1
|
Miao Y, Meng H. The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Commun Signal 2024; 22:31. [PMID: 38216911 PMCID: PMC10785555 DOI: 10.1186/s12964-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2024] Open
Abstract
The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.
Collapse
Affiliation(s)
- Yongzhen Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hongrui Meng
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Shin YJ, Kim YJ, Lee JE, Kim YS, Lee JW, Kim H, Shin JY, Lee PH. Uric acid regulates α-synuclein transmission in Parkinsonian models. Front Aging Neurosci 2023; 15:1117491. [PMID: 37711993 PMCID: PMC10497982 DOI: 10.3389/fnagi.2023.1117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Ample evidence demonstrates that α-synuclein (α-syn) has a critical role in the pathogenesis of Parkinson's disease (PD) with evidence indicating that its propagation from one area of the brain to others may be the primary mechanism for disease progression. Uric acid (UA), a natural antioxidant, has been proposed as a potential disease modifying candidate in PD. In the present study, we investigated whether UA treatment modulates cell-to-cell transmission of extracellular α-syn and protects dopaminergic neurons in the α-syn-enriched model. In a cellular model, UA treatment decreased internalized cytosolic α-syn levels and neuron-to-neuron transmission of α-syn in donor-acceptor cell models by modulating dynamin-mediated and clathrin-mediated endocytosis. Moreover, UA elevation in α-syn-inoculated mice inhibited propagation of extracellular α-syn which decreased expression of phosphorylated α-syn in the dopaminergic neurons of the substantia nigra leading to their increased survival. UA treatment did not lead to change in markers related with autophagolysosomal and microglial activity under the same experimental conditions. These findings suggest UA may control the pathological conditions of PD via additive mechanisms which modulate the propagation of α-syn.
Collapse
Affiliation(s)
- Yu Jin Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yeon Ju Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Ji Eun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yi Seul Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jung Wook Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung-si, Republic of Korea
| | - HyeonJeong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Neuronal ApoE Regulates the Cell-to-Cell Transmission of α-Synuclein. Int J Mol Sci 2022; 23:ijms23158311. [PMID: 35955451 PMCID: PMC9369063 DOI: 10.3390/ijms23158311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The presence of protein inclusions, called Lewy bodies (LBs) and Lewy neurites (LNs), in the brain is the main feature of Parkinson’s disease (PD). Recent evidence that the prion-like propagation of α-synuclein (α-syn), as a major component of LBs and LNs, plays an important role in the progression of PD has gained much attention, although the molecular mechanism remains unclear. In this study, we evaluated whether neuronal ApoE regulates the cell-to-cell transmission of α-syn and explored its molecular mechanism using in vitro and in vivo model systems. We demonstrate that neuronal ApoE deficiency attenuates both α-syn uptake and release by downregulating LRP-1 and LDLR expression and enhancing chaperone-mediated autophagy activity, respectively, thereby contributing to α-syn propagation. In addition, we observed that α-syn propagation was attenuated in ApoE knockout mice injected with pre-formed mouse α-syn fibrils. This study will help our understanding of the molecular mechanisms underlying α-syn propagation.
Collapse
|
4
|
Park SJ, Jin U, Park SM. Interaction between coxsackievirus B3 infection and α-synuclein in models of Parkinson's disease. PLoS Pathog 2021; 17:e1010018. [PMID: 34695168 PMCID: PMC8568191 DOI: 10.1371/journal.ppat.1010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/04/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. PD is pathologically characterized by the death of midbrain dopaminergic neurons and the accumulation of intracellular protein inclusions called Lewy bodies or Lewy neurites. The major component of Lewy bodies is α-synuclein (α-syn). Prion-like propagation of α-syn has emerged as a novel mechanism in the progression of PD. This mechanism has been investigated to reveal factors that initiate Lewy pathology with the aim of preventing further progression of PD. Here, we demonstrate that coxsackievirus B3 (CVB3) infection can induce α-syn-associated inclusion body formation in neurons which might act as a trigger for PD. The inclusion bodies contained clustered organelles, including damaged mitochondria with α-syn fibrils. α-Syn overexpression accelerated inclusion body formation and induced more concentric inclusion bodies. In CVB3-infected mice brains, α-syn aggregates were observed in the cell body of midbrain neurons. Additionally, α-syn overexpression favored CVB3 replication and related cytotoxicity. α-Syn transgenic mice had a low survival rate, enhanced CVB3 replication, and exhibited neuronal cell death, including that of dopaminergic neurons in the substantia nigra. These results may be attributed to distinct autophagy-related pathways engaged by CVB3 and α-syn. This study elucidated the mechanism of Lewy body formation and the pathogenesis of PD associated with CVB3 infection. Prion-like propagation of α-syn has emerged as a novel mechanism involved in the progression of Parkinson’s disease (PD). This process has been extensively investigated to identify the factors that initiate Lewy pathology to prevent further progression of PD. Nevertheless, initial triggers of Lewy body (LB) formation leading to the acceleration of the process still remain elusive. Infection is increasingly recognized as a risk factor for PD. In particular, several viruses have been reported to be associated with both acute and chronic parkinsonism. It has been proposed that peripheral infections including viral infections accompanying inflammation may trigger PD. In the present study, we explored whether coxsackievirus B3 (CVB3) interacts with α-syn to induce aggregation and further Lewy body formation, thereby acting as a trigger and whether α-syn affects the replication of coxsackievirus. It is important to identify the factors that initiate Lewy pathology to understand the pathogenesis of PD. Our findings clarify the mechanism of LB formation and the pathogenesis of PD associated with CVB3 infection.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
- * E-mail:
| |
Collapse
|
5
|
Christou EE, Asproudis I, Asproudis C, Giannakis A, Stefaniotou M, Konitsiotis S. Macular microcirculation characteristics in Parkinson's disease evaluated by OCT-Angiography: a literature review. Semin Ophthalmol 2021; 37:399-407. [PMID: 34612157 DOI: 10.1080/08820538.2021.1987482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Given the fact that retina may provide a window into the central nervous system, there has been interest in identifying retinal biomarkers as predicting factors of pathological processes in neurodegenerative disorders. Emerging evidence has suggested that macular microcirculation changes in Parkinson disease (PD) may indicate the alterations of cerebral microvasculature. The use of Optical Coherence Tomography Angiography (OCT-A) has attracted significant attention in recent years as this technique offers a detailed analysis of the existence of changes at the macular capillary plexus. METHODS A detailed review of the literature was performed in PubMed until June 2021. We identified all papers referring to the alterations of the macular capillary plexus in PD using OCT-A. RESULTS A comprehensive update indicates that microvasculature alterations of the macular capillary plexus utilizing OCT-A may comprise useful biomarkers regarding the cerebral vasculature in PD. Since the available evidence is limited, additional studies are warranted to establish the OCT-A parameters as predicting factors in clinical practice. CONCLUSIONS A review of the existing literature sheds light on the microvasculature changes of the macular capillary plexus as seen on OCT-A in PD patients. The current article discusses notable aspects of key publications on the topic, highlights the importance of the potential long-term effectiveness of OCT-A biomarkers in PD and proposes the need for further future research.
