1
|
Mahmoud R, Bassiouny M, Badawy A, Darwish A, Yahia S, El-Tantawy N. Maternal and neonatal factors' effects on wharton's jelly mesenchymal stem cell yield. Sci Rep 2024; 14:24376. [PMID: 39420012 PMCID: PMC11487262 DOI: 10.1038/s41598-024-72386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
As Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are easily accessible, easy to isolate, and ethically acceptable, they represent a promising source of MSCs for use in regenerative medicine. Considering decisions on WJ-MSCs collection requires extensive knowledge of the factors that impact their yield. This study's aim was to evaluate the influence of parameters related to mothers and newborns on the WJ-MSCs yield. The WJ-MSCs were isolated and expanded after being isolated from 79 umbilical cord (UC) samples. Population doubling time and cell proliferation were assessed. By flow cytometry analysis, WJ-MSCs were identified by positivity of CD105, CD90, and CD73 and negativity of CD45 and CD34. There was a statistically significant negative correlation between UC width and P1 doubling time. Maternal age and WJ-MSC yield were shown to be negatively correlated. Birth weight and gestational age showed a significant positive correlation between WJ-MSCs yield and neonatal variables. No significant correlations were detected between the WJ-MSCs and the mother parity, nor the neonatal sex, fetal presentation, or head circumference. The WJ-MSCs yield increases with younger maternal age, higher gestational age, and increased neonatal birth weight. Hence, consideration should be given to these factors when selecting the ideal donors.
Collapse
Affiliation(s)
- Ranim Mahmoud
- Pediatric Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Bassiouny
- Pediatric Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Badawy
- Obstetric and Gynecology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmad Darwish
- Pediatric Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Mansoura Research Center for Cord Stem Cells (MARC-CSC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Sohier Yahia
- Pediatric Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nora El-Tantawy
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Zhang H, Jin C, Hua J, Chen Z, Gao W, Xu W, Zhou L, Shan L. Roles of Microenvironment on Mesenchymal Stem Cells Therapy for Osteoarthritis. J Inflamm Res 2024; 17:7069-7079. [PMID: 39377043 PMCID: PMC11457791 DOI: 10.2147/jir.s475617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Osteoarthritis (OA) induced microenvironmental alterations are a common and unavoidable phenomenon that greatly exacerbate the pathologic process of OA. Imbalances in the synthesis and degradation of cartilage extracellular matrix (ECM) have been reported to be associated with an adverse microenvironment. Stem cell therapy is a promising treatment for OA, and mesenchymal stem cells (MSCs) are the main cell sources for this therapy. With multispectral differentiation and immunomodulation, MSCs can effectively regulate the microenvironment of articular cartilage, ameliorate inflammation, promote regeneration of damaged cartilage, and ultimately alleviate OA symptoms. However, the efficacy of MSCs in the treatment of OA is greatly influenced by articular cavity microenvironments. This article reviews the five microenvironments of OA articular cavity, including inflammatory microenvironment, senescence microenvironment, hypoxic microenvironment, high glucose microenvironment and high lipid environment, focus on the positive and negative effects of OA microenvironments on the fate of MSCs. In this regard, we emphasize the mechanisms of the current use of MSCs in OA treatment, as well as its limitations and challenges.
Collapse
Affiliation(s)
- Haiyan Zhang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chaoying Jin
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqing Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenxin Gao
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenting Xu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Letian Shan
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yang X, Wang Y, Rovella V, Candi E, Jia W, Bernassola F, Bove P, Piacentini M, Scimeca M, Sica G, Tisone G, Mauriello A, Wei L, Melino G, Shi Y. Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies. Biol Direct 2023; 18:40. [PMID: 37464416 PMCID: PMC10353240 DOI: 10.1186/s13062-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Ying Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233 China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
5
|
Kim JY, Kim SH, Seok J, Bae SH, Hwang SG, Kim GJ. Increased PRL-1 in BM-derived MSCs triggers anaerobic metabolism via mitochondria in a cholestatic rat model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:512-524. [PMID: 36865088 PMCID: PMC9970868 DOI: 10.1016/j.omtn.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cell (MSC) therapy in chronic liver disease is associated with mitochondrial anaerobic metabolism. Phosphatase of regenerating liver-1 (PRL-1), known as protein tyrosine phosphatase type 4A, member 1 (PTP4A1), plays a critical role in liver regeneration. However, its therapeutic mechanism remains obscure. The aim of this study was to establish genetically modified bone marrow (BM)-MSCs overexpressing PRL-1 (BM-MSCsPRL-1) and to investigate their therapeutic effects on mitochondrial anaerobic metabolism in a bile duct ligation (BDL)-injured cholestatic rat model. BM-MSCsPRL-1 were generated with lentiviral and nonviral gene delivery systems and characterized. Compared with naive cells, BM-MSCsPRL-1 showed an improved antioxidant capacity and mitochondrial dynamics and decreased cellular senescence. In particular, mitochondrial respiration in BM-MSCsPRL-1 generated using the nonviral system was significantly increased as well as mtDNA copy number and total ATP production. Moreover, transplantation of BM-MSCsPRL-1 generated using the nonviral system had predominantly antifibrotic effects and restored hepatic function in a BDL rat model. Decreased cytoplasmic lactate and increased mitochondrial lactate upon the administration of BM-MSCsPRL-1 indicated significant alterations in mtDNA copy number and ATP production, activating anaerobic metabolism. In conclusion, BM-MSCsPRL-1 generated by a nonviral gene delivery system enhanced anaerobic mitochondrial metabolism in a cholestatic rat model, improving hepatic function.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Se Ho Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Republic of Korea
| | - Seong-Gyu Hwang
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea,Corresponding author Gi Jin Kim, Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea.
| |
Collapse
|
6
|
Han N, Zhang W, Fang XX, Li QC, Pi W. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res 2023. [PMID: 35799543 PMCID: PMC9241414 DOI: 10.4103/1673-5374.343889] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We previously combined reduced graphene oxide (rGO) with gelatin-methacryloyl (GelMA) and polycaprolactone (PCL) to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved. However, the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting. Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSCs) can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site. In this study, 12 weeks after surgery, sciatic nerve function was measured by electrophysiology and sciatic nerve function index, and myelin sheath and axon regeneration were observed by electron microscopy, immunohistochemistry, and immunofluorescence. The regeneration of microvessel was observed by immunofluorescence. Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function. These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery, and provide a new direction for the curation of peripheral nerve defect in the clinic.
Collapse
|
7
|
Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina (B Aires) 2021; 58:medicina58010061. [PMID: 35056369 PMCID: PMC8779043 DOI: 10.3390/medicina58010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stem cells with the potential ability to differentiate into various cells and the ability to self-renew and resemble fibroblasts. These cells can adhere to plastic to facilitate the culture process. MSCs can be used in research into tissue biotechnology and rejuvenation medicine. MSCs are also beneficial in recipient tissue and differentiate as a breakthrough strategy through paracrine activity. Many databases have shown MSC-based treatment can be beneficial in the reduction of osteogenesis induced by senescence. In this article, we will discuss the potential effect of MSCs in senescence cells related to osteogenesis.
Collapse
|
8
|
Park HS, Oh MK, Lee JW, Chae DH, Joo H, Kang JY, An HB, Yu A, Park JH, Yoo HM, Jung HJ, Choi U, Jung JW, Kim IS, Oh IH, Yu KR. Diesel Exhaust Particles Impair Therapeutic Effect of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis through ROS/ERK/cFos Signaling Pathway. Int J Stem Cells 2021; 15:203-216. [PMID: 34966003 PMCID: PMC9148831 DOI: 10.15283/ijsc21178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background and Objectives Epidemiological investigations have shown positive correlations between increased diesel exhaust particles (DEP) in ambient air and adverse health outcomes. DEP are the major constituent of particulate atmospheric pollution and have been shown to induce proinflammatory responses both in the lung and systemically. Here, we report the effects of DEP exposure on the properties of human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), including stemness, regeneration, and immunomodulation. Methods and Results Non-apoptotic concentrations of DEP (10 μg/ml) inhibited the migration and osteogenic differentiation capacity of WJ-MSCs. Gene expression profiling showed that DEP increased intracellular reactive oxygen species (ROS) and expression of pro-inflammatory and metabolic-process-related genes including cFos. Furthermore, WJ-MSCs cultured with DEP showed impaired suppression of T cell proliferation that was reversed by inhibition of ROS or knockdown of cFos. ERK inhibition assay revealed that DEP-induced ROS regulated cFos through activation of ERK but not NF-κB signaling. Overall, low concentrations of DEP (10 μg/ml) significantly suppressed the stemness and immunomodulatory properties of WJ-MSCs through ROS/ERK/cFos signaling pathways. Furthermore, WJ-MSCs cultured with DEP impaired the therapeutic effect of WJ-MSCs in experimental colitis mice, but was partly reversed by inhibition of ROS. Conclusions Taken together, these results indicate that exposure to DEP enhances the expression of pro-inflammatory cytokines and immune responses through a mechanism involving the ROS/ERK/cFos pathway in WJ-MSCs, and that DEP-induced ROS damage impairs the therapeutic effect of WJ-MSCs in colitis. Our results suggest that modulation of ROS/ERK/cFos signaling pathways in WJ-MSCs might be a novel therapeutic strategy for DEP-induced diseases.
