1
|
Dudzik A, Dedukh D, Crochet PA, Rozenblut-Kościsty B, Rybka H, Doniol-Valcroze P, Choleva L, Ogielska M, Chmielewska M. Cytogenetics of the Hybridogenetic Frog Pelophylax grafi and Its Parental Species Pelophylax perezi. Genome Biol Evol 2023; 15:evad215. [PMID: 38015654 PMCID: PMC10715190 DOI: 10.1093/gbe/evad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
Hybrid taxa from the genus Pelophylax can propagate themselves in a modified way of sexual reproduction called hybridogenesis ensuring the formation of clonal gametes containing the genome of only one parental (host) species. Pelophylax grafi from South-Western Europe is a hybrid composed of P. ridibundus and P. perezi genomes and it lives with a host species P. perezi (P-G system). Yet it is unknown, whether non-Mendelian inheritance is fully maintained in such populations. In this study, we characterize P. perezi and P. grafi somatic karyotypes by using comparative genomic hybridization, genomic in situ hybridization, fluorescent in situ hybridization, and actinomycin D-DAPI. Here, we show the homeology of P. perezi and P. grafi somatic karyotypes to other Pelophylax taxa with 2n = 26 and equal contribution of ridibundus and perezi chromosomes in P. grafi which supports F1 hybrid genome constitution as well as a hemiclonal genome inheritance. We show that ridibundus chromosomes have larger regions of interstitial (TTAGGG)n repeats flanking the nucleolus organizing region on chromosome no. 10 and a high quantity of AT pairs in the centromeric regions. In P. perezi, we found species-specific sequences in metaphase chromosomes and marker structures in lampbrush chromosomes. Pericentromeric RrS1 repeat sequence was present in perezi and ridibundus chromosomes, but the blocks were stronger in ridibundus. Various cytogenetic techniques applied to the P-G system provide genome discrimination between ridibundus and perezi chromosomal sets. They could be used in studies of germ-line cells to explain patterns of clonal gametogenesis in P. grafi and broaden the knowledge about reproductive strategies in hybrid animals.
Collapse
Affiliation(s)
- Anna Dudzik
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | | | - Beata Rozenblut-Kościsty
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Hanna Rybka
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | | | - Lukáš Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Maria Ogielska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Magdalena Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| |
Collapse
|
2
|
Booker WW, Lemmon EM, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Gerhardt HC. Biogeography and the evolution of acoustic communication in the polyploid North American grey treefrog complex. Mol Ecol 2023; 32:4863-4879. [PMID: 37401503 DOI: 10.1111/mec.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
After polyploid species are formed, interactions between diploid and polyploid lineages may generate additional diversity in novel cytotypes and phenotypes. In anurans, mate choice by acoustic communication is the primary method by which individuals identify their own species and assess suitable mates. As such, the evolution of acoustic signals is an important mechanism for contributing to reproductive isolation and diversification in this group. Here, we estimate the biogeographical history of the North American grey treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid Hyla versicolor, focusing specifically on the geographical origin of whole genome duplication and the expansion of lineages out of glacial refugia. We then test for lineage-specific differences in mating signals by applying comparative methods to a large acoustic data set collected over 52 years that includes >1500 individual frogs. Along with describing the overall biogeographical history and call diversity, we found evidence that the geographical origin of H. versicolor and the formation of the midwestern polyploid lineage are both associated with glacial limits, and that the southwestern polyploid lineage is associated with a shift in acoustic phenotype relative to the diploid lineage with which they share a mitochondrial lineage. In H. chrysoscelis, we see that acoustic signals are largely split by Eastern and Western lineages, but that northward expansion along either side of the Appalachian Mountains is associated with further acoustic diversification. Overall, results of this study provide substantial clarity on the evolution of grey treefrogs as it relates to their biogeography and acoustic communication.
Collapse
Affiliation(s)
- William W Booker
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily Moriarty Lemmon
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| | - Johannes Schul
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Bare EA, Bogart JP, Wilson C, Murray DL, Hossie TJ. Diversity and composition of mixed-ploidy unisexual salamander assemblages reflect the key influence of host species. Oecologia 2023; 202:807-818. [PMID: 37615743 DOI: 10.1007/s00442-023-05440-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Understanding processes that govern and sustain biological diversity is a central goal of community ecology. Unisexual complexes, where reproduction depends on sperm from males of one or more bisexual host species, are rare and the processes driving their diversity and structure remain poorly understood. Unisexual Ambystoma salamanders produce distinct biotypes ('genomotypes') depending on which bisexual species they 'steal' sperm from. This reproductive mode should generate distinct assemblages depending on the locally available bisexual host species. Yet, how availability and relative abundance of multiple bisexual hosts influences composition and diversity of natural unisexual assemblages at local or regional scales remains unknown. We hypothesize that host identity most directly drives local assemblage composition, with host variation associated with increased beta and gamma diversity within unisexuals. We collected genetic samples from Ambystoma salamanders across Pelee Island, Ontario, Canada (2015-2022). Two host species were identified (A. texanum and A. laterale) with nine sites having a single host and one site having both. Unisexual assemblages were grouped into four clusters by similarity, with host identity being a key determinant. Gamma diversity increased as a result of distinct host-specific assemblages forming at different sites on the island (i.e., high beta diversity). Assemblage composition, but not diversity, was correlated with relative host abundance, which may reflect matching niche requirements between host and unisexual forms they produce. Our results demonstrate that diversity and structure of unisexual assemblages are clearly shaped by their host(s) and such systems may serve as models for studying how biotic interactions shape ecological communities.