Collapse
Affiliation(s)
- Evita Evangelia Christou
- Faculty of Medicine, Department of Ophthalmology, University Hospital of Ioannina, Ioannina, Greece
| | - Ioannis Asproudis
- Faculty of Medicine, Department of Ophthalmology, University Hospital of Ioannina, Ioannina, Greece
| | - Christoforos Asproudis
- Faculty of Medicine, Department of Ophthalmology, University Hospital of Ioannina, Ioannina, Greece
| | - Alexandros Giannakis
- Faculty of Medicine, Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| | - Maria Stefaniotou
- Faculty of Medicine, Department of Ophthalmology, University Hospital of Ioannina, Ioannina, Greece
| | - Spiridon Konitsiotis
- Faculty of Medicine, Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Studying the effect of alpha-synuclein and Parkinson's disease linked mutants on inter pathway connectivities. Sci Rep 2021; 11:16365. [PMID: 34381149 PMCID: PMC8358055 DOI: 10.1038/s41598-021-95889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease is a common neurodegenerative disease. The differential expression of alpha-synuclein within Lewy Bodies leads to this disease. Some missense mutations of alpha-synuclein may resultant in functional aberrations. In this study, our objective is to verify the functional adaptation due to early and late-onset mutation which can trigger or control the rate of alpha-synuclein aggregation. In this regard, we have proposed a computational model to study the difference and similarities among the Wild type alpha-synuclein and mutants i.e., A30P, A53T, G51D, E46K, and H50Q. Evolutionary sequence space analysis is also performed in this experiment. Subsequently, a comparative study has been performed between structural information and sequence space outcomes. The study shows the structural variability among the selected subtypes. This information assists inter pathway modeling due to mutational aberrations. Based on the structural variability, we have identified the protein-protein interaction partners for each protein that helps to increase the robustness of the inter-pathway connectivity. Finally, few pathways have been identified from 12 semantic networks based on their association with mitochondrial dysfunction and dopaminergic pathways.
Collapse
|
7
|
Rascunà C, Russo A, Terravecchia C, Castellino N, Avitabile T, Bonfiglio V, Fallico M, Chisari CG, Cicero CE, Grillo M, Longo A, Luca A, Mostile G, Zappia M, Reibaldi M, Nicoletti A. Retinal Thickness and Microvascular Pattern in Early Parkinson's Disease. Front Neurol 2020; 11:533375. [PMID: 33117254 PMCID: PMC7575742 DOI: 10.3389/fneur.2020.533375] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
A thinning of intraretinal layers has been previously described in Parkinson's disease (PD) patients compared to healthy controls (HCs). Few studies evaluated the possible correlation between retinal thickness and retinal microvascularization. Thus, here we assessed the thickness of retinal layers and microvascular pattern in early PD patients and HCs, using, respectively, spectral-domain optical coherence tomography (SD-OCT) and SD-OCT-angiography (SD-OCT-A), and more interestingly, we evaluated a possible correlation between retinal thickness and microvascular pattern. Patients fulfilling criteria for clinically established/clinically probable PD and HCs were enrolled. Exclusion criteria were any ocular, retinal, and systemic disease impairing the visual system. Retinal vascularization was analyzed using SD-OCT-A, and retinal layer thickness was assessed using SD-OCT. Forty-one eyes from 21 PD patients and 33 eyes from 17 HCs were evaluated. Peripapillary retinal nerve fiber layer (RNFL) and macular RNFL, ganglionic cell layer (GCL), inner plexiform layer (IPL), and inner nuclear layer (INL), resulted to be thinner in PD compared to HCs. Among PD patients, a positive correlation between RNFL, GCL, and IPL thickness and microvascular density was found in the foveal region, also adjusting by age, sex, and, especially, hypertension. Such findings were already present in the early stage of disease and were irrespective of dopaminergic treatment. Thus, the retina might be considered a biomarker of PD and could be a useful instrument for onset and disease progression.