Collapse
Affiliation(s)
- Hyun Sung Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-Kyung Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea.,Bio-MAX Institute, Seoul National University, Seoul, Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Dong-Hoon Chae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hansol Joo
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Yeon Kang
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Bin An
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Aaron Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jae Han Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, Korea.,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, Korea
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - In-Sook Kim
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Il-Hoan Oh
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul, Korea
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Biological Aspects of Inflamm-Aging in Childhood Cancer Survivors. Cancers (Basel) 2021; 13:cancers13194933. [PMID: 34638416 PMCID: PMC8508005 DOI: 10.3390/cancers13194933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Anti-cancer treatments improve survival in children with cancer. A total of 80% of children treated for childhood cancer achieve 5-year survival, becoming long-term survivors. However, they undergo several chronic late effects related to treatments. In childhood cancer survivors a chronic low-grade inflammation, known as inflamm-aging, is responsible for frailty, a condition characterized by vital organ failure and by premature aging processes. Inflamm-aging is closely related to chemotherapy and radiotherapy, which induce inflammation, accumulation of senescent cells, DNA mutations, and the production of reactive oxygen species. All these conditions are responsible for the onset of secondary diseases, such as osteoporosis, cardiovascular diseases, obesity, and infertility. Considering that the pathobiology of frailty among childhood cancer survivors is still unknown, investigations are needed to better understand frailty's biological and molecular processes and to identify inflamm-aging key biomarkers in order to facilitate the screening of comorbidities and to clarify whether treatments, normally used to modulate inflamm-aging, may be beneficial. This review offers an overview of the possible biological mechanisms involved in the development of inflamm-aging, focusing our attention on immune system alteration, oxidative stress, cellular senescence, and therapeutic strategies.
Collapse
|
10
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
11
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
12
|
Miceli V, Bulati M, Iannolo G, Zito G, Gallo A, Conaldi PG. Therapeutic Properties of Mesenchymal Stromal/Stem Cells: The Need of Cell Priming for Cell-Free Therapies in Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22020763. [PMID: 33466583 PMCID: PMC7828743 DOI: 10.3390/ijms22020763] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells that support homeostasis during tissue regeneration. In the last decade, cell therapies based on the use of MSCs have emerged as a promising strategy in the field of regenerative medicine. Although these cells possess robust therapeutic properties that can be applied in the treatment of different diseases, variables in preclinical and clinical trials lead to inconsistent outcomes. MSC therapeutic effects result from the secretion of bioactive molecules affected by either local microenvironment or MSC culture conditions. Hence, MSC paracrine action is currently being explored in several clinical settings either using a conditioned medium (CM) or MSC-derived exosomes (EXOs), where these products modulate tissue responses in different types of injuries. In this scenario, MSC paracrine mechanisms provide a promising framework for enhancing MSC therapeutic benefits, where the composition of secretome can be modulated by priming of the MSCs. In this review, we examine the literature on the priming of MSCs as a tool to enhance their therapeutic properties applicable to the main processes involved in tissue regeneration, including the reduction of fibrosis, the immunomodulation, the stimulation of angiogenesis, and the stimulation of resident progenitor cells, thereby providing new insights for the therapeutic use of MSCs-derived products.
Collapse
|
13
|
Age-related cerebral small vessel disease and inflammaging. Cell Death Dis 2020; 11:932. [PMID: 33127878 PMCID: PMC7603301 DOI: 10.1038/s41419-020-03137-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
The continued increase in global life expectancy predicts a rising prevalence of age-related cerebral small vessel diseases (CSVD), which requires a better understanding of the underlying molecular mechanisms. In recent years, the concept of "inflammaging" has attracted increasing attention. It refers to the chronic sterile low-grade inflammation in elderly organisms and is involved in the development of a variety of age-related chronic diseases. Inflammaging is a long-term result of chronic physiological stimulation of the immune system, and various cellular and molecular mechanisms (e.g., cellular senescence, immunosenescence, mitochondrial dysfunction, defective autophagy, metaflammation, gut microbiota dysbiosis) are involved. With the deepening understanding of the etiological basis of age-related CSVD, inflammaging is considered to play an important role in its occurrence and development. One of the most critical pathophysiological mechanisms of CSVD is endothelium dysfunction and subsequent blood-brain barrier (BBB) leakage, which gives a clue in the identification of the disease by detecting circulating biological markers of BBB disruption. The regional analysis showed blood markers of vascular inflammation are often associated with deep perforating arteriopathy (DPA), while blood markers of systemic inflammation appear to be associated with cerebral amyloid angiopathy (CAA). Here, we discuss recent findings in the pathophysiology of inflammaging and their effects on the development of age-related CSVD. Furthermore, we speculate the inflammaging as a potential target for future therapeutic interventions to delay or prevent the progression of the age-related CSVD.
Collapse
|
14
|
Kang JY, Oh MK, Joo H, Park HS, Chae DH, Kim J, Lee HR, Oh IH, Yu KR. Xeno-Free Condition Enhances Therapeutic Functions of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis by Upregulated Indoleamine 2,3-Dioxygenase Activity. J Clin Med 2020; 9:jcm9092913. [PMID: 32927587 PMCID: PMC7565923 DOI: 10.3390/jcm9092913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022] Open
Abstract
The therapeutic applications of mesenchymal stem cells (MSCs) have been actively explored due to their broad anti-inflammatory and immunomodulatory properties. However, the use of xenogeneic components, including fetal bovine serum (FBS), in the expansion media might pose a risk of xenoimmunization and zoonotic transmission to post-transplanted patients. Here, we extensively compared the physiological functions of human Wharton’s jelly-derived MSCs (WJ-MSCs) in a xeno-free medium (XF-MSCs) and a medium containing 10% FBS (10%-MSCs). Both groups showed similar proliferation potential; however, the 10%-MSCs showed prolonged expression of CD146, with higher colony-forming unit-fibroblast (CFU-F) ability than the XF-MSCs. The XF-MSCs showed enhanced adipogenic differentiation potential and sufficient hematopoietic stem cell (HSC) niche activity, with elevated niche-related markers including CXCL12. Furthermore, we demonstrated that the XF-MSCs had a significantly higher suppressive effect on human peripheral blood-derived T cell proliferation, Th1 and Th17 differentiation, as well as naïve macrophage polarization toward an M1 phenotype. Among the anti-inflammatory molecules, the production of indoleamine 2,3-dioxygenase (IDO) and nitric oxide synthase 2 (NOS2) was profoundly increased, whereas cyclooxygenase-2 (COX-2) was decreased in the XF-MSCs. Finally, the XF-MSCs had an enhanced therapeutic effect against mouse experimental colitis. These findings indicate that xeno-free culture conditions improved the immunomodulatory properties of WJ-MSCs and ex vivo-expanded XF-MSCs might be an effective strategy for preventing the progression of colitis.
Collapse
Affiliation(s)
- Ji Yeon Kang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Mi-Kyung Oh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Hansol Joo
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Hyun Sung Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Dong-Hoon Chae
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
| | - Jieun Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 08826, Korea;
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 08826, Korea;
- Correspondence: (I.-H.O.); (K.-R.Y.)
| | - Kyung-Rok Yu
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 08826, Korea; (J.Y.K.); (M.-K.O.); (H.J.); (H.S.P.); (D.-H.C.); (J.K.)