Collapse
Affiliation(s)
- Evan A Bare
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Jim P Bogart
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Chris Wilson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9L 0G2, Canada
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON, Canada
| | - Dennis L Murray
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9L 0G2, Canada
- Biology Department, Trent University, Peterborough, ON, K9L 1Z8, Canada
| | - Thomas J Hossie
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9L 0G2, Canada
- Biology Department, Trent University, Peterborough, ON, K9L 1Z8, Canada
| |
Collapse
|
4
|
Peng F, Zhou L, Lu W, Gan R, Lu M, Li Z, Zhang X, Wang Y, Gui J. Genomic and Transcriptional Profiles of Kelch-like ( klhl) Gene Family in Polyploid Carassius Complex. Int J Mol Sci 2023; 24:8367. [PMID: 37176071 PMCID: PMC10179623 DOI: 10.3390/ijms24098367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Genome duplication supplies raw genetic materials and has been thought to be essential for evolutionary innovation and ecological adaptation. Here, we select Kelch-like (klhl) genes to study the evolution of the duplicated genes in the polyploid Carassius complex, including amphidiploid C. auratus and amphitriploid C. gibelio. Phylogenetic, chromosomal location and read coverage analyses indicate that most of Carassius klhl genes exhibit a 2:1 relationship with zebrafish orthologs and confirm two rounds of polyploidy, an allotetraploidy followed by an autotriploidy, occurred during Carassius evolution. The lineage-specific expansion and biased retention/loss of klhl genes are also found in Carassius. Transcriptome analyses across eight adult tissues and seven embryogenesis stages reveal varied expression dominance and divergence between the two species. The expression of klhls in response to Carassius herpesvirus 2 infection shows different expression changes corresponding to distinct herpesvirus resistances in three C. gibelio gynogenetic clones. Finally, we find that most C. gibelio klhl genes possess three alleles except eight genes that have lost one or two alleles due to genome rearrangement. The allele expression bias is prosperous for Cgklhl genes and varies during embryogenesis owning to the sequential expression manner of the alleles. The current study provides global insights into the genomic and transcriptional evolution of duplicated genes in a given superfamily resulting from multiple rounds of polyploidization.
Collapse
Affiliation(s)
- Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaojuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Booker WW, Gerhardt HC, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Lemmon EM. The Complex History of Genome Duplication and Hybridization in North American Gray Treefrogs. Mol Biol Evol 2022; 39:msab316. [PMID: 34791374 PMCID: PMC8826561 DOI: 10.1093/molbev/msab316] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polyploid speciation has played an important role in evolutionary history across the tree of life, yet there remain large gaps in our understanding of how polyploid species form and persist. Although systematic studies have been conducted in numerous polyploid complexes, recent advances in sequencing technology have demonstrated that conclusions from data-limited studies may be spurious and misleading. The North American gray treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid H. versicolor, has long been used as a model system in a variety of biological fields, yet all taxonomic studies to date were conducted with only a few loci from nuclear and mitochondrial genomes. Here, we utilized anchored hybrid enrichment and high-throughput sequencing to capture hundreds of loci along with whole mitochondrial genomes to investigate the evolutionary history of this complex. We used several phylogenetic and population genetic methods, including coalescent simulations and testing of polyploid speciation models with approximate Bayesian computation, to determine that H. versicolor was most likely formed via autopolyploidization from a now extinct lineage of H. chrysoscelis. We also uncovered evidence of significant hybridization between diploids and tetraploids where they co-occur, and show that historical hybridization between these groups led to the re-formation of distinct polyploid lineages following the initial whole-genome duplication event. Our study indicates that a wide variety of methods and explicit model testing of polyploid histories can greatly facilitate efforts to uncover the evolutionary history of polyploid complexes.
Collapse
Affiliation(s)
- William W Booker
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Johannes Schul
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
6
|
Integrated Proteomic and Transcriptomic Analysis of Gonads Reveal Disruption of Germ Cell Proliferation and Division, and Energy Storage in Glycogen in Sterile Triploid Pacific Oysters ( Crassostrea gigas). Cells 2021; 10:cells10102668. [PMID: 34685648 PMCID: PMC8534442 DOI: 10.3390/cells10102668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Triploid oysters have poor gonadal development, which can not only bring higher economic benefits but also have a potential application in the genetic containment of aquaculture. However, the key factors that influence germ cell development in triploid oysters remain unclear. In this study, data-independent acquisition coupled to transcriptomics was applied to identify genes/proteins related to sterility in triploid Crassostrea gigas. Eighty-four genes were differentially expressed at both the protein and mRNA levels between fertile and sterile females. For male oysters, 207 genes were differentially expressed in the transcriptomic and proteomic analysis. A large proportion of downregulated genes were related to cell division, which may hinder germ cell proliferation and cause apoptosis. In sterile triploid females, a primary cause of sterility may be downregulation in the expression levels of certain mitotic cell cycle-related genes. In sterile triploid males, downregulation of genes related to cell cycle and sperm motility indicated that the disruption of mitosis or meiosis and flagella defects may be linked with the blocking of spermatogenesis. Additionally, the genes upregulated in sterile oysters were mainly associated with the biosynthesis of glycogen and fat, suggesting that sterility in triploids stimulates the synthesis of glycogen and energy conservation in gonad tissue.