Collapse
Affiliation(s)
- Cristina Rascunà
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Claudio Terravecchia
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | | | | | | | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Clara Grazia Chisari
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Calogero Edoardo Cicero
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Marco Grillo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Antonina Luca
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Giovanni Mostile
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Alessandra Nicoletti
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Gilmozzi V, Gentile G, Castelo Rueda MP, Hicks AA, Pramstaller PP, Zanon A, Lévesque M, Pichler I. Interaction of Alpha-Synuclein With Lipids: Mitochondrial Cardiolipin as a Critical Player in the Pathogenesis of Parkinson's Disease. Front Neurosci 2020; 14:578993. [PMID: 33122994 PMCID: PMC7573567 DOI: 10.3389/fnins.2020.578993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Alpha-Synuclein (α-Syn) is a central protein in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders including Parkinson’s disease (PD). Although its role in neurotransmission is well established, the precise role of this protein in disease pathogenesis is still not fully understood. It is, however, widely regarded to be associated with the misfolding and accumulation of toxic intracellular aggregates. In fact, α-Syn is the most abundant protein component of Lewy bodies and Lewy neurites, which are also characterized by a high lipid content. Lipids, the main constituents of cellular membranes, have been implicated in many aspects of PD-related processes. α-Syn interacts with membrane phospholipids and free fatty acids via its N-terminal domain, and altered lipid-protein complexes might enhance both its binding to synaptic and mitochondrial membranes and its oligomerization. Several studies have highlighted a specific interaction of α-Syn with the phospholipid cardiolipin (CL), a major constituent of mitochondrial membranes. By interacting with CL, α-Syn is able to disrupt mitochondrial membrane integrity, leading to mitochondrial dysfunction. Additionally, externalized CL is able to facilitate the refolding of toxic α-Syn species at the outer mitochondrial membrane. In this review, we discuss how α-Syn/lipid interactions, in particular the α-Syn/CL interaction at the mitochondrial membrane, may affect α-Syn aggregation and mitochondrial dysfunction and may thus represent an important mechanism in the pathogenesis of PD.
Collapse
Affiliation(s)
- Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanna Gentile
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Cervo Brain Research Centre, Université Laval, Quebec, QC, Canada
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
9
|
Hosford PS, Ninkina N, Buchman VL, Smith JC, Marina N, SheikhBahaei S. Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice. Brain Sci 2020; 10:brainsci10090583. [PMID: 32846874 PMCID: PMC7563345 DOI: 10.3390/brainsci10090583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/16/2023] Open
Abstract
Synuclein (α, β, and γ) proteins are highly expressed in presynaptic terminals, and significant data exist supporting their role in regulating neurotransmitter release. Targeting the gene encoding α-synuclein is the basis of many animal models of Parkinson's disease (PD). However, the physiological role of this family of proteins in not well understood and could be especially relevant as interfering with accumulation of α-synuclein level has therapeutic potential in limiting PD progression. The long-term effects of their removal are unknown and given the complex pathophysiology of PD, could exacerbate other clinical features of the disease, for example dysautonomia. In the present study, we sought to characterize the autonomic phenotypes of mice lacking all synucleins (α, β, and γ; αβγ-/-) in order to better understand the role of synuclein-family proteins in autonomic function. We probed respiratory and cardiovascular reflexes in conscious and anesthetized, young (4 months) and aged (18-20 months) αβγ-/- male mice. Aged mice displayed impaired respiratory responses to both hypoxia and hypercapnia when breathing activities were recorded in conscious animals using whole-body plethysmography. These animals were also found to be hypertensive from conscious blood pressure recordings, to have reduced pressor baroreflex gain under anesthesia, and showed reduced termination of both pressor and depressor reflexes. The present data demonstrate the importance of synuclein in the normal function of respiratory and cardiovascular reflexes during aging.
Collapse
Affiliation(s)
- Patrick S. Hosford
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (V.L.B.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences (IPAC RAS), 1 Severniy proezd, 142432 Chernogolovka, Moscow Region, Russia
| | - Jeffrey C. Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Nephtali Marina
- Department of Neuroscience Physiology and Pharmacology, Center for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London WC1E 6BT, UK; (P.S.H.); (N.M.)
| | - Shahriar SheikhBahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-301-496-4960; Fax: +1-301-496-1339
| |
Collapse
|
10
|
Choi YR, Kim JB, Kang SJ, Noh HR, Jou I, Joe EH, Park SM. The dual role of c-src in cell-to-cell transmission of α-synuclein. EMBO Rep 2020; 21:e48950. [PMID: 32372484 DOI: 10.15252/embr.201948950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons located in the substantia nigra pars compacta and the presence of proteinaceous inclusions called Lewy bodies and Lewy neurites in numerous brain regions. Increasing evidence indicates that Lewy pathology progressively involves additional regions of the nervous system as the disease advances, and the prion-like propagation of α-synuclein (α-syn) pathology promotes PD progression. Accordingly, the modulation of α-syn transmission may be important for the development of disease-modifying therapies in patients with PD. Here, we demonstrate that α-syn fibrils induce c-src activation in neurons, which depends on the FcγRIIb-SHP-1/-2-c-src pathway and enhances signals for the uptake of α-syn into neurons. Blockade of c-src activation inhibits the uptake of α-syn and the formation of Lewy body-like inclusions. Furthermore, the blockade of c-src activation also inhibits the release of α-syn via activation of autophagy. The brain-permeable c-src inhibitor, saracatinib, efficiently reduces α-syn propagation into neighboring regions in an in vivo model system. These results suggest a new therapeutic target against progressive PD.
Collapse
Affiliation(s)
- Yu Ree Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Hye Rin Noh
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
11
|
Perissinotto F, Stani C, De Cecco E, Vaccari L, Rondelli V, Posocco P, Parisse P, Scaini D, Legname G, Casalis L. Iron-mediated interaction of alpha synuclein with lipid raft model membranes. NANOSCALE 2020; 12:7631-7640. [PMID: 32104855 DOI: 10.1039/d0nr00287a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aberrant misfolding and aggregation of alpha synuclein (αS) into toxic oligomeric species is one of the key features associated with the pathogenesis of Parkinson's disease (PD). It involves different biochemical and biophysical factors as plasma membrane binding and interaction with heavy metal ions. In the present work, atomic force microscopy (AFM) is combined with Fourier Transform Infrared Spectroscopy (FTIR) measurements to investigate the interaction of wild-type (WT) and A53T mutated alpha synuclein with artificial lipid bilayers mimicking lipid raft (LR) domains, before and after ferrous cations (Fe2+) treatment. In the absence of iron, protein monomers produce a thinning of the membrane, targeting the non-raft phase of the bilayer preferentially. On the contrary, iron actively promotes the formation of globular protein aggregates, resembling oligomers, targeted to LR domains. In both aggregation states, monomer and oligomer, the mutated A53T protein exhibits a greater and faster membrane-interaction. These results underlie a new mechanism of membrane-protein interaction in PD. The targeting of Fe2+-promoted αS oligomers to LRs might be functional for the disease and be helpful for the development of new therapeutic strategies.
