-0663-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
Prior research has shown that in electrical hearing, cochlear implant (CI) users' speech recognition performance is related in part to their ability to detect temporal modulation (i.e., modulation sensitivity). Previous studies have also shown better speech recognition when selectively stimulating sites with good modulation sensitivity rather than all stimulation sites. Site selection based on channel interaction measures, such as those using imaging or psychophysical estimates of spread of neural excitation, has also been shown to improve speech recognition. This led to the question of whether temporal modulation sensitivity and spatial selectivity of neural excitation are two related variables. In the present study, CI users' modulation sensitivity was compared for sites with relatively broad or narrow neural excitation patterns. This was achieved by measuring temporal modulation detection thresholds (MDTs) at stimulation sites that were significantly different in their sharpness of the psychophysical spatial tuning curves (PTCs) and measuring MDTs at the same sites in monopolar (MP) and bipolar (BP) stimulation modes. Nine postlingually deafened subjects implanted with Cochlear Nucleus® device took part in the study. Results showed a significant correlation between the sharpness of PTCs and MDTs, indicating that modulation detection benefits from a more spatially restricted neural activation pattern. There was a significant interaction between stimulation site and mode. That is, using BP stimulation only improved MDTs at stimulation sites with broad PTCs but had no effect or sometimes a detrimental effect on MDTs at stimulation sites with sharp PTCs. This interaction could suggest that a criterion number of nerve fibers is needed to achieve optimal temporal resolution, and, to achieve optimized speech recognition outcomes, individualized selection of site-specific current focusing strategies may be necessary. These results also suggest that the removal of stimulation sites measured with poor MDTs might improve both temporal and spectral resolution.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA.
| | - Matthew Cadmus
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| | - Lixue Dong
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| | - Juliana Mathews
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| |
Collapse
|
43
|
The cochlear implant and possibilities for narrowing the remaining gaps between prosthetic and normal hearing. World J Otorhinolaryngol Head Neck Surg 2018; 3:200-210. [PMID: 29780963 PMCID: PMC5956133 DOI: 10.1016/j.wjorl.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Background The cochlear implant has become the standard of care for severe or worse losses in hearing and indeed has produced the first substantial restoration of a lost or absent human sense using a medical intervention. However, the devices are not perfect and many efforts to narrow the remaining gaps between prosthetic and normal hearing are underway. Objective To assess the present status of cochlear implants and to describe possibilities for improving them. Results The present-day devices work well in quiet conditions for the great majority of users. However, not all users have high levels of speech reception in quiet and nearly all users struggle with speech reception in typically noisy acoustic environments. In addition, perception of sounds more complex than speech, such as most music, is generally poor unless residual hearing at low frequencies can be stimulated acoustically in conjunction with the electrical stimuli provided by the implant. Possibilities for improving the present devices include increasing the spatial specificity of neural excitation by reducing masking effects or with new stimulus modes; prudent pruning of interfering or otherwise detrimental electrodes from the stimulation map; a further relaxation in the criteria for implant candidacy, based on recent evidence from persons with high levels of residual hearing and to allow many more people to benefit from cochlear implants; and “top down” or “brain centric” approaches to implant designs and applications. Conclusions Progress in the development of the cochlear implant and related treatments has been remarkable but room remains for improvements. The future looks bright as there are multiple promising possibilities for improvements and many talented teams are pursuing them.
