1
|
Bogoje Raspopović A, Balta V, Vodopić M, Drobac M, Boroš A, Đikić D, Demarin V. The possible role of oxidative stress marker glutathione in the assessment of cognitive impairment in multiple sclerosis. Open Med (Wars) 2024; 19:20240952. [PMID: 38623459 PMCID: PMC11017180 DOI: 10.1515/med-2024-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Oxidative stress markers have a distinct role in the process of demyelination in multiple sclerosis. This study investigated the potential correlation of markers of oxidative stress (glutathione [GSH], catalase) with the number of demyelinating lesions and the degree of disability, cognitive deficit, and depression in patients with relapsing-remitting multiple sclerosis (RRMS). Sixty subjects meeting the criteria for RRMS (19 men and 41 women), and 66 healthy controls (24 men, 42 women) were included. In this study, GSH significantly negatively correlated with the degree of cognitive impairment. This is the first study of subjects with RRMS that performed the mentioned research of serum GSH levels on the degree of cognitive damage examined by the Montreal Scale of Cognitive Assessment (MoCA) test. The development of cognitive changes, verified by the MoCA test, was statistically significantly influenced by the positive number of magnetic resonance lesions, degree of depression, expanded disability status scale (EDSS), age, and GSH values. Based on these results, it can be concluded that it is necessary to monitor cognitive status early in RRMS patients, especially in those with a larger number of demyelinating lesions and a higher EDSS level and in older subjects. Also, the serum level of GSH is a potential biomarker of disease progression, which could be used more widely in RRMS.
Collapse
Affiliation(s)
- Andrijana Bogoje Raspopović
- Department of Neurology, General Hospital Dubrovnik, Dubrovnik, Croatia
- Department of Animal Physiology, Biology Division, Faculty of Science, University of Zagreb, 10000Zagreb, Croatia
| | - Vedran Balta
- Department of Animal Physiology, Biology Division, Faculty of Science, University of Zagreb, 10000Zagreb, Croatia
| | - Maro Vodopić
- Department of Neurology, General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Marina Drobac
- Department of Neurology, General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Almoš Boroš
- Czech Academy of Science, Institute of Physiology, Prague, Czechia
| | - Domagoj Đikić
- Department of Animal Physiology, Biology Division, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000Zagreb, Croatia
| | - Vida Demarin
- Croatian Academy of Sciences and Arts, Zagreb, Croatia
| |
Collapse
|
2
|
Khalatbari Mohseni G, Hosseini SA, Majdinasab N, Cheraghian B. Effects of N-acetylcysteine on oxidative stress biomarkers, depression, and anxiety symptoms in patients with multiple sclerosis. Neuropsychopharmacol Rep 2023; 43:382-390. [PMID: 37386885 PMCID: PMC10496087 DOI: 10.1002/npr2.12360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
AIM N-acetylcysteine (NAC), a thiol-containing antioxidant and glutathione (GSH) precursor, attenuates oxidative stress, and possibly improves psychiatric disorders. This study aimed to evaluate the effects of oral NAC on oxidative stress, depression, and anxiety symptoms in patients with multiple sclerosis (MS). METHODS This clinical trial was conducted on 42 MS patients randomly assigned to intervention (n = 21) and control (n = 21) groups. The intervention group received 600 mg of NAC twice daily for 8 weeks, and the control group received a placebo with the same prescription form. An analysis of serum malondialdehyde (MDA), serum nitric oxide (NO), and erythrocyte GSH was carried out on both groups, along with a complete blood count. The Hospital Anxiety and Depression Scale (HADS) was used to assess symptoms of depression (HADS-D) and anxiety (HADS-A). RESULTS Compared to the control group, NAC consumption significantly decreased serum MDA concentrations (-0.33 [-5.85-2.50] vs. 2.75 [-0.25-5.22] μmol/L; p = 0.03) and HADS-A scores (-1.6 ± 2.67 vs. 0.33 ± 2.83; p = 0.02). No significant changes were observed in serum NO concentrations, erythrocyte GSH levels, and HADS-D scores (p > 0.05). CONCLUSIONS Based on the findings of the present study, NAC supplementation for 8 weeks decreased lipid peroxidation and improved anxiety symptoms in MS patients. The aforementioned results suggest that adjunctive therapy with NAC can be considered an effective strategy for MS management. Further randomized controlled studies are warranted.