Collapse
|
7
|
Otero MA, Grenat PR, Bionda CL, Baraquet M, Pollo FE, Salas NE, Martino AL. Age and growth in an anuran hybrid zone: Fitness-related traits of the diploid/polyploid ground frog complex (genus Odontophrynus) from central Argentina. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Mills PB, Hossie TJ, Murray DL. Niche determinants in a salamander complex: Does hybridism or reproductive parasitism explain patterns of distribution? Ecosphere 2020. [DOI: 10.1002/ecs2.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Peter B. Mills
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| | - Thomas J. Hossie
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| | - Dennis L. Murray
- Department of Biology Trent University 1600 West Bank Drive Peterborough Ontario Canada
| |
Collapse
|
9
|
Tarkhnishvili D, Yanchukov A, Şahin MK, Gabelaia M, Murtskhvaladze M, Candan K, Galoyan E, Arakelyan M, Iankoshvili G, Kumlutaş Y, Ilgaz Ç, Matur F, Çolak F, Erdolu M, Kurdadze S, Barateli N, Anderson CL. Genotypic similarities among the parthenogenetic Darevskia rock lizards with different hybrid origins. BMC Evol Biol 2020; 20:122. [PMID: 32938384 PMCID: PMC7493426 DOI: 10.1186/s12862-020-01690-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The majority of parthenogenetic vertebrates derive from hybridization between sexually reproducing species, but the exact number of hybridization events ancestral to currently extant clonal lineages is difficult to determine. Usually, we do not know whether the parental species are able to contribute their genes to the parthenogenetic vertebrate lineages after the initial hybridization. In this paper, we address the hypothesis, whether some genotypes of seven phenotypically distinct parthenogenetic rock lizards (genus Darevskia) could have resulted from back-crosses of parthenogens with their presumed parental species. We also tried to identify, as precise as possible, the ancestral populations of all seven parthenogens. RESULTS We analysed partial mtDNA sequences and microsatellite genotypes of all seven parthenogens and their presumed ansectral species, sampled across the entire geographic range of parthenogenesis in this group. Our results confirm the previous designation of the parental species, but further specify the maternal populations that are likely ancestral to different parthenogenetic lineages. Contrary to the expectation of independent hybrid origins of the unisexual taxa, we found that genotypes at multiple loci were shared frequently between different parthenogenetic species. The highest proportions of shared genotypes were detected between (i) D. sapphirina and D. bendimahiensis and (ii) D. dahli and D. armeniaca, and less often between other parthenogens. In case (ii), genotypes at the remaining loci were notably distinct. CONCLUSIONS We suggest that both observations (i-ii) can be explained by two parthenogenetic forms tracing their origin to a single initial hybridization event. In case (ii), however, occasional gene exchange between the unisexual and the parental bisexual species could have taken place after the onset of parthenogenetic reproduction. Indeed, backcrossed polyploid hybrids are relatively frequent in Darevskia, although no direct evidence of recent gene flow has been previously documented. Our results further suggest that parthenogens are losing heterozygosity as a result of allelic conversion, hence their fitness is expected to decline over time as genetic diversity declines. Backcrosses with the parental species could be a rescue mechanism which might prevent this decline, and therefore increase the persistance of unisexual forms.
Collapse
Affiliation(s)
| | | | - Mehmet Kürşat Şahin
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Mariam Gabelaia
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | | | - Kamil Candan
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | | | | | | | - Yusuf Kumlutaş
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Çetin Ilgaz
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Ferhat Matur
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Faruk Çolak
- Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Meriç Erdolu
- Middle East Technical University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Sofiko Kurdadze
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Natia Barateli
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Cort L Anderson
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
10
|
Bogart JP, Burgess P, Fu J. Revisiting the evolution of the North American tetraploid treefrog ( Hyla versicolor). Genome 2020; 63:547-560. [PMID: 32791012 DOI: 10.1139/gen-2020-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyla chrysoscelis and H. versicolor are common treefrogs in eastern North America and are a cryptic diploid-tetraploid species pair. They are morphologically identical but H. versicolor is a tetraploid. They can be identified acoustically by the male's advertisement mating call, which has a pulse repetition rate that has twice as many pulses per second in the diploid species, H. chrysoscelis. We used isozymes, microsatellite DNA alleles, and mitochondrial cytochrome b sequences to test the hypothesis that gene exchange occurs between the diploid and tetraploid species in sympatric populations. Each method provided results that are best explained by occasional hybridization of female H. versicolor and male H. chrysoscelis. We propose that H. versicolor first arose from an autotriploid H. chrysoscelis female that produced unreduced triploid eggs. After H. versicolor became established, genes could be passed from H. chrysoscelis to H. versicolor in sympatric populations when these species hybridize. Their F1 female progeny produce unreduced triploid eggs that are fertilized by haploid H. chrysoscelis sperm to reconstitute H. versicolor. Genes can be passed from diploid H. chrysoscelis to tetraploid H. versicolor in sympatric populations.
Collapse
Affiliation(s)
- James P Bogart
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Patrick Burgess
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Novikova PY, Brennan IG, Booker W, Mahony M, Doughty P, Lemmon AR, Moriarty Lemmon E, Roberts JD, Yant L, Van de Peer Y, Keogh JS, Donnellan SC. Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus. PLoS Genet 2020; 16:e1008769. [PMID: 32392206 PMCID: PMC7259803 DOI: 10.1371/journal.pgen.1008769] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/29/2020] [Accepted: 04/08/2020] [Indexed: 01/13/2023] Open
Abstract
Polyploidy has played an important role in evolution across the tree of life but it is still unclear how polyploid lineages may persist after their initial formation. While both common and well-studied in plants, polyploidy is rare in animals and generally less understood. The Australian burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species and offers a powerful animal polyploid model system. We generated exome-capture sequence data from 87 individuals representing all nine species of Neobatrachus to investigate species-level relationships, the origin and inheritance mode of polyploid species, and the population genomic effects of polyploidy on genus-wide demography. We describe rapid speciation of diploid Neobatrachus species and show that the three independently originated polyploid species have tetrasomic or mixed inheritance. We document higher genetic diversity in tetraploids, resulting from widespread gene flow between the tetraploids, asymmetric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and isolation of diploid species from each other. We also constructed models of ecologically suitable areas for each species to investigate the impact of climate on differing ploidy levels. These models suggest substantial change in suitable areas compared to past climate, which correspond to population genomic estimates of demographic histories. We propose that Neobatrachus diploids may be suffering the early genomic impacts of climate-induced habitat loss, while tetraploids appear to be avoiding this fate, possibly due to widespread gene flow. Finally, we demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on the evolution of adaptation in animals.