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (I.-H.O.); (K.-R.Y.)
| |
Collapse
|
15
|
Zhang L, Qi M, Chen J, Zhao J, Li L, Hu J, Jin Y, Liu W. Impaired autophagy triggered by HDAC9 in mesenchymal stem cells accelerates bone mass loss. Stem Cell Res Ther 2020; 11:269. [PMID: 32620134 PMCID: PMC7333327 DOI: 10.1186/s13287-020-01785-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Bone mass loss in aging is linked with imbalanced lineage differentiation of bone marrow mesenchymal stem cells (BMMSCs). Recent studies have proved that histone deacetylases (HDACs) are regarded as key regulators of bone remodeling. However, HDACs involve in regulating BMMSC bio-behaviors remain elusive. Here, we investigated the ability of HDAC9 on modulation of autophagy and its significance in lineage differentiation of BMMSCs. Methods The effects of HDAC9 on lineage differentiation of BMMSCs and autophagic signaling were assessed by various biochemical (western blot and ChIP assay), morphological (TEM and confocal microscopy), and micro-CT assays. Results Sixteen-month mice manifested obvious bone mass loss and marrow fat increase, accompanied with decreased osteogenic differentiation and increased adipogenic differentiation of BMMSCs. Further, the expression of HDAC9 elevated in bone and BMMSCs. Importantly, HDAC9 inhibitors recovered the lineage differentiation abnormality of 16-month BMMSCs and reduced p53 expression. Mechanistically, we revealed that HDAC9 regulated the autophagy of BMMSCs by controlling H3K9 acetylation in the promoters of the autophagic genes, ATG7, BECN1, and LC3a/b, which subsequently affected their lineage differentiation. Finally, HDAC9 inhibition improved endogenous BMMSC properties and promoted the bone mass recovery of 16-month mice. Conclusions Our data demonstrate that HDAC9 is a key regulator in a variety of bone mass by regulating autophagic activity in BMMSCs and thus a potential target of age-related bone loss treatment.
Collapse
Affiliation(s)
- Liqiang Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China
| | - Meng Qi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiangdong Zhao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Liya Li
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China
| | - Jiachen Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China.
| | - Wenjia Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China. .,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, Shaanxi, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
16
|
Abstract
Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyung-Rok Yu
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
17
|
Yin Q, Xu N, Xu D, Dong M, Shi X, Wang Y, Hao Z, Zhu S, Zhao D, Jin H, Liu W. Comparison of senescence-related changes between three- and two-dimensional cultured adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2020; 11:226. [PMID: 32517737 PMCID: PMC7285747 DOI: 10.1186/s13287-020-01744-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADMSCs) have attracted widespread interest as cell-based tissue repair systems. To obtain adequate quantities of ADMSCs for therapeutic applications, extensive in vitro expansion is required. However, under current two-dimensional (2D) approaches, ADMSCs rapidly undergo replicative senescence, and cell growth is impeded and stem cell properties are eliminated by mechanisms that are poorly understood. These issues limit the extensive applications of ADMSCs. In this study, we investigated senescence-related changes in mesenchymal stem cells (MSCs) isolated from human adipose tissue in 2D and three-dimensional (3D) cultures. METHODS We studied cell growth over a given period (21 days) to determine if modes of culture were associated with ADMSC senescence. ADMSCs were isolated from healthy females by liposuction surgery and then were grown in 2D and 3D cultures. The cell morphology was observed during cell culture. Every other time of culture, senescence-associated β-galactosidase (SA-β-gal) expression, cell viability, proliferation, and differentiation potential of ADMSCs from 2D and 3D cultures were detected. Also, senescence- and stemness-related gene expression, telomere length, telomerase activity, and energy metabolism of ADMSCs for different culture times were evaluated. RESULTS With long-term propagation, we observed significant changes in cell morphology, proliferation, differentiation abilities, and energy metabolism, which were associated with increases in SA-β-gal activity and decreases in telomere length and telomerase activity. Notably, when cultured in 3D, these changes were improved. CONCLUSIONS Our results indicate that 3D culture is able to ameliorate senescence-related changes in ADMSCs.
Collapse
Affiliation(s)
- Qiliang Yin
- Cancer Center at the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, People's Republic of China
| | - Na Xu
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Dongsheng Xu
- Cancer Center at the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, People's Republic of China
| | - Mingxin Dong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, 130122, People's Republic of China
| | - Xiumin Shi
- Cancer Center at the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, People's Republic of China
| | - Yan Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, 130122, People's Republic of China
| | - Zhuo Hao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, 130122, People's Republic of China
| | - Shuangshuang Zhu
- Cancer Center at the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, People's Republic of China
| | - Donghai Zhao
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Haofan Jin
- Cancer Center at the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, People's Republic of China.
| | - Wensen Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, 130122, People's Republic of China.
| |
Collapse
|
18
|
Wang T, Wang Y, Liu L, Jiang Z, Li X, Tong R, He J, Shi J. Research progress on sirtuins family members and cell senescence. Eur J Med Chem 2020; 193:112207. [PMID: 32222662 DOI: 10.1016/j.ejmech.2020.112207] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 02/05/2023]
Abstract
Human aging is a phenomenon of gradual decline and loss of cell, tissue, organ and other functions under the action of external environment and internal factors. It is mainly related to genomic instability, telomere wear, mitochondrial dysfunction, protein balance disorder, antioxidant damage, microRNA expression disorder and so on. Sirtuins protein is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. It has been found that sirtuins family can prolong the lifespan of yeast. Sirtuins can inhibit human aging through many signaling pathways, including apoptosis signaling pathway, mTOR signaling pathway, sirtuins signaling pathway, AMPK signaling pathway, phosphatidylinositol 3 kinase (PI3K) signaling pathway and so on. Based on this, this paper reviews the action principle of anti-aging star members of sirtuins family Sirt1, Sirt3 and Sirt6 on anti-aging related signaling pathways and typical compounds, in order to provide ideas for the screening of anti-aging compounds of sirtuins family members.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Li Liu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xingxing Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun He
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
19
|
Wang D, Liu N, Xie Y, Song B, Kong S, Sun X. Different culture method changing CD105 expression in amniotic fluid MSCs without affecting differentiation ability or immune function. J Cell Mol Med 2020; 24:4212-4222. [PMID: 32119193 PMCID: PMC7171344 DOI: 10.1111/jcmm.15081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
MSCs are kind of cultured cells that reside in different tissues as inducers or regulators of physiological and pathological processes. Here, we derived MSCs from amniotic fluid and compared their differentiation ability and immunosuppression effect on PHA‐activated PBMC with those of MSCs isolated from umbilical cords. Amniotic fluid MSCs were isolated and cultured on commercial AFC medium and classic MSC medium, and the number and size of colonies were used to evaluate differences in primary and passaged culture. Rate of proliferation, population doubling time, cell morphology, cell surface markers and mRNA expression were measured in subcultured cells. Furthermore, a comparative study was performed with umbilical cord MSCs to assess the ability of differentiation and immunosuppressive effect of PHA‐stimulated PBMCs. Amniotic fluid MSCs were isolated and expanded by three methods, and exhibited nearly all the characteristics of umbilical cord MSCs. Compared with umbilical cord MSCs, amniotic fluid MSCs had an enhanced osteogenic and chrondrogenic differentiation capability, and stronger immunosuppression effect of inhibition of PHA‐activated PBMC division. Culture with commercial AFCs medium yielded the highest percentage of CD105 expression and showed some advantages in primary cell isolation, cell source‐specific marker retention and cell proliferation. We demonstrated that amniotic fluid MSCs exhibited some advantages over umbilical cord MSCs, and different culture media caused cell proliferation, cell surface marker and cell morphology change, but were not associated with varying differentiation capability and immune effects.
Collapse
Affiliation(s)
- Ding Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nengqing Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing Song
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shu Kong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|
21
|
Matsushita K. Heart Failure and Adipose Mesenchymal Stem Cells. Trends Mol Med 2020; 26:369-379. [PMID: 32277931 DOI: 10.1016/j.molmed.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising cell type for the treatment of heart failure (HF). In particular, MSCs in adipose tissue are being evaluated as an effective therapeutic tool. However, adipose MSCs are a major source of adipocyte generation and linked to obesity, which is an independent risk factor for HF. MSCs express all of the components of the renin-angiotensin system (RAS), which plays a pivotal role in the pathophysiology of HF. The local RAS also regulates MSC adipogenesis, indicating a connection between MSC-adipogenesis-obesity and HF. This review examines evidence of the complex relationship between HF and adipose MSCs and discusses how to explore this association for favorable therapeutic outcomes for HF.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Division of Cardiology, Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Lee BC, Yu KR. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep 2020; 53:65-73. [PMID: 31964472 PMCID: PMC7061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 03/29/2024] Open
Abstract
Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies. [BMB Reports 2020; 53(2): 65-73].