Collapse
Affiliation(s)
- Golsa Khalatbari Mohseni
- Nutrition and Metabolic Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Nutrition, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Nutrition, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nastaran Majdinasab
- Department of Neurology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Bahman Cheraghian
- Department of Statistics and Epidemiology, School of Public HealthAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
3
|
Neshasteh-Riz A, Ramezani F, Kookli K, Moghaddas Fazeli S, Motamed A, Nasirinezhad F, Janzadeh A, Hamblin MR, Asadi M. Optimization of the Duration and Dose of Photobiomodulation Therapy (660 nm Laser) for Spinal Cord Injury in Rats. Photobiomodul Photomed Laser Surg 2022; 40:488-498. [DOI: 10.1089/photob.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedalireza Moghaddas Fazeli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Motamed
- Islamic Azad University, College of Veterinary Medicine, Karaj, Iran
| | | | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohammadreza Asadi
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Tanaka M, Vécsei L. Monitoring the Redox Status in Multiple Sclerosis. Biomedicines 2020; 8:E406. [PMID: 33053739 PMCID: PMC7599550 DOI: 10.3390/biomedicines8100406] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide, over 2.2 million people suffer from multiple sclerosis (MS), a multifactorial demyelinating disease of the central nervous system. MS is characterized by a wide range of motor, autonomic, and psychobehavioral symptoms, including depression, anxiety, and dementia. The blood, cerebrospinal fluid, and postmortem brain samples of MS patients provide evidence on the disturbance of reduction-oxidation (redox) homeostasis, such as the alterations of oxidative and antioxidative enzyme activities and the presence of degradation products. This review article discusses the components of redox homeostasis, including reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products. The reactive chemical species cover frequently discussed reactive oxygen/nitrogen species, infrequently featured reactive chemicals such as sulfur, carbonyl, halogen, selenium, and nucleophilic species that potentially act as reductive, as well as pro-oxidative stressors. The antioxidative enzyme systems cover the nuclear factor erythroid-2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway. The NRF2 and other transcriptional factors potentially become a biomarker sensitive to the initial phase of oxidative stress. Altered components of the redox homeostasis in MS were discussed in search of a diagnostic, prognostic, predictive, and/or therapeutic biomarker. Finally, monitoring the battery of reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products helps to evaluate the redox status of MS patients to expedite the building of personalized treatment plans for the sake of a better quality of life.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Li T, Li YT, Song DY. The expression of IL-1β can deteriorate the prognosis of nervous system after spinal cord injury. Int J Neurosci 2018; 128:778-782. [PMID: 29308940 DOI: 10.1080/00207454.2018.1424154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE We used Anakinra to inhibit the expression of IL-1β based on the model of spinal cord injury in the rat stomach and explored whether it had a certain neuroprotective effect after spinal cord injury. MATERIALS AND METHODS The spinal cord injury model of four segments (T5-T8) was prepared by using vascular clamp. Thirty rats were randomized to the control group and the experimental group, and the control group used normal saline, while the experimental group used Anakinra after spinal cord injury. The spinal cord tissue was extracted at 6 h and 24 h after the operation to carry out the histopathological evaluation and to analyze the contents of IL-1β and malondialdehyde and the activities of glutathione peroxidase and superoxide dismutase. RESULTS Edema and inflammatory cell infiltration were obviously seen after spinal cord injury, the IL-1β level in serum was significantly increased, but the activity of glutathione peroxidase, superoxide dismutase and catalase was decreased in the control group compared with the experimental group. The experimental group could increase the activity of antioxidant enzymes, but had no significant effect on malondialdehyde. CONCLUSIONS Anakinra had a certain protective effect through the inhibition of IL-1β on spinal cord injury.