Collapse
Affiliation(s)
- Polina Yu. Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Ian G. Brennan
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - William Booker
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Michael Mahony
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Paul Doughty
- Western Australian Museum, Welshpool, Perth, Australia
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, United States of America
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - J. Dale Roberts
- School of Biological Sciences, and, Centre for Evolutionary Biology, University of Western Australia, Albany, Western Australia, Australia
| | - Levi Yant
- School of Life Sciences and Future Food Beacon, University of Nottingham, Nottingham, United Kingdom
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - J. Scott Keogh
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Stephen C. Donnellan
- South Australian Museum, North Terrace, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, Australia
| |
Collapse
|
12
|
Dufresnes C, Mazepa G, Jablonski D, Oliveira RC, Wenseleers T, Shabanov DA, Auer M, Ernst R, Koch C, Ramírez-Chaves HE, Mulder KP, Simonov E, Tiutenko A, Kryvokhyzha D, Wennekes PL, Zinenko OI, Korshunov OV, Al-Johany AM, Peregontsev EA, Masroor R, Betto-Colliard C, Denoël M, Borkin LJ, Skorinov DV, Pasynkova RA, Mazanaeva LF, Rosanov JM, Dubey S, Litvinchuk S. Fifteen shades of green: The evolution of Bufotes toads revisited. Mol Phylogenet Evol 2019; 141:106615. [DOI: 10.1016/j.ympev.2019.106615] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023]
|
13
|
Araya-Donoso R, Torres-Pérez F, Véliz D, Lamborot M. Hybridization and polyploidy in the weeping lizard Liolaemus chiliensis (Squamata: Liolaemidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In reptiles, polyploidy is an unusual phenomenon that can originate from interspecific hybridization. In Chile, the lizard Liolaemus chiliensis provides a unique model with which to study the origin of polyploidy because it occurs in populations of diploid individuals and a few populations that also contain triploid and diploid–triploid mosaic lizards. To test whether L. chiliensis polyploids were hybrids between lineages within the species, we analysed the karyotype, the mitochondrial gene Cytb, seven microsatellite loci, and the linear and geometric morphometry of individuals throughout the species distribution. We found polyploidy at different localities throughout the distribution. Hybrids were detected with the microsatellite loci and morphological data. A clear relationship between hybridization and polyploidy could not be established because triploid and mosaic lizards were hybrids and purebreds. However, our results support the occurrence of both phenomena, and further research is needed to clarify how hybridization could be involved in the origin of polyploidy.
Collapse
Affiliation(s)
- Raúl Araya-Donoso
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
| | - Fernando Torres-Pérez
- Instituto de Biología, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - David Véliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
| | - Madeleine Lamborot
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Bogart JP. A family study to examine clonal diversity in unisexual salamanders (genus Ambystoma). Genome 2019; 62:549-561. [DOI: 10.1139/gen-2019-0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unisexual Ambystoma are the oldest known unisexual vertebrates and comprise a lineage of eastern North American all female salamanders that reproduce by stealing sperm from as many as five normally bisexual congeneric species. The sperm may be used to only stimulate egg development by gynogenesis but can be incorporated in the zygote to elevate the ploidy level or to replace one of the female’s haploid genomes. This flexible and unique reproductive system, termed kleptogenesis, is investigated using a microsatellite examination of 988 offspring from 14 unisexual mothers. All mothers produced clonal and ploidy-elevated offspring. Genome replacement and multiple paternity are confirmed for the first time in unisexual Ambystoma. Microsatellite mutations were found in all five microsatellite loci and the estimated microsatellite mutation rate varied by locus and by genome. Clonal variation is attributed to the inclusion of sperm donors’ haploid genomes for ploidy elevation, genome replacement, mutations, and natural selection.