Collapse
|
12
|
Ghio S, Camilleri A, Caruana M, Ruf VC, Schmidt F, Leonov A, Ryazanov S, Griesinger C, Cauchi RJ, Kamp F, Giese A, Vassallo N. Cardiolipin Promotes Pore-Forming Activity of Alpha-Synuclein Oligomers in Mitochondrial Membranes. ACS Chem Neurosci 2019; 10:3815-3829. [PMID: 31356747 DOI: 10.1021/acschemneuro.9b00320] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aggregation of the amyloid-forming α-synuclein (αS) protein is closely associated with the etiology of Parkinson's disease (PD), the most common motor neurodegenerative disorder. Many studies have shown that soluble aggregation intermediates of αS, termed oligomers, permeabilize a variety of phospholipid membranes; thus, membrane disruption may represent a key pathogenic mechanism of αS toxicity. Given the centrality of mitochondrial dysfunction in PD, we therefore probed the formation of ion-permeable pores by αS oligomers in planar lipid bilayers reflecting the complex phospholipid composition of mitochondrial membranes. Using single-channel electrophysiology, we recorded distinct multilevel conductances (100-400 pS) with stepwise current transitions, typical of protein-bound nanopores, in mitochondrial-like membranes. Crucially, we observed that the presence of cardiolipin (CL), the signature phospholipid of mitochondrial membranes, enhanced αS-lipid interaction and the membrane pore-forming activity of αS oligomers. Further, preincubation of isolated mitochondria with a CL-specific dye protected against αS oligomer-induced mitochondrial swelling and release of cytochrome c. Hence, we favor a scenario in which αS oligomers directly porate a local lipid environment rich in CL, for instance outer mitochondrial contact sites or the inner mitochondrial membrane, to induce mitochondrial dysfunction. Pharmacological modulation of αS pore complex formation might thus preserve mitochondrial membrane integrity and alleviate mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Stephanie Ghio
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Angelique Camilleri
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mario Caruana
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Felix Schmidt
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Andrei Leonov
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- MODAG GmbH, Wendelsheim, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ruben J. Cauchi
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Frits Kamp
- Biomedical Center, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Neville Vassallo
- Department of Physiology and Biochemistry and Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
13
|
Veys L, Vandenabeele M, Ortuño-Lizarán I, Baekelandt V, Cuenca N, Moons L, De Groef L. Retinal α-synuclein deposits in Parkinson's disease patients and animal models. Acta Neuropathol 2019; 137:379-395. [PMID: 30721408 DOI: 10.1007/s00401-018-01956-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of research, accurate diagnosis of Parkinson's disease remains a challenge, and disease-modifying treatments are still lacking. Research into the early (presymptomatic) stages of Parkinson's disease and the discovery of novel biomarkers is of utmost importance to reduce this burden and to come to a more accurate diagnosis at the very onset of the disease. Many have speculated that non-motor symptoms could provide a breakthrough in the quest for early biomarkers of Parkinson's disease, including the visual disturbances and retinal abnormalities that are seen in the majority of Parkinson's disease patients. An expanding number of clinical studies have investigated the use of in vivo assessments of retinal structure, electrophysiological function, and vision-driven tasks as novel means for identifying patients at risk that need further neurological examination and for longitudinal follow-up of disease progression in Parkinson's disease patients. Often, the results of these studies have been interpreted in relation to α-synuclein deposits and dopamine deficiency in the retina, mirroring the defining pathological features of Parkinson's disease in the brain. To better understand the visual defects seen in Parkinson's disease patients and to propel the use of retinal changes as biomarkers for Parkinson's disease, however, more conclusive neuropathological evidence for the presence of retinal α-synuclein aggregates, and its relation to the cerebral α-synuclein burden, is urgently needed. This review provides a comprehensive and critical overview of the research conducted to unveil α-synuclein aggregates in the retina of Parkinson's disease patients and animal models, and thereby aims to aid the ongoing discussion about the potential use of the retinal changes and/or visual symptoms as biomarkers for Parkinson's disease.
Collapse
|
14
|
Ferreira SA, Romero-Ramos M. Microglia Response During Parkinson's Disease: Alpha-Synuclein Intervention. Front Cell Neurosci 2018; 12:247. [PMID: 30127724 PMCID: PMC6087878 DOI: 10.3389/fncel.2018.00247] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
The discovery of the central role played by the protein alpha-synuclein in Parkinson's disease and other Lewy body brain disorders has had a great relevance in the understanding of the degenerative process occurring in these diseases. In addition, during the last two decades, the evidence suggesting an immune response in Parkinson's disease patients have multiplied. The role of the immune system in the disease is supported by data from genetic studies and patients, as well as from laboratory animal models and cell cultures. In the immune response, the microglia, the immune cell of the brain, will have a determinant role. Interestingly, alpha-synuclein is suggested to have a central function not only in the neuronal events occurring in Parkinson's disease, but also in the immune response during the disease. Numerous studies have shown that alpha-synuclein can act directly on immune cells, such as microglia in brain, initiating a sterile response that will have consequences for the neuronal health and that could also translate in a peripheral immune response. In parallel, microglia should also act clearing alpha-synuclein thus avoiding an overabundance of the protein, which is crucial to the disease progression. Therefore, the microglia response in each moment will have significant consequences for the neuronal fate. Here we will review the literature addressing the microglia response in Parkinson's disease with an especial focus on the protein alpha-synuclein. We will also reflect upon the limitations of the studies carried so far and in the therapeutic possibilities opened based on these recent findings.