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyung-Rok Yu
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
23
|
Scassellati C, Ciani M, Galoforo AC, Zanardini R, Bonvicini C, Geroldi C. Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment. Mech Ageing Dev 2020; 186:111210. [PMID: 31982474 DOI: 10.1016/j.mad.2020.111210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
In the last decade, cognitive frailty has gained great attention from the scientific community. It is characterized by high inflammation and oxidant state, endocrine and metabolic alterations, mitochondria dysfunctions and slowdown in regenerative processes and immune system, with a complex and multifactorial aetiology. Although several treatments are available, challenges regarding the efficacy and the costs persist. Here, we proposed an alternative non-pharmacological, non-side-effect, low cost therapy based on anti-inflammation, antioxidant, regenerative and anti-pathogens properties of ozone, through the activation of several molecular mechanisms (Nrf2-ARE, NF-κB, NFAT, AP-1, HIFα). We highlighted how these specific processes could be implicated in cognitive frailty to identify putative therapeutic targets for its treatment. The oxigen-ozone (O2-O3) therapy has never been tested for cognitive frailty. This work provides thus wide scientific background to build a consistent rationale for testing for the first time this therapy, that could modulate the immune, inflammatory, oxidant, metabolic, endocrine, microbiota and regenerative processes impaired in cognitive frailty. Although insights are needed, the O2-O3 therapy could represent a faster, easier, inexpensive monodomain intervention working in absence of side effects for cognitive frailty.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Cristina Geroldi
- Alzheimer Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
24
|
Huang B, Wang B, Yuk-Wai Lee W, Pong U K, Leung KT, Li X, Liu Z, Chen R, Lin JC, Tsang LL, Liu B, Ruan YC, Chan HC, Li G, Jiang X. KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. iScience 2019; 21:375-390. [PMID: 31704649 PMCID: PMC6888768 DOI: 10.1016/j.isci.2019.10.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/30/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Epigenomic changes and stem cell deterioration are two hallmarks of aging. Accumulating evidence suggest that senescence of mesenchymal stromal cells (MSCs) perpetuates aging or age-related diseases. Here we report that two H3K9 demethylases, KDM3A and KDM4C, regulate heterochromatin reorganization via transcriptionally activating condensin components NCAPD2 and NCAPG2 during MSC senescence. Suppression of KDM3A or KDM4C by either genetic or biochemical approach leads to robust DNA damage response and aggravates cellular senescence, whereas overexpression of KDM3A/KDM4C or NCAPD2 promotes heterochromatin reorganization and blunts DNA damage response. Moreover, MSCs derived from Kdm3a−/− mice exhibit defective chromosome organization and exacerbated DNA damage response, which are associated with accelerated bone aging. Consistently, analysis of human bone marrow MSCs and transcriptome database reveals inverse correlation of KDM3A/KDM4C and/or NCAPD2/NCAPG2 with aging. Taken together, the present finding unveils that H3K9 demethylases function as a surveillance mechanism to restrain DNA damage accumulation in stem cells during aging. KDM3A and KDM4C restrain DNA damage response during MSC senescence KDM3A and KDM4C promote heterochromatin reorganization via induction of condensin Loss of Kdm3a exacerbates MSC senescence and bone aging in mice Chronological aging of human MSCs is associated with reduced expression of KDM3A and KDM4C
Collapse
Affiliation(s)
- Biao Huang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Room 409A, Lo Kwee Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Bin Wang
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China; Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wayne Yuk-Wai Lee
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China; Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kin Pong U
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Room 409A, Lo Kwee Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Kam Tong Leung
- Department of Pediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenqing Liu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Room 409A, Lo Kwee Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, PR China
| | - Rui Chen
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Room 409A, Lo Kwee Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, PR China
| | - Jia Cheng Lin
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Room 409A, Lo Kwee Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Room 409A, Lo Kwee Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Baohua Liu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, PR China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Hsiao Chang Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Room 409A, Lo Kwee Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Gang Li
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China; Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Room 409A, Lo Kwee Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
25
|
Mazzotti E, Teti G, Falconi M, Chiarini F, Barboni B, Mazzotti A, Muttini A. Age-Related Alterations Affecting the Chondrogenic Differentiation of Synovial Fluid Mesenchymal Stromal Cells in an Equine Model. Cells 2019; 8:cells8101116. [PMID: 31547126 PMCID: PMC6829538 DOI: 10.3390/cells8101116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis is a degenerative disease that strongly correlates with age and promotes the breakdown of joint cartilage and subchondral bone. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stromal cells (MSCs) isolated from adult tissues. It seems that MSCs derived from synovial joint tissues exhibit superior chondrogenic ability, but their unclear distribution and low frequency actually limit their clinical application. To date, the influence of aging on synovial joint derived MSCs’ biological characteristics and differentiation abilities remains unknown, and a full understanding of the mechanisms involved in cellular aging is lacking. The aim of this study was therefore to investigate the presence of age-related alterations in synovial fluid MSCs and their influence on the potential ability of MSCs to differentiate toward chondrogenic phenotypes. Synovial fluid MSCs, isolated from healthy equine donors from 3 to 40 years old, were cultured in vitro and stimulated towards chondrogenic differentiation for up to 21 days. An equine model was chosen due to the high degree of similarity of the anatomy of the knee joint to the human knee joint and as spontaneous disorders develop that are clinically relevant to similar human disorders. The results showed a reduction in cell proliferation correlated with age and the presence of age-related tetraploid cells. Ultrastructural analysis demonstrated the presence of morphological features correlated with aging such as endoplasmic reticulum stress, autophagy, and mitophagy. Alcian blue assay and real-time PCR data showed a reduction of efficiency in the chondrogenic differentiation of aged synovial fluid MSCs compared to young MSCs. All these data highlighted the influence of aging on MSCs’ characteristics and ability to differentiate towards chondrogenic differentiation and emphasize the importance of considering age-related alterations of MSCs in clinical applications.
Collapse
Affiliation(s)
- Eleonora Mazzotti
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
| | - Gabriella Teti
- Department of Biomedical and Neuromotor Sciences, University di Bologna, 40126 Bologna, Italy.
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University di Bologna, 40126 Bologna, Italy.
| | - Francesca Chiarini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136 Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Barbara Barboni
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
| | - Antonio Mazzotti
- st Orthopedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy.
| | - Aurelio Muttini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
- Stem TeCh Group, 66100 Chieti, Italy.
| |
Collapse
|
26
|
Airini R, Iordache F, Alexandru D, Savu L, Epureanu FB, Mihailescu D, Amuzescu B, Maniu H. Senescence-induced immunophenotype, gene expression and electrophysiology changes in human amniocytes. J Cell Mol Med 2019; 23:7233-7245. [PMID: 31478614 PMCID: PMC6815807 DOI: 10.1111/jcmm.14495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of the study was to evidence replicative senescence‐induced changes in human amniocytes via flow cytometry, quantitative reverse‐transcription‐polymerase chain reaction (qRT‐PCR) and automated/manual patch‐clamp. Both cryopreserved and senescent amniocytes cultured in BIO‐AMF‐2 medium featured high percentages of pluripotency cell surface antigens SSEA‐1, SSEA‐4, TRA1‐60, TRA1‐81 (assessed by flow cytometry) and expression of pluripotency markers Oct4 (Pou5f1) and Nanog (by qRT‐PCR). We demonstrated in senescent vs cryopreserved amniocytes decreases in mesenchymal stem cell surface markers. Senescence‐associated β‐galactosidase stained only senescent amniocytes, and they showed no deoxyuridine incorporation. The gene expression profile revealed a secretory phenotype of senescent amniocytes (increased interleukin (IL)‐1α, IL‐6, IL‐8, transforming growth factor β, nuclear factor κB p65 expression), increases for cell cycle‐regulating genes (p16INK4A), cytoskeletal elements (β‐actin); HMGB1, c‐Myc, Bcl‐2 showed reduced changes and p21, MDM2 decreased. Via patch‐clamp we identified five ion current components: outward rectifier K+ current, an inactivatable component, big conductance Ca2+‐dependent K+ channels (BK) current fluctuations, Na+ current, and inward rectifier K+ current. Iberiotoxin 100 nmol/L blocked 71% of BK fluctuations, and lidocaine 200 μmol/L exerted use‐dependent Na+ current block. Transient receptor potential (TRP)M7‐like current density at −120 mV was significantly increased in senescent amniocytes. The proinflammatory profile acquired by senescent amniocytes in vitro may prevent their use in clinical therapies for immunosuppression, antiapoptotic and healing effects.