Collapse
Affiliation(s)
- James P. Bogart
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
15
|
Jørgensen KM, Wennevik V, Eide Sørvik AG, Unneland L, Prusov S, Ayllon F, Glover KA. Investigating the frequency of triploid Atlantic salmon in wild Norwegian and Russian populations. BMC Genet 2018; 19:90. [PMID: 30285613 PMCID: PMC6171226 DOI: 10.1186/s12863-018-0676-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Fish may display variations in ploidy, including three sets of chromosomes, known as triploidy. A recent study revealed a frequency of ~ 2% spontaneous (i.e., non-intentional) triploidy in domesticated Atlantic salmon produced in Norwegian aquaculture in the period 2007–2014. In contrast, the frequency of triploidy in wild salmon populations has not been studied thus far, and in wild populations of other organisms, it has been very rarely studied. In population genetic data sets, individuals that potentially display chromosome abnormalities, such as triploids with three alleles, are typically excluded on the premise that they may reflect polluted or otherwise compromised samples. Here, we critically re-investigated the microsatellite genetic profile of ~ 6000 wild Atlantic salmon sampled from 80 rivers in Norway and Russia, to investigate the frequency of triploid individuals in wild salmon populations for the first time. Results We detected a single triploid salmon, and five individuals displaying three alleles at one of the loci, thus regarded as putatively trisomic. This gave an overall frequency of triploid and putatively trisomic individuals in the data set of 0.017 and 0.083% respectively. The triploid salmon was an adult female, and had spent 2 years in freshwater and 2 years in the sea. Conclusions We conclude that the frequency of naturally-occurring triploid Atlantic salmon in wild Norwegian and Russian populations is very low, and many-fold lower than the frequency of spontaneous triploids observed in aquaculture. Our results suggest that aquaculture rearing conditions substantially increase the probability of triploidy to develop, and/or permits greater survival of triploid individuals, in comparison to the wild. Electronic supplementary material The online version of this article (10.1186/s12863-018-0676-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Vidar Wennevik
- Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway
| | | | - Laila Unneland
- Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway
| | - Sergey Prusov
- The Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO), Murmansk, 183038, Russia
| | - Fernando Ayllon
- Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway
| | - Kevin A Glover
- Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway.,Sea lice Research Centre, Department of Biology, University of Bergen, N-5020, Bergen, Norway
| |
Collapse
|
16
|
Beauregard F, Angers B. Effect of a locally adapted genome on environmentally induced epigenetic variation. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy025. [PMID: 30505465 PMCID: PMC6255975 DOI: 10.1093/eep/dvy025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Both genetic variation and environmentally induced epigenetic changes allow organisms to persist through the heterogeneity of their habitats. Selection on genetic variation can promote local adaptation of populations. However, in absence of genetic variation, clonal organisms mostly rely on epigenetics to respond to environmental heterogeneity. We used the potential of unisexual organisms in incorporating their host genome, to empirically assess whether the presence of a locally adapted genome affects environmentally induced epigenetic changes in clonal organisms. We addressed this problematic by using unisexual lineages of the kleptogen vertebrate Ambystoma laterale-jeffersonianum complex that can optionally incorporate genetic material from locally adapted sexual hosts through genomic exchanges. More specifically, we compared environmentally induced epigenetic changes between lineages strictly reproducing clonally vs. those incorporating a locally adapted genome. The results revealed that both lineage and sample site components, as well as their interaction, affected epigenetic variation. When lineages were analysed separately, differences among sample sites were only detected in lineages impervious to genomic exchanges. Sample sites had no significant effect on the epigenetic variation of lineages that performed genomic exchanges. These results suggest that environmentally induced epigenetic variation among sites depends more on the lack of locally adapted alleles than on the level of genetic variation.
Collapse
Affiliation(s)
- France Beauregard
- Departement of Biological Sciences, Université de Montréal, Montréal, Canada
| | - Bernard Angers
- Departement of Biological Sciences, Université de Montréal, Montréal, Canada
| |
Collapse
|
17
|
Shuman JL, Coughlin DJ. Red muscle function and thermal acclimation to cold in rainbow smelt, Osmerus mordax, and rainbow trout, Oncorhynchus mykiss. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:547-556. [PMID: 30101480 DOI: 10.1002/jez.2219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/29/2018] [Accepted: 07/07/2018] [Indexed: 02/02/2023]
Abstract
Climate change affects the thermal environment of aquatic organisms. Changes in the thermal environment may affect muscle function in the eurythermal rainbow smelt, Osmerus mordax, and relatively more stenothermal rainbow trout, Oncorhynchus mykiss. Literature suggests that the trout will be more sensitive to changes in environmental temperature, as they experience a more limited range of environmental temperatures. To examine the effects of thermal environment on red muscle function, both the smelt and trout were thermally acclimated to either a warm (12-15°C) or cold (4-5°C) temperature, after which studies of swimming performance and muscle mechanics were performed. The data on swimming performance and maximum muscle shortening velocity in rainbow smelt were previously published. In both species, cold-acclimated (CA) fish swam with a significantly faster maximum aerobic swimming speed than warm-acclimated fish, when tested at a common temperature of 10°C. Similarly, CA smelt and trout had faster red muscle contraction kinetics. However, smelt displayed a greater shift in contractile properties, such as having a significant shift in maximum muscle shortening velocity that was not observed in trout. The smelt red muscle outperformed trout, with twitch and tetanic times of relaxation being significantly faster for CA smelt compared with CA trout, especially when contraction kinetics were tested at 2°C. The smelt shows a greater thermal acclimation response compared with trout, with more robust increases in maximum swimming speed and faster muscle contractile properties. These differences in acclimation response may contribute to understanding how smelt and trout cope with climate change.