Collapse
Affiliation(s)
- Tao Li
- a Department of Spinal Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , P.R. China
| | - Yu-Tang Li
- b Department of Microbiology and Infectious Disease Center , School of Basic Medical Sciences, Peking University Health Science Center , Beijing , P.R. China
| | - Di-Yu Song
- c Department of Orthopedics , The General Hospital of the PLA Rocket Force , Beijing , P.R. China
| |
Collapse
|
6
|
Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid Redox Signal 2017; 27:989-1010. [PMID: 28443683 PMCID: PMC5649126 DOI: 10.1089/ars.2016.6925] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. CRITICAL ISSUES In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. FUTURE DIRECTIONS Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Lili Zou
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden .,2 Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University , Yichang, China
| | - Xu Zhang
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Vasco Branco
- 3 Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jun Wang
- 2 Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University , Yichang, China
| | - Cristina Carvalho
- 3 Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Arne Holmgren
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jun Lu
- 4 School of Pharmaceutical Sciences, Southwest University , Chongqing, China
| |
Collapse
|
7
|
Human glutathione s-transferase enzyme gene variations and risk of multiple sclerosis in Iranian population cohort. Mult Scler Relat Disord 2017; 17:41-46. [DOI: 10.1016/j.msard.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 12/24/2022]
|
8
|
Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med 2016; 10:889-902. [PMID: 27416337 DOI: 10.2217/bmm-2016-0097] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To provide an up-to-date review of oxidative stress biomarkers in multiple sclerosis and thus identify candidate molecules with greatest promise as biomarkers of diagnosis, disease activity or prognosis. METHOD A semi-systematic literature search using PubMed and other databases. RESULTS Nitric oxide metabolites, superoxide dismutase, catalase, glutathione reductase, inducible nitric oxide synthase, protein carbonyl, 3-nitrotyrosine, isoprostanes, malondialdehyde and products of DNA oxidation have been identified across multiple studies as having promise as diagnostic, therapeutic or prognostic markers in MS. CONCLUSION Heterogeneity of study design, particularly patient selection, limits comparability across studies. Further cohort studies are needed, and we would recommend promising markers be incorporated into future clinical trials to prospectively validate their potential.
Collapse
Affiliation(s)
- Richard Ibitoye
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kevin Kemp
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Claire Rice
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kelly Hares
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Alastair Wilkins
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| |
Collapse
|
9
|
Groen K, Maltby VE, Sanders KA, Scott RJ, Tajouri L, Lechner-Scott J. Erythrocytes in multiple sclerosis - forgotten contributors to the pathophysiology? Mult Scler J Exp Transl Clin 2016; 2:2055217316649981. [PMID: 28607726 PMCID: PMC5433403 DOI: 10.1177/2055217316649981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterised by lymphocytic
infiltration of the central nervous system and subsequent destruction of myelin and axons.
On the background of a genetic predisposition to autoimmunity, environmental triggers are
assumed to initiate the disease. The majority of MS research has focused on the
pathological involvement of lymphocytes and other immune cells, yet a paucity of attention
has been given to erythrocytes, which may play an important role in MS pathology. The
following review briefly summarises how erythrocytes may contribute to MS pathology
through impaired antioxidant capacity and altered haemorheological features. The effect of
disease-modifying therapies on erythrocytes is also reviewed. It may be important to
further investigate erythrocytes in MS, as this could broaden the understanding of the
pathological mechanisms of the disease, as well as potentially lead to the discovery of
novel and innovative targets for future therapies.
Collapse
Affiliation(s)
- Kira Groen
- Faculty of Health Sciences and Medicine, Bond University, Australia
| | - Vicki E Maltby
- Information Based Medicine, Hunter Medical Research Institute, Australia
| | | | - Rodney J Scott
- Information Based Medicine, Hunter Medical Research Institute, Australia
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, Australia
| | | |
Collapse
|
10
|
Hasturk AE, Yilmaz ER, Turkoglu E, Arikan M, Togral G, Hayirli N, Erguder BI, Evirgen O. Potential neuroprotective effect of Anakinra in spinal cord injury in an in vivo experimental animal model. ACTA ACUST UNITED AC 2015; 20:124-30. [PMID: 25864064 PMCID: PMC4727622 DOI: 10.17712/nsj.2015.2.20140483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the therapeutic effects of inhibiting interleukin-1 beta (IL-1 beta) in vivo using Anakinra in an experimental model of spinal cord injury (SCI). METHODS All experimental procedures were performed in the animal laboratory of Ankara Education and Research Hospital, Ankara, Turkey between August 2012 and May 2014. The SCI was induced by applying vascular clips to the dura via a 4-level T5-T8 laminectomy. Fifty-four rats were randomized into the following groups: controls (n = 18), SCI + saline (n = 18), and SCI + Anakinra (n = 18). Spinal cord samples were obtained from animals in both SCI groups at one, 6, and 24 hours after surgery (n = 6 for each time point). Spinal cord tissue and serum were extracted, and the levels of IL-1 beta, malondialdehyde, glutathione peroxidase, superoxide dismutase, and catalase were analyzed. Furthermore, histopathological evaluation of the tissues was performed. RESULTS The SCI in rats caused severe injury characterized by edema, neutrophil infiltration, and cytokine production followed by recruitment of other inflammatory cells, lipid peroxidation, and increased oxidative stress. After SCI, tissue and serum IL-1 beta levels were significantly increased, but were significantly decreased by Anakinra administration. Following trauma, glutathione peroxidase, superoxide dismutase, and catalase levels were decreased; however, Anakinra increased the activity of these antioxidant enzymes. Malondialdehyde levels were increased after trauma, but were unaffected by Anakinra. Histopathological analysis showed that Anakinra effectively protected the spinal cord tissue from injury. CONCLUSION Treatment with Anakinra reduces inflammation and other tissue injury events associated with SCI.