Collapse
Affiliation(s)
- Sara A Ferreira
- AU IDEAS center NEURODIN, Aarhus University, Aarhus, Denmark.,Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- AU IDEAS center NEURODIN, Aarhus University, Aarhus, Denmark.,Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Wang J, Chen Z, Walston J, Gao P, Gao M, Leng SX. α-Synuclein activates innate immunity but suppresses interferon-γ expression in murine astrocytes. Eur J Neurosci 2018; 48:10.1111/ejn.13956. [PMID: 29779267 PMCID: PMC6949420 DOI: 10.1111/ejn.13956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/22/2023]
Abstract
Glial activation and neuroinflammation contribute to pathogenesis of neurodegenerative diseases, linked to neuron loss and dysfunction. α-Synuclein (α-syn), as a metabolite of neuron, can induce microglia activation to trigger innate immune response. However, whether α-syn, as well as its mutants (A53T, A30P, and E46K), induces astrocyte activation and inflammatory response is not fully elucidated. In this study, we used A53T mutant and wild-type α-syns to stimulate primary astrocytes in dose- and time-dependent manners (0.5, 2, 8, and 20 μg/ml for 24 hr or 3, 12, 24, and 48 hr at 2 μg/ml), and evaluated activation of several canonical inflammatory pathway components. The results showed that A53T mutant or wild-type α-syn significantly upregulated mRNA expression of toll-like receptor (TLR)2, TLR3, nuclear factor-κB and interleukin (IL)-1β, displaying a pattern of positive dose-effect correlation or negative time-effect correlation. Such upregulation was confirmed at protein levels of TLR2 (at 20 μg/ml), TLR3 (at most doses), and IL-1β (at 3 hr) by western blotting. Blockage of TLR2 other than TLR4 inhibited TLR3 and IL-1β mRNA expressions. By contrast, interferon (IFN)-γ was significantly downregulated at mRNA, protein, and protein release levels, especially at high concentrations of α-syns or early time-points. These findings indicate that α-syn was a TLRs-mediated immunogenic agent (A53T mutant stronger than wild-type α-syn). The stimulation patterns suggest that persistent release and accumulation of α-syn is required for the maintenance of innate immunity activation, and IFN-γ expression inhibition by α-syn suggests a novel immune molecule interaction mechanism underlying pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jintang Wang
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Zheng Chen
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maolong Gao
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Han SS, Jiao Q, Bi MX, Du XX, Jiang H. The expression of K ATP channel subunits in alpha-synuclein-transfected MES23.5 cells. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:170. [PMID: 29951492 DOI: 10.21037/atm.2018.04.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background SUR1, one of the subunits of ATP-sensitive potassium (KATP) channels, was found to be highly expressed in mRNA levels in the substantia nigra (SN) of Parkinson's disease (PD) brains. Though the mechanism of the selective dopamine (DA) neurons death is still unknown, some studies have demonstrated that selective activation of the KATP channels in the SN might be associated with the degeneration of DA neurons. The objective of our study is to examine the expressions of KATP channel subunits in dopaminergic cells with alpha-synuclein (α-Syn) transfection. Methods In this study, we detected the KATP channel subunits mRNA levels in MES23.5 cells by real-time quantitative PCR after the cells transfected with α-Syn. Results Our results showed that the mRNA levels of SUR1 subunit were markedly increased by 35% in WT α-Syn overexpression cells and by 31% in A53T α-Syn overexpression cells, respectively. However, the mRNA levels of SUR2B and Kir6.2 subunit have no obviously differences from the controls. Conclusions We showed that the mRNA levels of SUR1 but not SUR2B or Kir6.2 were selectively upregulated in MES23.5 cells over-expressed with α-Syn. The findings demonstrated that the SUR1 overexpressed might be involved in the process of PD.
Collapse
Affiliation(s)
- Shuai-Shuai Han
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Ming-Xia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi-Xun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| |
Collapse
|
17
|
Choi YR, Cha SH, Kang SJ, Kim JB, Jou I, Park SM. Prion-like Propagation of α-Synuclein Is Regulated by the FcγRIIB-SHP-1/2 Signaling Pathway in Neurons. Cell Rep 2018; 22:136-148. [DOI: 10.1016/j.celrep.2017.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022] Open
|
18
|
Morphological analysis of mitochondria for evaluating the toxicity of α-synuclein in transgenic mice and isolated preparations by atomic force microscopy. Biomed Pharmacother 2017; 96:1380-1388. [PMID: 29169728 DOI: 10.1016/j.biopha.2017.11.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022] Open
Abstract
A key molecular event in the pathogenesis of Parkinson's disease is mitochondrial damage caused by α-synuclein (α-syn). Mitochondria mediates both necrosis and apoptosis, which are associated with morphological changes. However, the mechanism by which α-syn alters mitochondrial morphology remains unclear. To address this issue, we investigated mitochondrial permeability transition pore (mPTP) opening and changes in cardiolipin (CL) levels in mitochondria isolated from the brain of Thy1α-syn mice. Cytoplasmic cytochrome C and cleaved caspase-3 protein levels were upregulated in the brain of transgenic mice. Morphological analysis by atomic force microscopy (AFM) suggested a correlation between mitochondrial morphology and function in these animals. Incubation of isolated mitochondria with recombinant human α-synuclein N terminus (α-syn/N) decreased mitochondrial CL content. An AFM analysis showed that α-syn/N induced mitochondrial swelling and the formation of pore-like structures, which was associated with decreased mitochondrial transmembrane potential and complex I activity. The observed mitochondrial dysfunction was abrogated by treatment with the mPTP inhibitor cyclosporin A, although there was no recovery of CL content. These results provide insight into the mechanism by which α-syn/N directly undermines mitochondrial structure and function via modulation of mPTP opening and CL levels, and suggests that morphological analysis of isolated mitochondria by AFM is a useful approach for evaluating mitochondrial injury.