Collapse
|
44
|
DeVries L, Arenberg JG. Current Focusing to Reduce Channel Interaction for Distant Electrodes in Cochlear Implant Programs. Trends Hear 2018; 22:2331216518813811. [PMID: 30488764 PMCID: PMC6277758 DOI: 10.1177/2331216518813811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
Speech understanding abilities are highly variable among cochlear implant (CI) listeners. Poor electrode-neuron interfaces (ENIs) caused by sparse neural survival or distant electrode placement may lead to increased channel interaction and reduced speech perception. Currently, it is not possible to directly measure neural survival in CI listeners; therefore, obtaining information about electrode position is an alternative approach to assessing ENIs. This information can be estimated with computerized tomography (CT) imaging; however, postoperative CT imaging is not often available. A reliable method to assess channel interaction, such as the psychophysical tuning curve (PTC), offers an alternative way to identify poor ENIs. This study aimed to determine (a) the within-subject relationship between CT-estimated electrode distance and PTC bandwidths, and (b) whether using focused stimulation on channels with suspected poor ENI improves vowel identification and sentence recognition. In 13 CI listeners, CT estimates of electrode-to-modiolus distance and PTCs bandwidths were measured for all available electrodes. Two test programs were created, wherein a subset of electrodes used focused stimulation based on (a) broad PTC bandwidth (Tuning) and (b) far electrode-to-modiolus distance (Distance). Two control programs were also created: (a) Those channels not focused in the Distance program (Inverse-Control), and (b) an all-channel monopolar program (Monopolar-Control). Across subjects, scores on the Distance and Tuning programs were significantly higher than the Inverse-Control program, and similar to the Monopolar-Control program. Subjective ratings were similar for all programs. These findings suggest that focusing channels suspected to have a high degree of channel interaction result in quite different outcomes, acutely.
Collapse
Affiliation(s)
- Lindsay DeVries
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Julie G. Arenberg
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
|
46
|
Mathew R, Undurraga J, Li G, Meerton L, Boyle P, Shaida A, Selvadurai D, Jiang D, Vickers D. Objective assessment of electrode discrimination with the auditory change complex in adult cochlear implant users. Hear Res 2017; 354:86-101. [DOI: 10.1016/j.heares.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/16/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
|
47
|
Schvartz-Leyzac KC, Zwolan TA, Pfingst BE. Effects of electrode deactivation on speech recognition in multichannel cochlear implant recipients. Cochlear Implants Int 2017; 18:324-334. [PMID: 28793847 DOI: 10.1080/14670100.2017.1359457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The objective of the current study is to evaluate how speech recognition performance is affected by the number of active electrodes that are turned off in multichannel cochlear implants. Several recent studies have demonstrated positive effects of deactivating stimulation sites based on an objective measure in cochlear implant processing strategies. Previous studies using an analysis of variance have shown that, on average, cochlear implant listeners' performance does not improve beyond eight active electrodes. We hypothesized that using a generalized linear mixed model would allow for better examination of this question. METHODS Seven peri- and post-lingual adult cochlear implant users (eight ears) were tested on speech recognition tasks using experimental MAPs which contained either 8, 12, 16 or 20 active electrodes. Speech recognition tests included CUNY sentences in speech-shaped noise, TIMIT sentences in quiet as well as vowel (CVC) and consonant (CV) stimuli presented in quiet and in signal-to-noise ratios of 0 and +10 dB. RESULTS The speech recognition threshold in noise (dB SNR) significantly worsened by approximately 2 dB on average as the number of active electrodes was decreased from 20 to 8. Likewise, sentence recognition scores in quiet significantly decreased by an average of approximately 12%. DISCUSSION/CONCLUSION Cochlear implant recipients can utilize and benefit from using more than eight spectral channels when listening to complex sentences or sentences in background noise. The results of the current study suggest a conservative approach for turning off stimulation sites is best when using site-selection procedures.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- a Department of Otolaryngology , Kresge Hearing Research Institute, University of Michigan , Ann Arbor , USA.,b Department of Otolaryngology , Hearing Rehabilitation Center, University of Michigan , Ann Arbor , USA
| | - Teresa A Zwolan
- b Department of Otolaryngology , Hearing Rehabilitation Center, University of Michigan , Ann Arbor , USA
| | - Bryan E Pfingst
- a Department of Otolaryngology , Kresge Hearing Research Institute, University of Michigan , Ann Arbor , USA
| |
Collapse
|
48
|
He S, Teagle HFB, Buchman CA. The Electrically Evoked Compound Action Potential: From Laboratory to Clinic. Front Neurosci 2017; 11:339. [PMID: 28690494 PMCID: PMC5481377 DOI: 10.3389/fnins.2017.00339] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
The electrically evoked compound action potential (eCAP) represents the synchronous firing of a population of electrically stimulated auditory nerve fibers. It can be directly recorded on a surgically exposed nerve trunk in animals or from an intra-cochlear electrode of a cochlear implant. In the past two decades, the eCAP has been widely recorded in both animals and clinical patient populations using different testing paradigms. This paper provides an overview of recording methodologies and response characteristics of the eCAP, as well as its potential applications in research and clinical situations. Relevant studies are reviewed and implications for clinicians are discussed.