Collapse
Affiliation(s)
- Jacie L Shuman
- Department of Biology, Widener University, Chester, Pennsylvania
| | - David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania
| |
Collapse
|
18
|
Beauregard F, Angers B. Influence of genome and bio-ecology on the prevalence of genome exchange in unisexuals of the Ambystoma complex. BMC Evol Biol 2018; 18:82. [PMID: 29855267 PMCID: PMC5984407 DOI: 10.1186/s12862-018-1200-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/21/2018] [Indexed: 11/15/2022] Open
Abstract
Background Unisexuals of the blue-spotted salamander complex are thought to reproduce by kleptogenesis. Genome exchanges associated with this sperm-dependent mode of reproduction are expected to result in a higher genetic variation and multiple ploidy levels compared to clonality. However, the existence of some populations exclusively formed of genetically identical individuals suggests that factors could prevent genome exchanges. This study aimed at assessing the prevalence of genome exchange among unisexuals of the Ambystoma laterale-jeffersonianum complex from 10 sites in the northern part of their distribution. Results A total of 235 individuals, including 207 unisexuals, were genotyped using microsatellite loci and AFLP. Unisexual individuals could be sorted in five genetically distinct groups, likely derived from the same paternal A. jeffersonianum haplome. One of these groups exclusively reproduced clonally, even when found in sympatry with lineages presenting signature of genome exchange. Genome exchange was site-dependent for another group. Genome exchange was detected at all sites for the three remaining groups. Conclusion Prevalence of genome exchange appears to be associated with ecological conditions such as availability of effective sperm donors. Intrinsic genomic factors may also affect this process, since different lineages in sympatry present highly variable rate of genome exchange. The coexistence of clonal and genetically diversified lineages opens the door to further research on alternatives to genetic variation. Electronic supplementary material The online version of this article (10.1186/s12862-018-1200-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- France Beauregard
- Departement of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 317, Canada
| | - Bernard Angers
- Departement of biological sciences, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 317, Canada.
| |
Collapse
|
19
|
Ferro JM, Cardozo DE, Suárez P, Boeris JM, Blasco-Zúñiga A, Barbero G, Gomes A, Gazoni T, Costa W, Nagamachi CY, Rivera M, Parise-Maltempi PP, Wiley JE, Pieczarka JC, Haddad CFB, Faivovich J, Baldo D. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae). PLoS One 2018; 13:e0192861. [PMID: 29444174 PMCID: PMC5812657 DOI: 10.1371/journal.pone.0192861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini.
Collapse
Affiliation(s)
- Juan M. Ferro
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Dario E. Cardozo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Pablo Suárez
- Instituto de Biología Subtropical (CONICET-UNaM), Puerto Iguazú, Misiones, Argentina
| | - Juan M. Boeris
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Ailin Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, CONICET, Buenos Aires, Argentina
| | - Anderson Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Abaetetuba, Pará, Brazil
| | - Thiago Gazoni
- Departamento de Biologia, Instituto de Biociências, UNESP – Univ. Estadual Paulista, Campus de Rio Claro, São Paulo, Brasil
| | - William Costa
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP – Univ. Estadual de Campinas, Campinas, Brasil
| | - Cleusa Y. Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Miryan Rivera
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Patricia P. Parise-Maltempi
- Departamento de Biologia, Instituto de Biociências, UNESP – Univ. Estadual Paulista, Campus de Rio Claro, São Paulo, Brasil
| | - John E. Wiley
- The Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Julio C. Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Celio F. B. Haddad
- Departamento de Zoologia e Centro de Aquicultura, Instituto de Biociências, UNESP – Univ. Estadual Paulista, Campus de Rio Claro, São Paulo, Brasil
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”—CONICET, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| |
Collapse
|
20
|
Betto-Colliard C, Hofmann S, Sermier R, Perrin N, Stöck M. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc Biol Sci 2018; 285:rspb.2017.2667. [PMID: 29436499 PMCID: PMC5829204 DOI: 10.1098/rspb.2017.2667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
The evolutionary causes and consequences of allopolyploidization, an exceptional pathway to instant hybrid speciation, are poorly investigated in animals. In particular, when and why hybrid polyploids versus diploids are produced, and constraints on sources of paternal and maternal ancestors, remain underexplored. Using the Palearctic green toad radiation (including bisexually reproducing species of three ploidy levels) as model, we generate a range-wide multi-locus phylogeny of 15 taxa and present four new insights: (i) at least five (up to seven) distinct allotriploid and allotetraploid taxa have evolved in the Pleistocene; (ii) all maternal and paternal ancestors of hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya, 3.1-9.6 Mya), with distinctly greater divergence than the parental species of diploid hybrids found at secondary contact zones; (iii) allotriploid taxa possess two conspecific genomes and a deeply diverged allospecific one, suggesting that genomic imbalance and divergence are causal for their partly clonal reproductive mode; (iv) maternal versus paternal genome contributions exhibit asymmetry, with the maternal nuclear (and mitochondrial) genome of polyploids always coming from the same clade, and the paternal genome from the other. We compare our findings with similar patterns in diploid/polyploid vertebrates, and suggest deep ancestral divergence as a precondition for successful allopolyploidization.
Collapse
Affiliation(s)
- Caroline Betto-Colliard
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Sylvia Hofmann
- Department of Conservation Biology, UFZ Helmholtz-Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
21
|
Grenat P, Salas N, Pollo F, Otero M, Baraquet M, Sinsch U, Martino A. Naturally occurring triploids in contact zones between diploid/tetraploid Odontophrynus cordobae and O. americanus (Anura, Odontophrynidae). AMPHIBIA-REPTILIA 2018. [DOI: 10.1163/15685381-00003141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyploidization plays an important role in speciation and evolution in anurans. However, a few stable triploid populations and some isolated triploid individuals have been reported. Here, we report the discovery of naturally occurring triploids in contact zones between diploidOdontophrynus cordobaeand tetraploidO. americanusfrom Central Argentina, and propose values of erythrocyte area for the distinction of ploidy levels. A total of 101 individuals from three contact zones were studied and ploidy of each specimen was identified by mean chromosome count and erythrocyte size. Twenty three adult triploid specimens (males: ; females: ) from two contact sites were identified (percentage of individuals per ploidy level: site S2, %, %, %; site S3: %, %, %). The limit values of erythrocyte nuclear area used to distinguish between different ploidy levels were 23.62 μm2(probability to be assigned to a respective ploidy level = 94.78%) for separating diploids and triploids and 27.67 μm2(98.62%) for triploids and tetraploids. The high number of adult triploids occurring in more than one contact site betweenO. cordobaeandO. americanusindicates that is not an isolated event. However, further studies are necessary to provide a hypothesis on the origin and evaluate the possible maintenance of triploids in syntopy withO. cordobaeandO. americanus.