Collapse
|
19
|
Zhong CB, Chen QQ, Haikal C, Li W, Svanbergsson A, Diepenbroek M, Li JY. Age-Dependent Alpha-Synuclein Accumulation and Phosphorylation in the Enteric Nervous System in a Transgenic Mouse Model of Parkinson's Disease. Neurosci Bull 2017; 33:483-492. [PMID: 28924920 DOI: 10.1007/s12264-017-0179-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022] Open
Abstract
The enteric nervous system (ENS) controls the function of the gastrointestinal tract and has been implicated in various diseases, including Parkinson's disease (PD). PD is a neurodegenerative disease with Lewy bodies (LBs) and Lewy neurites (LNs) as the main pathological features. In addition to the typical motor symptoms in PD, attention has been drawn to non-motor symptoms, such as constipation, implying dysfunction of the ENS. In the present study, we characterized the age-dependent morphological alterations and aggregation of α-synuclein (α-syn), the primary protein component in LBs and LNs, in the ENS in an α-syn transgenic mouse model. We found that the expression and accumulation of α-syn increased gradually in neurons of Meissner's and Auerbach's plexuses of the gastrointestinal tract with age (from 1 week to 2 years). In addition, α-syn was increasingly phosphorylated at the serine 129 residue, reflecting pathological alterations of the protein over time. Furthermore, α-syn was present in different subtypes of neurons expressing vasoactive intestinal polypeptide, neuronal nitric oxide synthase, or calretinin. The results indicated that BAC-α-Syn-GFP transgenic mice provide a unique model in which to study the relationship between ENS and PD pathogenesis.
Collapse
Affiliation(s)
- Chong-Bin Zhong
- Institute of Bioengineering, Northeastern University, Shenyang, 110819, China
| | - Qian-Qian Chen
- Institute of Bioengineering, Northeastern University, Shenyang, 110819, China.,Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
| | - Wen Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
| | - Meike Diepenbroek
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China. .,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
20
|
Rcom-H'cheo-Gauthier AN, Osborne SL, Meedeniya ACB, Pountney DL. Calcium: Alpha-Synuclein Interactions in Alpha-Synucleinopathies. Front Neurosci 2016; 10:570. [PMID: 28066161 PMCID: PMC5167751 DOI: 10.3389/fnins.2016.00570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/25/2016] [Indexed: 11/20/2022] Open
Abstract
Aggregation of the pre-synaptic protein, α-synuclein (α-syn), is the key etiological factor in Parkinson's disease (PD) and other alpha-synucleinopathies, such as multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB). Various triggers for pathological α-syn aggregation have been elucidated, including post-translational modifications, oxidative stress, and binding of metal ions, such as calcium. Raised neuronal calcium levels in PD may occur due to mitochondrial dysfunction and/or may relate to calcium channel dysregulation or the reduced expression of the neuronal calcium buffering protein, calbindin-D28k. Recent results on human tissue and a mouse oxidative stress model show that neuronal calbindin-D28k expression excludes α-syn inclusion bodies. Previously, cell culture model studies have shown that transient increases of intracellular free Ca(II), such as by opening of the voltage-gated plasma calcium channels, could induce cytoplasmic aggregates of α-syn. Raised intracellular free calcium and oxidative stress also act cooperatively to promote α-syn aggregation. The association between raised neuronal calcium, α-syn aggregation, oxidative stress, and neurotoxicity is reviewed in the context of neurodegenerative α-syn disease and potential mechanism-based therapies.
Collapse
Affiliation(s)
| | | | | | - Dean L. Pountney
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| |
Collapse
|
21
|
Svarcbahs R, Julku UH, Myöhänen TT. Inhibition of Prolyl Oligopeptidase Restores Spontaneous Motor Behavior in the α-Synuclein Virus Vector-Based Parkinson's Disease Mouse Model by Decreasing α-Synuclein Oligomeric Species in Mouse Brain. J Neurosci 2016; 36:12485-12497. [PMID: 27927963 PMCID: PMC6601975 DOI: 10.1523/jneurosci.2309-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Decreased clearance of α-synuclein (aSyn) and aSyn protein misfolding and aggregation are seen as major factors in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies that leads to disruption in neuronal function and eventually to cell death. Prolyl oligopeptidase (PREP) can accelerate the aSyn aggregation process, while inhibition of PREP by a small molecule inhibitor decreases aSyn oligomer formation and enhances its clearance via autophagy in different aSyn overexpressing cell types and in transgenic PD animal models. In this study, we investigated the impact of chronic PREP inhibition by a small molecule inhibitor, 4-phenylbutanoyl-l-prolyl-2(S)-cyanopyrrolidine (KYP-2047), on aSyn oligomerization, clearance, and underlying spontaneous motor behavior in a virus vector-based aSyn overexpression mouse model 4 weeks after aSyn microinjections and after the onset of symptomatic forepaw bias. Following 4 weeks of PREP inhibition, we saw an improved spontaneous forelimb use in mice that correlated with a decreased immunoreactivity against oligomer-specific forms of aSyn. Additionally, KYP-2047 had a trend to enhance dopaminergic systems activity. Our results suggest that PREP inhibition exhibits a beneficial effect on the aSyn clearance and aggregation in a virus mediated aSyn overexpression PD mouse model and that PREP inhibitors could be a novel therapeutic strategy for synucleinopathies. SIGNIFICANCE STATEMENT Alpha-synuclein (aSyn) has been implicated in Parkinson's disease, with aSyn aggregates believed to exert toxic effects on neurons, while prolyl oligopeptidase (PREP) has been shown to interact with aSyn both in cells and cell free conditions, thus enhancing its aggregation. We demonstrate the possibility to abolish motor imbalance caused by aSyn viral vector injection with chronic 4 week PREP inhibition by a potent small-molecule PREP inhibitor, 4-phenylbutanoyl-l-prolyl-2(S)-cyanopyrrolidine (KYP-2047). Treatment was initiated postsymptomatically, 4 weeks after aSyn injection. KYP-2047-treated animals had a significantly decreased amount of oligomeric aSyn particles and improved dopamine system activity compared to control animals. To our knowledge, this is the first time viral overexpression of aSyn has been countered and movement impairments abolished after their onset.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
22
|
De Conti L, Baralle M, Buratti E. Neurodegeneration and RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27659427 DOI: 10.1002/wrna.1394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
Abstract
In the eukaryotic nucleus, RNA-binding proteins (RBPs) play a very important role in the life cycle of both coding and noncoding RNAs. As soon as they are transcribed, in fact, all RNA molecules within a cell are bound by distinct sets of RBPs that have the task of regulating its correct processing, transport, stability, and function/translation up to its final degradation. These tasks are particularly important in cells that have a complex RNA metabolism, such as neurons. Not surprisingly, therefore, recent findings have shown that the misregulation of genes involved in RNA metabolism or the autophagy/proteasome pathway plays an important role in the onset and progression of several neurodegenerative diseases. In this article, we aim to review the recent advances that link neurodegenerative processes and RBP proteins. WIREs RNA 2017, 8:e1394. doi: 10.1002/wrna.1394 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laura De Conti
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Baralle
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
23
|