Collapse
Affiliation(s)
- Shuman He
- Center for Hearing Research, Boys Town National Research HospitalOmaha, NE, United States
| | - Holly F. B. Teagle
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel HillChapel Hill, NC, United States
| | - Craig A. Buchman
- Department of Otolaryngology—Head and Neck Surgery, Washington UniversitySt. Louis, MO, United States
| |
Collapse
|
49
|
Gaudrain E, Deeks JM, Carlyon RP. Temporal Regularity Detection and Rate Discrimination in Cochlear-Implant Listeners. J Assoc Res Otolaryngol 2017; 18:387-397. [PMID: 27687041 PMCID: PMC5352605 DOI: 10.1007/s10162-016-0586-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 11/25/2022] Open
Abstract
Cochlear implants (CIs) convey fundamental-frequency information using primarily temporal cues. However, temporal pitch perception in CI users is weak and, when measured using rate discrimination tasks, deteriorates markedly as the rate increases beyond 300 pulses-per-second. Rate pitch may be weak because the electrical stimulation of the surviving neural population of the implant recipient may not allow accurate coding of inter-pulse time intervals. If so, this phenomenon should prevent listeners from detecting when a pulse train is physically temporally jittered. Performance in a jitter detection task was compared to that in a rate-pitch discrimination task. Stimuli were delivered using direct stimulation in cochlear implants, on a mid-array and an apical electrode, and at two different rates (100 and 300 pps). Average performance on both tasks was worse at the higher pulse rate and did not depend on electrode. However, there was a large variability across and within listeners that did not correlate between the two tasks, suggesting that rate-pitch judgement and regularity detection are to some extent limited by task-specific processes. Simulations with filtered pulse trains presented to NH listeners yielded broadly similar results, except that, for the rate discrimination task, the difference between performance with 100- and 300-pps base rates was smaller than observed for CI users.
Collapse
Affiliation(s)
- Etienne Gaudrain
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, CB2 7EF Cambridge, UK
- CNRS UMR 5292, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics, Université Lyon 1, 50 av. Tony Garnier, 69366 Lyon Cedex 7, France
- Department of Otorhinolaryngology, University Medical Center Groningen-University of Groningen, Huispostcode BB20, PO Box 30.001, 9700 RB Groningen, Netherlands
| | - John M. Deeks
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, CB2 7EF Cambridge, UK
| | - Robert P. Carlyon
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, CB2 7EF Cambridge, UK
| |
Collapse
|
50
|
Scheperle RA. Suprathreshold compound action potential amplitude as a measure of auditory function in cochlear implant users. J Otol 2017; 12:18-28. [PMID: 29937833 PMCID: PMC6011805 DOI: 10.1016/j.joto.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 10/28/2022] Open
Abstract
Electrically evoked compound action potential (eCAP) amplitudes elicited at suprathreshold levels were assessed as a measure of the effectiveness of cochlear implant (CI) stimulation. Twenty-one individuals participated; one was excluded due to facial stimulation during eCAP testing. For each participant, eCAPs were elicited with stimulation from seven electrodes near the upper limit of the individual's electrical dynamic range. A reduced-channel CI program was created using those same seven electrodes, and participants performed a vowel discrimination task. Consistent with previous reports, eCAP amplitudes varied across tested electrodes; the profiles were unique to each individual. In 6 subjects (30%), eCAP amplitude variability was partially explained by the impedance of the recording electrode. The remaining amplitude variability within subjects, and the variability observed across subjects could not be explained by recording electrode impedance. This implies that other underlying factors, such as variations in neural status across the array, are responsible. Across-site mean eCAP amplitude was significantly correlated with vowel discrimination scores (r2 = 0.56). A single eCAP amplitude measured from the middle of the array was also significantly correlated with vowel discrimination, but the correlation was weaker (r2 = 0.37), though not statistically different from the across-site mean. Normalizing each eCAP amplitude by its associated recording electrode impedance did not improve the correlation with vowel discrimination (r2 = 0.52). Further work is needed to assess whether combining eCAP amplitude with other measures of the electrode-neural interface and/or with more central measures of auditory function provides a more complete picture of auditory function in CI recipients.
Collapse
|