Collapse
Affiliation(s)
- Pablo Grenat
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
- CONICET
| | - Nancy Salas
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
| | - Favio Pollo
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
- CONICET
| | - Manuel Otero
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
- CONICET
| | - Mariana Baraquet
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
- CONICET
| | - Ulrich Sinsch
- Department of Biology, Zoology Group, University of Koblenz-Landau, Koblenz, Germany
| | - Adolfo Martino
- Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 – km 601, (X5804BYA) Río Cuarto, Argentina
| |
Collapse
|
22
|
Are ploidy and age size-related? A comparative study on tetraploid Pleurodema kriegi and octoploid P. cordobae (Anura: Leptodactylidae) from Central Argentina. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Gibbs HL, Denton RD. Cryptic sex? Estimates of genome exchange in unisexual mole salamanders (Ambystomasp.). Mol Ecol 2016; 25:2805-15. [DOI: 10.1111/mec.13662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/03/2016] [Accepted: 04/14/2016] [Indexed: 11/26/2022]
Affiliation(s)
- H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology and Ohio Biodiversity Conservation Partnership; Ohio State University; 318 W. 12th Avenue Columbus OH 43210 USA
| | - Robert D. Denton
- Department of Evolution, Ecology and Organismal Biology and Ohio Biodiversity Conservation Partnership; Ohio State University; 318 W. 12th Avenue Columbus OH 43210 USA
| |
Collapse
|
24
|
Limborg MT, Seeb LW, Seeb JE. Sorting duplicated loci disentangles complexities of polyploid genomes masked by genotyping by sequencing. Mol Ecol 2016; 25:2117-29. [PMID: 26939067 DOI: 10.1111/mec.13601] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023]
Abstract
Many plants and animals of polyploid origin are currently enjoying a genomics explosion enabled by modern sequencing and genotyping technologies. However, routine filtering of duplicated loci in most studies using genotyping by sequencing introduces an unacceptable, but often overlooked, bias when detecting selection. Retained duplicates from ancient whole-genome duplications (WGDs) may be found throughout genomes, whereas retained duplicates from recent WGDs are concentrated at distal ends of some chromosome arms. Additionally, segmental duplicates can be found at distal ends or nearly anywhere in a genome. Evidence shows that these duplications facilitate adaptation through one of two pathways: neo-functionalization or increased gene expression. Filtering duplicates removes distal ends of some chromosomes, and distal ends are especially known to harbour adaptively important genes. Thus, filtering of duplicated loci impoverishes the interpretation of genomic data as signals from contiguous duplicated genes are ignored. We review existing strategies to genotype and map duplicated loci; we focus in detail on an overlooked strategy of using gynogenetic haploids (1N) as a part of new genotyping by sequencing studies. We provide guidelines on how to use this haploid strategy for studies on polyploid-origin vertebrates including how it can be used to screen duplicated loci in natural populations. We conclude by discussing areas of research that will benefit from better inclusion of polyploid loci; we particularly stress the sometimes overlooked fact that basing genomic studies on dense maps provides value added in the form of locating and annotating outlier loci or colocating outliers into islands of divergence.
Collapse
Affiliation(s)
- Morten T Limborg
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA.,National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA
| |
Collapse
|
25
|
Biriuk OV, Shabanov DA, Korshunov AV, Borkin LJ, Lada GA, Pasynkova RA, Rosanov JM, Litvinchuk SN. Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus
complex in north-eastern Ukraine. J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Olha V. Biriuk
- V. N. Karazin Kharkiv National University; Kharkiv Ukraine
| | | | | | - Leo J. Borkin
- Zoological Institute; Russian Academy of Sciences; St. Petersburg Russia
| | | | - Rosa A. Pasynkova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Jury M. Rosanov
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | | |
Collapse
|
26
|
Chai J, Su Y, Huang F, Liu S, Tao M, Murphy RW, Luo J. The gap in research on polyploidization between plants and vertebrates: model systems and strategic challenges. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0879-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Abstract
This review summarizes the current status of the known extant genuine polyploid anuran and urodelan species, as well as spontaneously originated and/or experimentally produced amphibian polyploids. The mechanisms by which polyploids can originate, the meiotic pairing configurations, the diploidization processes operating in polyploid genomes, the phenomenon of hybridogenesis, and the relationship between polyploidization and sex chromosome evolution are discussed. The polyploid systems in some important amphibian taxa are described in more detail.
Collapse
|
28
|
Discovery of triploidy in Palearctic green toads (Anura: Bufonidae) from Iran with indications for a reproductive system involving diploids and triploids. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Choleva L, Musilova Z, Kohoutova-Sediva A, Paces J, Rab P, Janko K. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids. PLoS One 2014; 9:e80641. [PMID: 24971792 PMCID: PMC4074047 DOI: 10.1371/journal.pone.0080641] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis) of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.
Collapse
Affiliation(s)
- Lukas Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Libechov, Czech Republic
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Zuzana Musilova
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Libechov, Czech Republic
- Zoological Institute, Evolutionary Biology, University of Basel, Basel, Switzerland
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Alena Kohoutova-Sediva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Libechov, Czech Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Paces
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Libechov, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Libechov, Czech Republic
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Libechov, Czech Republic
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
30
|
Shapiro JA. Epigenetic control of mobile DNA as an interface between experience and genome change. Front Genet 2014; 5:87. [PMID: 24795749 PMCID: PMC4007016 DOI: 10.3389/fgene.2014.00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.