Collapse
Affiliation(s)
- Razvan Airini
- Department of Biophysics & Physiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Florin Iordache
- Department of Regenerative Medicine, "N. Simionescu" Institute of Cell Biology and Pathology, Bucharest, Romania
| | - Dorin Alexandru
- Department of Regenerative Medicine, "N. Simionescu" Institute of Cell Biology and Pathology, Bucharest, Romania
| | - Lorand Savu
- Genetic Lab S.R.L., Bucharest, Romania.,Fundeni Clinical Institute, Bucharest, Romania
| | - Florin Bogdan Epureanu
- Department of Biophysics & Physiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dan Mihailescu
- Department of Biophysics & Physiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Bogdan Amuzescu
- Department of Biophysics & Physiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Horia Maniu
- Department of Regenerative Medicine, "N. Simionescu" Institute of Cell Biology and Pathology, Bucharest, Romania
| |
Collapse
|
27
|
Effect of Mother’s Age and Pathology on Functional Behavior of Amniotic Mesenchymal Stromal Cells—Hints for Bone Regeneration. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human amnion-derived mesenchymal stromal cells (hAMSCs) are used increasingly in regenerative medicine applications, including dentistry. The aim of this study was to evaluate if hAMSCs from aged and pathological mothers could be affected in their phenotype and functional behavior. hAMSCs were isolated from placentas of women aged younger than 40 years (Group 1, n = 7), older than 40 years (Group 2, n = 6), and with pre-eclampsia (Group 3, n = 5). Cell yield and viability were assessed at isolation (p0). Cell proliferation was evaluated from p0 to p5. Passage 2 was used to determine the phenotype, the differentiation capacity, and the adhesion to machined and sandblasted titanium disks. hAMSCs recovered from Group 3 were fewer than in Group 1. Viability and doubling time were not different among the three groups. Percentages of CD29+ cells were significantly lower in Group 3, while percentages of CD73+ cells were significantly lower in Groups 2 and 3 as compared with Group 1. hAMSCs from Group 2 showed a significant lower differentiation capacity towards chondrogenic and osteogenic lineages. hAMSCs from Group 3 adhered less to titanium surfaces. In conclusion, pathology can affect hAMSCs in phenotype and functional behavior and may alter bone regeneration capacities.
Collapse
|
28
|
Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities. Int J Mol Sci 2019; 20:ijms20153738. [PMID: 31370159 PMCID: PMC6696100 DOI: 10.3390/ijms20153738] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are present in all organs and tissues, playing a well-known function in tissue regeneration. However, there is also evidence indicating a broader role of MSCs in tissue homeostasis. In vivo studies have shown MSC paracrine mechanisms displaying proliferative, immunoregulatory, anti-oxidative, or angiogenic activity. In addition, recent studies also demonstrate that depletion and/or dysfunction of MSCs are associated with several systemic diseases, such as lupus, diabetes, psoriasis, and rheumatoid arthritis, as well as with aging and frailty syndrome. In this review, we hypothesize about the role of MSCs as keepers of tissue homeostasis as well as modulators in a variety of inflammatory and degenerative systemic diseases. This scenario opens the possibility for the use of secretome-derived products from MSCs as new therapeutic agents in order to restore tissue homeostasis, instead of the classical paradigm "one disease, one drug".
Collapse
|
29
|
Zhai W, Yong D, El-Jawhari JJ, Cuthbert R, McGonagle D, Win Naing M, Jones E. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy 2019; 21:803-819. [PMID: 31138507 DOI: 10.1016/j.jcyt.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has been shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable because it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighboring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example, involving cell size and spectroscopic measurements, could be the best way forward because they do not modify the cells of interest, thus maximizing the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data.
Collapse
Affiliation(s)
- Weichao Zhai
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Jehan Jomaa El-Jawhari
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard Cuthbert
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - May Win Naing
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Elena Jones
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK.
| |
Collapse
|
30
|
Bie YN, Gu P, Chen YT, Zhou XX, Tian YG, Yang Q, Li HY, Lin X, Guan YH, Lin TY, Lu X, Shen HF, Fang TX, Liu YM, Xiao D, Gu WW. TZAP plays an inhibitory role in the self-renewal of porcine mesenchymal stromal cells and is implicated the regulation of premature senescence via the p53 pathway. J Transl Med 2019; 17:72. [PMID: 30845965 PMCID: PMC6404308 DOI: 10.1186/s12967-019-1820-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) were originally characterized by the ability to differentiate into different mesenchymal lineages in vitro, and their immunomodulatory and trophic functions have recently aroused significant interest in the application of MSCs in cell-based regenerative medicine. However, a major problem in clinical practice is the replicative senescence of MSCs, which limits the cell proliferation potential of MSCs after large-scale expansion. Telomeric zinc finger-associated protein (TZAP), a novel specific telomere-binding protein, was recently found to stimulate telomere trimming and prevent excessive telomere elongation. The aim of this study was to elucidate the role of TZAP in regulating MSCs senescence, differentiation and proliferation. Method Primary porcine mesenchymal stromal cells (pMSCs) were isolated from the bone marrow of Tibet minipigs by a noninvasive method in combination with frequent medium changes (FMCs). The deterioration of the pMSCs’ proliferation capacity and their resultant entry into senescence were analyzed by using CCK8 and EdU incorporation assays, SA-β-gal staining and comparisons of the expression levels of cellular senescence markers (p16INK14 and p21) in pMSC cell lines with TZAP overexpression or knockout. The effects of TZAP overexpression or knockout on the differentiation potential of pMSCs were assessed by alizarin red S staining after osteogenic induction or by oil red O staining after adipogenic induction. The effect of TZAP overexpression and the involvement of the p53 signaling pathway were evaluated by detecting changes in ARF, MDM2, P53 and P21 protein levels in pMSCs. Results TZAP levels were significantly elevated in late-passage pMSCs compared to those in early-passage pMSCs. We also observed significantly increased levels of the senescence markers p16INK4A and p21. Overexpression of TZAP reduced the differentiation potential of the cells, leading to premature senescence in early-passage pMSCs, while knockout of TZAP led to the opposite phenotype in late-passage pMSCs. Furthermore, overexpression of TZAP activated the P53 pathway (ARF-MDM2-P53-P21WAF/CDKN1A) in vitro. TZAP also downregulated the expression levels of PPARγ and Cebpα, two key modulators of adipogenesis. Conclusions This study demonstrates that the level of TZAP is closely related to differentiation potential in pMSCs and affects cellular senescence outcomes via the p53 pathway. Therefore, attenuation of intracellular TZAP levels could be a new strategy for improving the efficiency of pMSCs in cell therapy and tissue engineering applications. Electronic supplementary material The online version of this article (10.1186/s12967-019-1820-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Nan Bie
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Yu-Ting Chen
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Xu Zhou
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Yu-Guang Tian
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Yan Li
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Xia Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Yan-Hong Guan
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Tao-Yan Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Xun Lu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Hong-Fen Shen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Ting-Xiao Fang
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Yu-Min Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Dong Xiao
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China.
| | - Wei-Wang Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China. .,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China.
| |
Collapse
|
31
|
Lazzarini R, Caffarini M, Tang H, Cerqueni G, Pellegrino P, Monsurrò V, Di Primio R, Orciani M. The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. Exp Gerontol 2019; 120:21-27. [PMID: 30822486 DOI: 10.1016/j.exger.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 12/16/2022]
Abstract
Human aging is a physiological process characterized by a chronic low-grade inflammation. Senescence may affect endothelial cells, subsequently involved in the most common age-related diseases (ARDs), as well as mesenchymal stem cells (MSCs) with an impairment of their properties in tissues regeneration. Endothelial cells seem to be able to exert a paracrine effect on BM-MSCs through the secretion of pro-inflammatory factors. This work is aimed to evaluate if the senescent status of human umbilical vein endothelial cells (HUVECs) could affect bone marrow derived MSCs (BM-MSCs) proliferative ability and stemness. HUVECs were cultured until the senescence status. Young (passage 3) and senescent HUVECs (passage 13) were indirectly co-cultured with BM-MSCs for 8 days in order to evaluate the effect of their senescence status on proliferative ability and stemness of MSCs. The co-culture of senescent HUVECs with BM-MSCs was associated with a reduced proliferative ability of BM-MSCs, an enforced pro-inflammatory phenotype of BM-MSCs (increased synthesis of proinflammatory cytokines such as IL-6 and TNF-α) and an increased expression of miR-126a-3p, in association with a significant decrease of SOX2, a stemmness- associated gene, targeted by miR-126a-3p. A more general IPA analysis, revealed as miR-126a-3p also modulates the expression of IRS1, IRS2, IL6ST and PIK3R2, all targets that enforce the hypothesis that senescent endothelial cells may reduce the proliferative ability and the stemness phenotype of bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Miriam Caffarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Huijuan Tang
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giorgia Cerqueni
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pamela Pellegrino
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
32
|
Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, Sun C, Li B, Wang Z, Lan W, Zhang C, Shi C, Zhou Y. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther 2019; 10:30. [PMID: 30646958 PMCID: PMC6334443 DOI: 10.1186/s13287-018-1121-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Radiotherapy to cancer patients is inevitably accompanied by normal tissue injury, and the bone is one of the most commonly damaged tissues. Damage to bone marrow mesenchymal stem cells (BM-MSCs) induced by radiation is thought to be a major cause of radiation-induced bone loss. Exosomes exhibit great therapeutic potential in the treatment of osteoporosis, but whether exosomes are involved in radiation-induced bone loss has not been thoroughly elucidated to date. The main purpose of this study is to investigate the role of exosomes derived from BM-MSCs in restoring recipient BM-MSC function and alleviating radiation-induced bone loss. Methods BM-MSC-derived exosomes were intravenously injected to rats immediately after irradiation. After 28 days, the left tibiae were harvested for micro-CT and histomorphometric analysis. The effects of exosomes on antioxidant capacity, DNA damage repair, proliferation, and cell senescence of recipient BM-MSCs were determined. Osteogenic and adipogenic differentiation assays were used to detect the effects of exosomes on the differentiation potential of recipient BM-MSCs, and related genes were measured by qRT-PCR and Western blot analysis. β-Catenin expression was detected at histological and cytological levels. Results BM-MSC-derived exosomes can attenuate radiation-induced bone loss in a rat model that is similar to mesenchymal stem cell transplantation. Exosome-treated BM-MSCs exhibit reduced oxidative stress, accelerated DNA damage repair, and reduced proliferation inhibition and cell senescence-associate protein expression compared with BM-MSCs that exclusively received irradiation. Following irradiation, exosomes promote β-catenin expression in BM-MSCs and restore the balance between adipogenic and osteogenic differentiation. Conclusions Our findings indicate that BM-MSC-derived exosomes take effects by restoring the function of recipient BM-MSCs. Therefore, exosomes may represent a promising cell-free therapeutic approach for the treatment of radiation-induced bone loss. Electronic supplementary material The online version of this article (10.1186/s13287-018-1121-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Yanqiu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Wenkai Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Junlong Wu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Bin Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University(Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Weiren Lan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University(Third Military Medical University), Chongqing, 400038, People's Republic of China.