A comparative study of the amount of α-synuclein in ischemic stroke and Parkinson's disease. Neurol Sci 2016; 37:749-54. [PMID: 26829934 DOI: 10.1007/s10072-016-2485-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
In the present study, we detected the level of oligomeric form of α-synuclein in the red blood cells of ischemic stroke, Parkinson's disease, and normal people and compared the differences to assess the diagnosis potential of α-synuclein in ischemic stroke patients. 86 ischemic stroke, 100 PD, and 102 healthy cases were enrolled in the present study. Total protein amount in the red blood cells were quantified by BCA assay using spectrophotometer. Levels of oligomeric form of α-synuclein were characterized by a sandwich ELISA. Analysis of correlation analysis and receiver operating characteristic curve were conducted. Significant differences were detected in the levels of oligomeric forms of α-synuclein in different samples' blood cells (P < 0.05); the levels of total protein in (188.1 ± 33.9 mmol/L) healthy people were significantly higher than that of PD (147.7 ± 45.0 mmol/L) and ischemic stroke groups (142.9 ± 43.0 mmol/L) (P < 0.05). There was no correlation between the age of patients and level of α-synuclein (R (2) = 0.216 in ischemic stroke group and -0.104 in PD group) and the receiver operating characteristic curve analysis showed a high sensitivity of α-synuclein in discriminating ischemic stroke (sensitivity was 63.7 % and specificity was 9.6 %) and PD (sensitivity was 44.1 % and specificity was 12.5 %) patients from the controls. The levels of oligomeric form of α-synuclein of red blood cells in ischemic stroke and Parkinson's disease patients were both significant higher than normal people. And the level of oligomeric form α-synuclein showed a potential for diagnosis of ischemic stroke in clinic.
Collapse
|
24
|
Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N. Interaction of α-synuclein with biomembranes in Parkinson's disease--role of cardiolipin. Prog Lipid Res 2015; 61:73-82. [PMID: 26703192 DOI: 10.1016/j.plipres.2015.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/14/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
One of the key molecular events underlying the pathogenesis of Parkinson's disease (PD) is the aberrant misfolding and aggregation of the α-synuclein (αS) protein into higher-order oligomers that play a key role in neuronal dysfunction and degeneration. A wealth of experimental data supports the hypothesis that the neurotoxicity of αS oligomers is intrinsically linked with their ability to interact with, and disrupt, biological membranes; especially those membranes having negatively-charged surfaces and/or lipid packing defects. Consequences of αS-lipid interaction include increased membrane tension, permeation by pore formation, membrane lysis and/or leakage due to the extraction of lipids from the bilayer. Moreover, we assert that the interaction of αS with a liquid-disordering phospholipid uniquely enriched in mitochondrial membranes, namely cardiolipin (1,3-diphosphatidyl-sn-glycerol, CL), helps target the αS oligomeric complexes intracellularly to mitochondria. Binding mediated by CL may thus represent an important pathomechanism by which cytosolic αS could physically associate with mitochondrial membranes and disrupt their integrity. Impaired mitochondrial function culminates in a cellular bioenergetic crisis and apoptotic death. To conclude, we advocate the accelerated discovery of new drugs targeting this pathway in order to restore mitochondrial function in PD.
Collapse
Affiliation(s)
- Stephanie Ghio
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Frits Kamp
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University & DZNE, 81377 Munich, Germany
| | - Ruben Cauchi
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Neville Vassallo
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta.
| |
Collapse
|
25
|
Villar-Piqué A, Lopes da Fonseca T, Outeiro TF. Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem 2015; 139 Suppl 1:240-255. [PMID: 26190401 DOI: 10.1111/jnc.13249] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/29/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
Parkinson's disease belongs to a group of currently incurable neurodegenerative disorders characterized by the misfolding and accumulation of alpha-synuclein aggregates that are commonly known as synucleinopathies. Clinically, synucleinopathies are heterogeneous, reflecting the somewhat selective neuronal vulnerability characteristic of each disease. The precise molecular underpinnings of synucleinopathies remain unclear, but the process of aggregation of alpha-synuclein appears as a central event. However, there is still no consensus with respect to the toxic forms of alpha-synuclein, hampering our ability to use the protein as a target for therapeutic intervention. To decipher the molecular bases of synucleinopathies, it is essential to understand the complex triangle formed between the structure, function and toxicity of alpha-synuclein. Recently, important steps have been undertaken to elucidate the role of the protein in both physiological and pathological conditions. Here, we provide an overview of recent findings in the field of alpha-synuclein research, and put forward a new perspective over paradigms that persist in the field. Establishing whether alpha-synuclein has a causative role in all synucleinopathies will enable the identification of targets for the development of novel therapeutic strategies for this devastating group of disorders. Alpha-synuclein is the speculated cornerstone of several neurodegenerative disorders known as Synucleinopathies. Nevertheless, the mechanisms underlying the pathogenic effects of this protein remain unknown. Here, we review the recent findings in the three corners of alpha-synuclein biology - structure, function and toxicity - and discuss the enigmatic roads that have accompanied alpha-synuclein from the beginning. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Anna Villar-Piqué
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Tomás Lopes da Fonseca
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Instituto de Fisiologia, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany. .,Instituto de Fisiologia, Faculty of Medicine, University of Lisbon, Lisboa, Portugal. .,CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
26
|
FcγRIIB mediates the inhibitory effect of aggregated α-synuclein on microglial phagocytosis. Neurobiol Dis 2015; 83:90-9. [PMID: 26342897 DOI: 10.1016/j.nbd.2015.08.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Although the etiology of PD has not yet been fully understood, accumulating evidence indicates that neuroinflammation plays a critical role in the progression of PD. α-Synuclein (α-Syn) has been considered to be a key player of the pathogenesis of PD, and recent reports that prion-like propagation of misfolded α-syn released from neurons may play an important role in the progression of PD have led to increased attention to the studies elucidating the roles of extracellular α-syn in the CNS. Extracellular α-syn has also been reported to regulate microglial inflammatory response. In this study, we demonstrated that aggregated α-syn inhibited microglial phagocytosis by activating SHP-1. SHP-1 activation was also observed in A53T α-syn transgenic mice. In addition, aggregated α-syn bound to FcγRIIB on microglia, inducing SHP-1 activation, further inhibiting microglial phagocytosis. Aggregated α-syn upregulated FcγRIIB expression in microglia and upregulated FcγRIIB was also observed in A53T α-syn transgenic mice. These data suggest that aggregated α-syn released from neurons dysregulates microglial immune response through inhibiting microglial phagocytosis, further causing neurodegeneration observed in PD. The interaction of aggregated α-syn and FcγRIIB and further SHP-1 activation can be a new therapeutic target against PD.