Collapse
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular Biology, University of ChicagoChicago, IL, USA
| |
Collapse
|
31
|
Donoghue MT, Fort A, Clifton R, Zhang X, McKeown PC, Voigt-Zielinksi M, Borevitz JO, Spillane C. C(m)CGG methylation-independent parent-of-origin effects on genome-wide transcript levels in isogenic reciprocal F1 triploid plants. DNA Res 2013; 21:141-51. [PMID: 24212467 PMCID: PMC3989486 DOI: 10.1093/dnares/dst046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Triploid F1 hybrids generated via reciprocal interploidy crosses between genetically distinct parental plants can display parent-of-origin effects on gene expression or phenotypes. Reciprocal triploid F1 isogenic plants generated from interploidy crosses in the same genetic background allow investigation on parent-of-origin-specific (parental) genome-dosage effects without confounding effects of hybridity involving heterozygous mutations. Whole-genome transcriptome profiling was conducted on reciprocal F1 isogenic triploid (3x) seedlings of A. thaliana. The genetically identical reciprocal 3x genotypes had either an excess of maternally inherited 3x(m) or paternally inherited 3x(p) genomes. We identify a major parent-of-origin-dependent genome-dosage effect on transcript levels, whereby 602 genes exhibit differential expression between the reciprocal F1 triploids. In addition, using methylation-sensitive DNA tiling arrays, constitutive and polymorphic CG DNA methylation patterns at CCGG sites were analysed, which revealed that paternal-excess F1 triploid seedling C(m)CGG sites are overall hypermethylated. However, no correlation exists between C(m)CGG methylation polymorphisms and transcriptome dysregulation between the isogenic reciprocal F1 triploids. Overall, our study indicates that parental genome-dosage effects on the transcriptome levels occur in paternal-excess triploids, which are independent of C(m)CGG methylation polymorphisms. Such findings have implications for understanding parental effects and genome-dosage effects on gene expression and phenotypes in polyploid plants.
Collapse
Affiliation(s)
- Mark T.A. Donoghue
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, Aras de Brun, National University of Ireland, Galway (NUI Galway), Ireland
| | - Antoine Fort
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, Aras de Brun, National University of Ireland, Galway (NUI Galway), Ireland
| | - Rachel Clifton
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, Aras de Brun, National University of Ireland, Galway (NUI Galway), Ireland
| | - Xu Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Peter C. McKeown
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, Aras de Brun, National University of Ireland, Galway (NUI Galway), Ireland
| | - M.L. Voigt-Zielinksi
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, Aras de Brun, National University of Ireland, Galway (NUI Galway), Ireland
| | - Justin O. Borevitz
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, Aras de Brun, National University of Ireland, Galway (NUI Galway), Ireland
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
32
|
Cytogenetic analysis of Phyllomedusa distincta Lutz, 1950 (2n = 2x = 26), P. tetraploidea Pombal and Haddad, 1992 (2n = 4x = 52), and their natural triploid hybrids (2n = 3x = 39) (Anura, Hylidae, Phyllomedusinae). BMC Genet 2013; 14:75. [PMID: 24001221 PMCID: PMC3766241 DOI: 10.1186/1471-2156-14-75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/27/2013] [Indexed: 01/28/2023] Open
Abstract
Background Natural polyploidy has played an important role during the speciation and evolution of vertebrates, including anurans, with more than 55 described cases. The species of the Phyllomedusa burmeisteri group are mostly characterized by having 26 chromosomes, but a karyotype with 52 chromosomes was described in P. tetraploidea. This species was found in sintopy with P. distincta in two localities of São Paulo State (Brazil), where triploid animals also occur, as consequence of natural hybridisation. We analyse the chromosomes of P. distincta, P. tetraploidea, and their triploid hybrids, to enlighten the origin of polyploidy and to obtain some evidence on diploidisation of tetraploid karyotype. Results Phyllomedusa distincta was 2n = 2x = 26, whereas P. tetraploidea was 2n = 4x = 52, and the hybrid individuals was 2n = 3x = 39. In meiotic phases, bivalents were observed in the diploid males, whereas both bivalents and tetravalents were observed in the tetraploid males. Univalents, bivalents or trivalents; metaphase II cells carrying variable number of chromosomes; and spermatids were detected in the testis preparations of the triploid males, indicating that the triploids were not completely sterile. In natural and experimental conditions, the triploids cross with the parental species, producing abnormal egg clutches and tadpoles with malformations. The embryos and tadpoles exhibited intraindividual karyotype variability and all of the metaphases contained abnormal constitutions. Multiple NORs, detected by Ag-impregnation and FISH with an rDNA probe, were observed on chromosome 1 in the three karyotypic forms; and, additionally, on chromosome 9 in the diploids, mostly on chromosome 8 in the tetraploids, and on both chromosome 8 and 9 in the triploids. Nevertheless, NOR-bearing chromosome 9 was detected in the tetraploids, and chromosome 9 carried active or inactive NORs in the triploids. C-banding, base-specific fluorochrome stainings with CMA3 and DAPI, FISH with a telomeric probe, and BrdU incorporation in DNA showed nearly equivalent patterns in the karyotypes of P. distincta, P. tetraploidea, and the triploid hybrids. Conclusions All the used cytogenetic techniques have provided strong evidence that the process of diploidisation, an essential step for stabilising the selective advantages produced by polyploidisation, is under way in distinct quartets of the tetraploid karyotype.
Collapse
|