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
33
|
Schulman IH, Balkan W, Hare JM. Mesenchymal Stem Cell Therapy for Aging Frailty. Front Nutr 2018; 5:108. [PMID: 30498696 PMCID: PMC6249304 DOI: 10.3389/fnut.2018.00108] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic diseases and degenerative conditions are strongly linked with the geriatric syndrome of frailty and account for a disproportionate percentage of the health care budget. Frailty increases the risk of falls, hospitalization, institutionalization, disability, and death. By definition, frailty syndrome is characterized by declines in lean body mass, strength, endurance, balance, gait speed, activity and energy levels, and organ physiologic reserve. Collectively, these changes lead to the loss of homeostasis and capability to withstand stressors and resulting vulnerabilities. There is a strong link between frailty, inflammation, and the impaired ability to repair tissue injury due to decreases in endogenous stem cell production. Although exercise and nutritional supplementation provide benefit to frail patients, there are currently no specific therapies for frailty. Bone marrow-derived allogeneic mesenchymal stem cells (MSCs) provide therapeutic benefits in heart failure patients irrespective of age. MSCs contribute to cellular repair and tissue regeneration through their multilineage differentiation capacity, immunomodulatory, and anti-inflammatory effects, homing and migratory capacity to injury sites, and stimulatory effect on endogenous tissue progenitors. The advantages of using MSCs as a therapeutic strategy include standardization of isolation and culture expansion techniques and safety in allogeneic transplantation. Based on this evidence, we performed a randomized, double-blinded, dose-finding study in elderly, frail individuals and showed that intravenously delivered allogeneic MSCs are safe and produce significant improvements in physical performance measures and inflammatory biomarkers. We thus propose that frailty can be treated and the link between frailty and chronic inflammation offers a potential therapeutic target, addressable by cell therapy.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States.,Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
34
|
Jiang Y, Ji JY. Understanding lamin proteins and their roles in aging and cardiovascular diseases. Life Sci 2018; 212:20-29. [DOI: 10.1016/j.lfs.2018.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
|
35
|
Farahzadi R, Fathi E, Mesbah-Namin SA, Zarghami N. Anti-aging protective effect of L-carnitine as clinical agent in regenerative medicine through increasing telomerase activity and change in the hTERT promoter CpG island methylation status of adipose tissue-derived mesenchymal stem cells. Tissue Cell 2018; 54:105-113. [PMID: 30309499 DOI: 10.1016/j.tice.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
The identification of factors that reduce the senescent tendency of the mesenchymal stem cells (MSCs) upon expansion has great potential for cellular therapies in regenerative medicine. Previous studies have shown the aging protective effect of L-carnitine (LC). On the other hand, reduction in proliferation potential and age-dependent decline in number and functions of MSCs were accompanied by telomere shortening, reduction in telomerase activity and epigenetic changes. The aim of this study was to evaluate the effects of LC on aging of MSCs through telomerase activity assessment and the investigation of methylation status of the hTERT gene promoter. Telomerase activity and hTERT promoter methylation investigation was performed with PCR-ELISA TRAP assay and methylation specific PCR (MSP), respectively. Also, beta-galactosidase (SA-ß-gal) staining was used to calculate the percentage of senescent cells. The results showed that the LC could efficiently promote the telomerase activity. In addition, the percentage of senescent cells had significantly decreased and changes in the methylation status of the CpG islands in the hTERT promoter region under treatment with LC were seen. In conclusion, it seems that LC could improve the aging-related features due to increasing the telomerase activity, decreasing aging, and changing the methylation status of hTERT promoter; it could potentially beneficial for enhancing the application of aged-MSCs in regenerative medicine.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Fu HC, Chuang IC, Yang YC, Chuang PC, Lin H, Ou YC, Chang Chien CC, Huang HS, Kang HY. Low P16 INK4A Expression Associated with High Expression of Cancer Stem Cell Markers Predicts Poor Prognosis in Cervical Cancer after Radiotherapy. Int J Mol Sci 2018; 19:ijms19092541. [PMID: 30150594 PMCID: PMC6164400 DOI: 10.3390/ijms19092541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 01/13/2023] Open
Abstract
Previous studies have suggested that cancer stem cells (CSCs) resisted radiotherapy and chemotherapy. P16INK4A is a biomarker for cervical carcinogenesis and reduces proliferation of stem cells. We aimed to investigate the expression and clinical significance of cyclin-dependent kinase inhibitor 2A (P16INK4A), sex determining region Y-box 2 (SOX2), and Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1) in cervical cancer treated with radiotherapy and cervical cell line models. The expressions of P16INK4A, SOX2, and ALDH1A1 were performed by immunohistochemical staining of tumor samples from 139 cervical cancer patients with International Federation of Gynecology and Obstetrics stages Ib to IV. The staining showed high expression in 100, 107, and 13 patients with P16INK4A (>80%), SOX2 (≥10%), and ALDH1A1 (50%), respectively. The high-P16INK4A group had a higher five-year overall survival (OS) rate and disease-free survival (DFS) than the low-P16INK4A group (OS: 62.0% and 35.2%, p = 0.016; DFS: 60.0% and 31.2%, p = 0.002). The low-P16INK4A/high-SOX2 and low-P16INK4A/high-ALDH1A1 groups had a worse five-year OS and DFS rate than the high-P16INK4A/low-SOX2 and high-P16INK4A/low-ALDH1A1 groups, respectively. Depletion of P16INK4A promoted chemoresistance and radioresistance of cervical cancer cells increased the expression of SOX2 and ALDH1A1 and exhibited higher self-renewal ability. These results suggest that lower P16INK4A expression associated with higher CSC markers predicts poor prognostic outcomes and is a promising target in patients with cervical cancer.
Collapse
Affiliation(s)
- Hung-Chun Fu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan.
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - I-Chieh Chuang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Yi-Chien Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan.
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Pei-Chin Chuang
- Stem Cell Research Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Hao Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chan-Chao Chang Chien
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Hui-Shan Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan.
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
37
|
Jeong YH, Oh HM, Lee MR, Kim CY, Joo C, Park SJ, Song YH, Kang C, Chung HM, Kang SW, Huh KM, Moon SH. The Effect of Hexanoyl Glycol Chitosan on the Proliferation of Human Mesenchymal Stem Cells. Polymers (Basel) 2018; 10:polym10080839. [PMID: 30960764 PMCID: PMC6404012 DOI: 10.3390/polym10080839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (AD-MSCs) have been studied as desirable cell sources for regenerative medicine and therapeutic application. However, it has still remained a challenge to obtain enough adequate and healthy cells in large quantities. To overcome this limitation, various biomaterials have been used to promote expansion of MSCs in vitro. Recently, hexanoyl glycol chitosan (HGC) was introduced as a new biomaterial for various biomedical applications, in particular 3D cell culture, because of its biodegradability, biocompatibility, and other promising biofunctional properties. In this study, the effect of HGC on the proliferation of AD-MSCs was examined in vitro, and its synergistic effect with basic fibroblast growth factor (bFGF), which has been widely used to promote proliferation of cells, was evaluated. We found that the presence of HGC increased the proliferative capacity of AD-MSCs during long-term culture, even at low concentrations of bFGF. Furthermore, it suppressed the expression of senescence-related genes and improved the mitochondrial functionality. Taken all together, these findings suggest that the HGC demonstrate a potential for sustained growth of AD-MSCs in vitro.
Collapse
Affiliation(s)
- Young-Hoon Jeong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hye Min Oh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea.