Collapse
Affiliation(s)
- Askin E Hasturk
- Department of Neurosurgery, Oncology Training and Research Hospital, Demetevler, Ankara, Turkey. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics 2015; 7:1213-28. [DOI: 10.1039/c5mt00075k] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A review of selenium's essential role in normal brain function and its potential involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bárbara Rita Cardoso
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Elemental Bio-imaging Facility
- University of Technology Sydney
| |
Collapse
|
12
|
Ljubisavljevic S. Oxidative Stress and Neurobiology of Demyelination. Mol Neurobiol 2014; 53:744-758. [PMID: 25502298 DOI: 10.1007/s12035-014-9041-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/30/2014] [Indexed: 12/25/2022]
Abstract
Despite a large amount of research which aims at defining the pathophysiology of human demyelination (i.e., multiple sclerosis), etiological bases of disease have been unknown so far. The point of intersection of all assumed etiological factors, which are mainly based upon immunological cascades, is neuroinflammation. The precise definition of the place and role of all pathogenetic factors in the occurrence and development of the disease is of crucial importance for understanding the clinical nature and for finding more effective therapeutic options. There are few studies whose results give more precise data about the role and the importance of other factors in neuroinflammation, besides immunological ones, with regard to clinical and paraclinical correlates of the disease. The review integrates results found in previously performed studies which have evaluated oxidative stress participation in early and late neuroinflammation. The largest number of studies indicates that the use of antioxidants affects the change of neuroinflammation course under experimental conditions, which is reflected in the reduction of the severity and the total reversibility in clinical presentation of the disease, the faster achieving of remission, and the delayed and slow course of neuroinflammation. Therapies based on the knowledge of redox biology targeting free radical generation hold great promise in modulation of the neuroinflammation and its clinical presentations.
Collapse
Affiliation(s)
- Srdjan Ljubisavljevic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, Nis, 18000, Serbia.
- Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, Nis, 18000, Serbia.
| |
Collapse
|
13
|
Carvalho AN, Lim JL, Nijland PG, Witte ME, Van Horssen J. Glutathione in multiple sclerosis: More than just an antioxidant? Mult Scler 2014; 20:1425-31. [DOI: 10.1177/1352458514533400] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidative stress has been strongly implicated in both the inflammatory and neurodegenerative pathological mechanisms in multiple sclerosis (MS). In response to oxidative stress, cells increase and activate their cellular antioxidant mechanisms. Glutathione (GSH) is the major antioxidant in the brain, and as such plays a pivotal role in the detoxification of reactive oxidants. Previous research has shown that GSH homeostasis is altered in MS. In this review, we provide a comprehensive overview on GSH metabolism in brain cells, with a focus on its involvement in MS. The potential of GSH as an in vivo biomarker in MS is discussed, along with a short overview of improvements in imaging methods that allow non-invasive quantification of GSH in the brain. These methods might be instrumental in providing real-time measures of GSH, allowing the assessment of the oxidative state in MS patients and the monitoring of disease progression. Finally, the therapeutic potential of GSH in MS is discussed.
Collapse
Affiliation(s)
- Andreia N Carvalho
- Vrije Universiteit (VU) University Medical Center Amsterdam, The Netherlands
| | - Jamie L Lim
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Philip G Nijland
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Maarten E Witte
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Jack Van Horssen
- Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|