Collapse
|
27
|
Jellinger KA. How close are we to revealing the etiology of Parkinson's disease? Expert Rev Neurother 2015; 15:1105-7. [DOI: 10.1586/14737175.2015.1079486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Dogbevia GK, Marticorena-Alvarez R, Bausen M, Sprengel R, Hasan MT. Inducible and combinatorial gene manipulation in mouse brain. Front Cell Neurosci 2015; 9:142. [PMID: 25954155 PMCID: PMC4404871 DOI: 10.3389/fncel.2015.00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 12/30/2022] Open
Abstract
We have deployed recombinant adeno-associated viruses equipped with tetracycline-controlled genetic switches to manipulate gene expression in mouse brain. Here, we show a combinatorial genetic approach for inducible, cell type-specific gene expression and Cre/loxP mediated gene recombination in different brain regions. Our chemical-genetic approach will help to investigate 'when', 'where', and 'how' gene(s) control neuronal circuit dynamics, and organize, for example, sensory signal processing, learning and memory, and behavior.
Collapse
Affiliation(s)
- Godwin K Dogbevia
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany ; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck Lübeck, Germany
| | | | - Melanie Bausen
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany ; NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
29
|
Rcom-H'cheo-Gauthier A, Goodwin J, Pountney DL. Interactions between calcium and alpha-synuclein in neurodegeneration. Biomolecules 2014; 4:795-811. [PMID: 25256602 PMCID: PMC4192672 DOI: 10.3390/biom4030795] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 12/01/2022] Open
Abstract
In Parkinson’s disease and some atypical Parkinson’s syndromes, aggregation of the α-synuclein protein (α-syn) has been linked to neurodegeneration. Many triggers for pathological α-syn aggregation have been identified, including port-translational modifications, oxidative stress and raised metal ions, such as Ca2+. Recently, it has been found using cell culture models that transient increases of intracellular Ca2+ induce cytoplasmic α-syn aggregates. Ca2+-dependent α-syn aggregation could be blocked by the Ca2+ buffering agent, BAPTA-AM, or by the Ca2+ channel blocker, Trimethadione. Furthermore, a greater proportion of cells positive for aggregates occurred when both raised Ca2+ and oxidative stress were combined, indicating that Ca2+ and oxidative stress cooperatively promote α-syn aggregation. Current on-going work using a unilateral mouse lesion model of Parkinson’s disease shows a greater proportion of calbindin-positive neurons survive the lesion, with intracellular α-syn aggregates almost exclusively occurring in calbindin-negative neurons. These and other recent findings are reviewed in the context of neurodegenerative pathologies and suggest an association between raised Ca2+, α-syn aggregation and neurotoxicity.
Collapse
Affiliation(s)
- Alex Rcom-H'cheo-Gauthier
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Jacob Goodwin
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Dean L Pountney
- Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
30
|
Markopoulou K, Biernacka JM, Armasu SM, Anderson KJ, Ahlskog JE, Chase BA, Chung SJ, Cunningham JM, Farrer M, Frigerio R, Maraganore DM. Does α-synuclein have a dual and opposing effect in preclinical vs. clinical Parkinson's disease? Parkinsonism Relat Disord 2014; 20:584-9; discussion 584. [PMID: 24656894 DOI: 10.1016/j.parkreldis.2014.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
α-Synuclein gene (SNCA) multiplications cause familial parkinsonism and allele-length polymorphisms within the SNCA dinucleotide repeat REP1 increase the risk for developing Parkinson's disease (PD). Since SNCA multiplications increase SNCA expression, and REP1 genotypes that increase the risk of developing PD show increased SNCA expression in cell-culture systems, animal models, and human blood and brain, PD therapies seek to reduce SNCA expression. We conducted an observational study of 1098 PD cases to test the hypothesis that REP1 genotypes correlated with reduced SNCA expression are associated with better motor and cognitive outcomes. We evaluated the association of REP1 genotypes with survival free of Hoehn and Yahr stages 4 or 5 (motor outcome) and of Modified Telephone Interview for Cognitive Status score ≤27 or Alzheimer's Disease Dementia Screening Interview score ≥2 (cognitive outcome). Median disease duration at baseline was 3.3 years and median lag time from baseline to follow-up was 7.8 years. Paradoxically, REP1 genotypes associated with increased risk of developing PD and increased SNCA expression were associated with better motor (HR = 0.87, p = 0.046, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.020, covariate-adjusted time-scale analysis) and cognitive outcomes (HR = 0.90, p = 0.12, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.023, covariate-adjusted time-scale analysis). Our findings raise the possibility that SNCA has a dual, opposing, and time-dependent role. This may have implications for the development of therapies that target SNCA expression.
Collapse
Affiliation(s)
| | | | | | - Kari J Anderson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bruce A Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Farrer
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada
| | - Roberta Frigerio
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA
| | | |
Collapse
|