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Chanyang Joo
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Soon-Jung Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Yun-Ho Song
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Changhee Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sung-Hwan Moon
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
38
|
De Witte SF, Peters FS, Merino A, Korevaar SS, Van Meurs JB, O'Flynn L, Elliman SJ, Newsome PN, Boer K, Baan CC, Hoogduijn MJ. Epigenetic changes in umbilical cord mesenchymal stromal cells upon stimulation and culture expansion. Cytotherapy 2018; 20:919-929. [DOI: 10.1016/j.jcyt.2018.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
|
39
|
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 2018; 26:1610-1623. [PMID: 29807782 DOI: 10.1016/j.ymthe.2018.05.009] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.
Collapse
Affiliation(s)
- Luiza Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
40
|
Yang M, Teng S, Ma C, Yu Y, Wang P, Yi C. Ascorbic acid inhibits senescence in mesenchymal stem cells through ROS and AKT/mTOR signaling. Cytotechnology 2018; 70:1301-1313. [PMID: 29777434 DOI: 10.1007/s10616-018-0220-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) aging seriously affects its function in stem cell transplantation for treatment. Extensive studies have focused on how to inhibit senescence in MSCs. However, the mechanism of senescence in MSC was not clear. In this study, we used D-galactose to induce MSC aging. Then we found that the number of aging cells was increased compared with untreated MSCs. We discovered that ascorbic acid could inhibit the production of reactive oxygen species (ROS) and activation of AKT/mTOR signaling in MSCs caused by D-galactose. Especially, when treated together with a ROS scavenger or AKT inhibitor, the senescent cells were obviously decreased in D-galactose-induced MSCs. Taken together, we identify that ascorbic acid owns the potential to inhibit the senescence of MSCs through ROS and Akt/mTOR signaling. Together, our data supports that ascorbic acid can be used to prevent MSCs from senescence, which can enhance the efficiency of stem cell transplantation in the clinic.
Collapse
Affiliation(s)
- Mengkai Yang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Songsong Teng
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chunhui Ma
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yinxian Yu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peilin Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chengqing Yi
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
41
|
The positive effect of chick embryo and nutrient mixture on bone marrow- derived mesenchymal stem cells from aging rats. Sci Rep 2018; 8:7051. [PMID: 29728592 PMCID: PMC5935737 DOI: 10.1038/s41598-018-25563-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The aging of many mammalian tissues is associated with loss of functional adult stem cells, especially bone marrow-derived mesenchymal stem cells (BMSCs). This study was aimed to analyze the biological effect of chick embryo (CE) and nutrient mixture (NM) on the BMSCs of aging rats. The aging rat model was established to be induced by D-galactose (500 mg/kg/d) for 90 days. Meanwhile, aging rats were fed with CE and NM in different dose manner by intragastric administration. At the end of the experimental period, serum was collected from rats and used for BMSCs culture. Flow cytometric analysis was used to investigate the BMSCs surface markers. Alizarin Red and oil red O staining were performed to evaluate the multi-lineage differentiation of BMSCs. The results showed that CE plus NM increased the telomere length of BMSCs and promoted BMSCs proliferation. Moreover, CE plus NM administration promoted BMSCs differentiation into osteoblasts and suppressed differentiation into adipocytes. High-throughput sequencing analysis revealed that there were 326 genes were up-regulated and 59 genes were down-regulated in BMSCs of aging rats treated with CE plus NM. In conclusion, CE plus NM supplement had potential to delay aging through the recovery of BMSCs senescence and could be used as a safe effective approach for nutritional therapy of anti-aging.
Collapse
|
42
|
Characterization of Senescence of Human Adipose-Derived Stem Cells After Long-Term Expansion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:109-128. [PMID: 30242785 DOI: 10.1007/5584_2018_235] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Since the 1980s, adipose-derived stem cells (ASCs) have become a powerful and potential source for stem cell-based therapy, regenerative medicine, and even drug delivery in cancer treatment. The development of off-the-shelf mesenchymal stem cells (MSCs), including ASCs, has rapidly advanced in recent years with several clinical trials and approved products. In this technology, ASCs should be expanded long term in order to harvest higher cell number. In this study, senescence of ASCs after long-term expansion was evaluated. METHODS Human ASCs (hASCs) were isolated and cultured continuously at a density of 103 cells/cm2 up to passage 15. The cells were assessed for aging via changes in the following: characteristics of MSCs, mitochondrial activity, accumulation of beta-galactosidase, and expression of tumor suppressor genes. RESULTS The results showed that following in vitro expansion to the 15th passage, ASCs did not show changes in immunophenotype, except for decreased expression of CD105. However, the cells increased in size and in shape and complexity (toward the "fried egg" morphology). They also almost ceased to proliferate in passage 15. Nonetheless, they maintained in vitro differentiation potential toward osteoblasts, chondrocytes, and adipocytes. Expression of tumor suppressor genes p53 and p16 did not significantly change, while p27 was significantly downregulated. Mitochondrial activities also decreased slightly in culture from passage 5 to passage 10 and remained stable to passage 15. ASCs also showed increased accumulation of beta-galactosidase in culture, but it was negligible. CONCLUSION In conclusion, hASCs exhibited some particular characteristics of aged stem cells when the number of subculture cells increased. However, up to passage 10, ASCs also retained almost all of the characteristics of MSCs.
Collapse
|
43
|
Li X, Li J, Zhao X, Wang Q, Yang X, Cheng Y, Zhou M, Wang G, Dang E, Yang X, Hou R, An P, Yin G, Zhang K. Comparative analysis of molecular activity in dermal mesenchymal stem cells from different passages. Cell Tissue Bank 2017; 19:277-285. [PMID: 29159500 DOI: 10.1007/s10561-017-9672-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cells (MSCs) are used for tissue regeneration in several pathological conditions, including autoimmune diseases. However, the optimal sources and culture requirements for these cells are still under investigation. Here, we compared mRNA expression in dermal MSCs (DMSCs) at passage (P) 3 and P5 to provide a reference for future studies related to DMSCs expansion. In normal DMSCs, the expression of three of eight genes associated with basic cellular activity were different at P5 compared to that at P3: PLCB4 and SYTL2 were upregulated by 4.30- and 6.42-fold, respectively (P < 0.05), whereas SATB2 was downregulated by 39.25-fold (P < 0.05). At the same time, genes associated with proliferation, differentiation, inflammation, and apoptosis were expressed at similar levels at P3 and P5 (P > 0.05). In contrast, in DMSCs isolated from psoriatic patients we observed differential expression of three inflammation-associated genes at P5 compared to P3; thus IL6, IL8, and CXCL6 mRNA levels were upregulated by 16.02-, 31.15-, and 15.04-fold, respectively. Our results indicate that normal and psoriatic DMSCs showed different expression patterns for genes related to inflammation and basic cell activity at P3 and P5, whereas those for genes linked to proliferation, differentiation, and apoptosis were mostly similar.
Collapse
Affiliation(s)
- Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Xiaohong Yang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Yueai Cheng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Min Zhou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Gang Wang
- Hospital of Xijing Dermatology, Xijing Hospital, No. 15 Changle Road West, Xi'an, 710032, Shanxi Province, China
| | - Erle Dang
- Hospital of Xijing Dermatology, Xijing Hospital, No. 15 Changle Road West, Xi'an, 710032, Shanxi Province, China
| | - Xiaoli Yang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Peng An
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, No. 1 Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, Shanxi Province, China.
| |
Collapse
|
44
|
Farahzadi R, Fathi E, Mesbah-Namin SA, Zarghami N. Zinc sulfate contributes to promote telomere length extension via increasing telomerase gene expression, telomerase activity and change in the TERT gene promoter CpG island methylation status of human adipose-derived mesenchymal stem cells. PLoS One 2017; 12:e0188052. [PMID: 29145503 PMCID: PMC5690675 DOI: 10.1371/journal.pone.0188052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for cell therapy and regenerative medicine has received widespread attention over the past few years, but their application can be complicated by factors such as reduction in proliferation potential, the senescent tendency of the MSCs upon expansion and their age-dependent decline in number and function. It was shown that all the mentioned features were accompanied by a reduction in telomerase activity and telomere shortening. Furthermore, the role of epigenetic changes in aging, especially changes in promoter methylation, was reported. In this study, MSCs were isolated from the adipose tissue with enzymatic digestion. In addition, immunocytochemistry staining and flow cytometric analysis were performed to investigate the cell-surface markers. In addition, alizarin red-S, sudan III, toluidine blue, and cresyl violet staining were performed to evaluate the multi-lineage differentiation of hADSCs. In order to improve the effective application of MSCs, these cells were treated with 1.5 × 10-8 and 2.99 × 10-10 M of ZnSO4 for 48 hours. The length of the absolute telomere, human telomerase reverse transcriptase (hTERT) gene expression, telomerase activity, the investigation of methylation status of the hTERT gene promoter and the percentage of senescent cells were analyzed with quantitative real-time PCR, PCR-ELISA TRAP assay, methylation specific PCR (MSP), and beta-galactosidase (SA-β-gal) staining, respectively. The results showed that the telomere length, the hTERT gene expression, and the telomerase activity had significantly increased. In addition, the percentage of senescent cells had significantly decreased and changes in the methylation status of the CpG islands in the hTERT promoter region under treatment with ZnSO4 were seen. In conclusion, it seems that ZnSO4 as a proper antioxidant could improve the aging-related features due to lengthening of the telomeres, increasing the telomerase gene expression, telomerase activity, decreasing aging, and changing the methylation status of hTERT promoter; it could potentially beneficial for enhancing the application of aged-MSCs.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Armbruster N, Krieg J, Weißenberger M, Scheller C, Steinert AF. Rescued Chondrogenesis of Mesenchymal Stem Cells under Interleukin 1 Challenge by Foamyviral Interleukin 1 Receptor Antagonist Gene Transfer. Front Pharmacol 2017; 8:255. [PMID: 28536528 PMCID: PMC5422547 DOI: 10.3389/fphar.2017.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) and their chondrogenic differentiation have been extensively investigated in vitro as MSCs provide an attractive source besides chondrocytes for cartilage repair therapies. Here we established prototype foamyviral vectors (FVV) that are derived from apathogenic parent viruses and are characterized by a broad host range and a favorable integration pattern into the cellular genome. As the inflammatory cytokine interleukin 1 beta (IL1β) is frequently present in diseased joints, the protective effects of FVV expressing the human interleukin 1 receptor antagonist protein (IL1RA) were studied in an established in vitro model (aggregate culture system) of chondrogenesis in the presence of IL1β. Materials and Methods: We generated different recombinant FVVs encoding enhanced green fluorescent protein (EGFP) or IL1RA and examined their transduction efficiencies and transgene expression profiles using different cell lines and human primary MSCs derived from bone marrow-aspirates. Transgene expression was evaluated by fluorescence microscopy (EGFP), flow cytometry (EGFP), and ELISA (IL1RA). For evaluation of the functionality of the IL1RA transgene to block the inhibitory effects of IL1β on chondrogenesis of primary MSCs and an immortalized MSC cell line (TERT4 cells), the cells were maintained following transduction as aggregate cultures in standard chondrogenic media in the presence or absence of IL1β. After 3 weeks of culture, pellets were harvested and analyzed by histology and immunohistochemistry for chondrogenic phenotypes. Results: The different FVV efficiently transduced cell lines as well as primary MSCs, thereby reaching high transgene expression levels in 6-well plates with levels of around 100 ng/ml IL1RA. MSC aggregate cultures which were maintained in chondrogenic media without IL1β supplementation revealed a chondrogenic phenotype by means of strong positive staining for collagen type II and matrix proteoglycan (Alcian blue). Addition of IL1β was inhibitory to chondrogenesis in untreated control pellets. In contrast, foamyviral mediated IL1RA expression rescued the chondrogenesis in pellets cultured in the presence of IL1β. Transduced MSC pellets reached thereby very high IL1RA transgene expression levels with a peak of 1087 ng/ml after day 7, followed by a decrease to 194 ng/ml after day 21, while IL1RA concentrations of controls were permanently below 200 pg/ml. Conclusion: Our results indicate that FVV are capable of efficient gene transfer to MSCs, while reaching IL1RA transgene expression levels, that were able to efficiently block the impacts of IL1β in vitro. FVV merit further investigation as a means to study the potential as a gene transfer tool for MSC based therapies for cartilage repair.
Collapse
Affiliation(s)
- Nicole Armbruster
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Jennifer Krieg
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Manuel Weißenberger
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Carsten Scheller
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| |
Collapse
|
46
|
Molchadsky A, Rotter V. p53 and its mutants on the slippery road from stemness to carcinogenesis. Carcinogenesis 2017; 38:347-358. [PMID: 28334334 DOI: 10.1093/carcin/bgw092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022] Open
Abstract
Normal development, tissue homeostasis and regeneration following injury rely on the proper functions of wide repertoire of stem cells (SCs) persisting during embryonic period and throughout the adult life. Therefore, SCs employ robust mechanisms to preserve their genomic integrity and avoid heritage of mutations to their daughter cells. Importantly, propagation of SCs with faulty DNA as well as dedifferentiation of genomically altered somatic cells may result in derivation of cancer SCs, which are considered to be the driving force of the tumorigenic process. Multiple experimental evidence suggest that p53, the central tumor suppressor gene, plays a critical regulatory role in determination of SCs destiny, thereby eliminating damaged SCs from the general SC population. Notably, mutant p53 proteins do not only lose the tumor suppressive function, but rather gain new oncogenic function that markedly promotes various aspects of carcinogenesis. In this review, we elaborate on the role of wild type and mutant p53 proteins in the various SCs types that appear under homeostatic conditions as well as in cancer. It is plausible that the growing understanding of the mechanisms underlying cancer SC phenotype and p53 malfunction will allow future optimization of cancer therapeutics in the context of precision medicine.
Collapse
Affiliation(s)
- Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
47
|
Lee WYW, Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translat 2017; 9:76-88. [PMID: 29662802 PMCID: PMC5822962 DOI: 10.1016/j.jot.2017.03.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis is a degenerative disease of joints with destruction of articular cartilage associated with subchondral bone hypertrophy and inflammation. OA is the leading cause of joint pain resulting in significant worsening of the quality-of-life in the elderly. Numerous efforts have been spent to overcome the inherently poor healing ability of articular cartilage. Mesenchymal stem cells (MSCs) have been in the limelight of cell-based therapies to promote cartilage repair. Despite progressive advancements in MSC manipulation and the introduction of various bioactive scaffolds and growth factors in preclinical studies, current clinical trials are still at early stages with preliminary aims to evaluate safety, feasibility and efficacy. This review summarises recently reported MSC-based clinical trials and discusses new research directions with particular focus on the potential application of MSC-derived extracellular vehicles, miRNAs and advanced gene editing techniques which may shed light on the development of novel treatment strategies. The translational potential of this article: This review summarises recent MSC-related clinical research that focuses on cartilage repair. We also propose a novel possible translational direction for hyaline cartilage formation and a new paradigm making use of extra-cellular signalling and epigenetic regulation in the application of MSCs for cartilage repair.
Collapse
Affiliation(s)
- Wayne Yuk-wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PR China
- SMART Program, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PR China
- SMART Program, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
48
|
Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (Review). Int J Mol Med 2017; 39:775-782. [PMID: 28290609 DOI: 10.3892/ijmm.2017.2912] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used in cell-based therapy for various diseases, due to their immunomodulatory and inflammatory effects. However, the function of MSCs is known to decline with age, a process that is called senescence. To date, the process of MSC senescence remains unknown as in-depth understanding of the mechanisms involved in cellular senescence is lacking. First, senescent MSCs are so heterogeneous that not all of them express the same phenotypic markers. In addition, the genes and signaling pathways which regulate this process in MSCs are still unknown. Thus, an understanding of the molecular processes controlling MSC senescence is crucial to determining the drivers and effectors of age-associated MSC dysfunction. Moreover, the proper use of MSCs for clinical application requires a general understanding of the MSC aging process. Furthermore, such knowledge is essential for the development of therapeutic interventions that can slow or reverse age-related degenerative changes to enhance repair processes and maintain healthy function in aging tissues. To further clarify the properties of senescent cells, as well as to present significant findings from studies on the mechanisms of cellular aging, we summarize these biological features in the senescence of MSCs in this scenario. This review summarizes recent advances in our understanding of the markers and differentiation potential indicating MSC senescence, as well as factors affecting MSC senescence with particular emphasis on the roles of oxidative stress, intrinsic changes in telomere shortening, histone deacetylase and DNA methyltransferase, genes and signaling pathways and immunological properties.
Collapse
Affiliation(s)
- Yi Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiong Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ji Bao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
49
|
Mobarak H, Fathi E, Farahzadi R, Zarghami N, Javanmardi S. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells. Vet Res Commun 2016; 41:41-47. [DOI: 10.1007/s11259-016-9670-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022]
|
50
|
Kim DS, Ko YJ, Lee MW, Park HJ, Park YJ, Kim DI, Sung KW, Koo HH, Yoo KH. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells. Cell Stress Chaperones 2016; 21:1089-1099. [PMID: 27565660 PMCID: PMC5083677 DOI: 10.1007/s12192-016-0733-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.
Collapse
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Young Jong Ko
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
| | - Hyun Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Yoo Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Dong-Ik Kim
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|