1
|
Wu PF, Han QQ, Chen FF, Shen TT, Li YH, Cao Y, Chen JG, Wang F. Erasing m 6A-dependent transcription signature of stress-sensitive genes triggers antidepressant actions. Neurobiol Stress 2021; 15:100390. [PMID: 34527794 PMCID: PMC8430387 DOI: 10.1016/j.ynstr.2021.100390] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Emerging evidence has shown that stress responsivity and psychiatric diseases are associated with alterations in N6-methyladenosine (m6A) mRNA epigenetic modifications. Fat mass and obesity-associated protein (FTO) is an m6A demethylase that has been linked to increased body mass and obesity. Here, we show that tricyclic antidepressants (TCAs) with weight-gain side effects, such as imipramine and amitriptyline, directly increased FTO expression and activated its epigenetic function in the ventral tegmental area (VTA). VTA-specific genetic disruption of FTO increased stress vulnerability and abolished the antidepressant activity of TCAs, whereas erasing m6A modification in the VTA by FTO overexpression or cycloleucine led to significant antidepressant activity. Mechanistically, both transcriptome sequencing and quantitative PCR revealed that overexpression of FTO in the VTA decreased the transcription of stress-related neuropeptides, such as cocaine- and amphetamine-regulated transcript peptide and urocortin, in the social defeat model, which was mimicked by imipramine, suggesting an m6A-dependent transcription mechanism of stress-related neuropeptides may underlie the responses to antidepressant. Collectively, our results demonstrate that inhibiting m6A-dependent transcription of stress-related genes may work as a novel antidepressant strategy and highlight a previously unrecognized activator of FTO-dependent epigenetic function that may be used for the treatment of other neurological diseases. TCAs erase m6A epigenetic modification by activating FTO. FTO mediates the antidepressant activity of TCAs. FTO in the VTA confers stress resistance. FTO in the VTA limits m6A-dependent transcription of stress-sensitive genes.
Collapse
Affiliation(s)
- Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei, 430030, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan City, Hubei, 430030, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei, 430030, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Qian Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei, 430030, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China
| | - Fu-Feng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei, 430030, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China
| | - Tian-Tian Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei, 430030, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China
| | - Yi-Heng Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei, 430030, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China
| | - Yu Cao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei, 430030, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei, 430030, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan City, Hubei, 430030, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei, 430030, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei, 430030, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan City, Hubei, 430030, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei, 430030, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Boiko AS, Pozhidaev IV, Paderina DZ, Bocharova AV, Mednova IA, Fedorenko OY, Kornetova EG, Loonen AJM, Semke AV, Bokhan NA, Ivanova SA. Search for Possible Associations of FTO Gene Polymorphic Variants with Metabolic Syndrome, Obesity and Body Mass Index in Schizophrenia Patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1123-1131. [PMID: 34522123 PMCID: PMC8434933 DOI: 10.2147/pgpm.s327353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Purpose Metabolic syndrome (MetS) is characterized by abdominal obesity, hyperglycaemia, dyslipidaemia and hypertension. FTO gene has been implicated in the pathogenesis of obesity, but the available scientific data concerning their relationship to antipsychotic drug-induced obesity and metabolic syndrome is still incomplete and inconsistent, which indicates that continuing the investigation of this gene’s role is necessary. Patients and Methods In the present study, 517 patients with schizophrenia underwent antipsychotic drug treatment, and two groups were identified: patients with MetS and without MetS. Genotyping of 6 SNPs in the FTO gene was performed, and the results analyzed using R-programme. Results We performed a statistical analysis to identify possible associations of the frequencies of genotypes and alleles of the studied polymorphisms with the presence of metabolic syndrome in schizophrenia patients, with the presence of abdominal obesity, and with an increased body mass index. The rs7185735 polymorphism did not meet the Hardy-Weinberg criterion and was excluded. After correcting for differences in age, gender and duration of illnesses, none of the variants was shown to be related to metabolic syndrome or abdominal obesity, but rs9939609, rs1421085, rs3751812 and rs8050136 were associated with body mass index. Conclusion The present study provides additional support for these SNP’s roles as a pharmacogenetic biomarker that may become useful in the framework of the personalized medicine approach.
Collapse
Affiliation(s)
- Anastasiia S Boiko
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Ivan V Pozhidaev
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Diana Z Paderina
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Anna V Bocharova
- Laboratory of Evolutionary Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Irina A Mednova
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena G Kornetova
- Endogenous Disorders Department, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,University Hospital, Siberian State Medical University, Tomsk, Russian Federation
| | - Anton J M Loonen
- Unit of Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Arkadiy V Semke
- Endogenous Disorders Department, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Addictive Disorders Department, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Psychiatry, Addiction Psychiatry and Psychotherapy Department, Siberian State Medical University, Tomsk, Russian Federation
| | - Svetlana A Ivanova
- Molecular Genetics and Biochemistry Laboratory, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Psychiatry, Addiction Psychiatry and Psychotherapy Department, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
3
|
Pharmacogenetic Correlates of Antipsychotic-Induced Weight Gain in the Chinese Population. Neurosci Bull 2019; 35:561-580. [PMID: 30607769 DOI: 10.1007/s12264-018-0323-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
Antipsychotic-induced weight gain (AIWG) is a common adverse effect of this treatment, particularly with second-generation antipsychotics, and it is a major health problem around the world. We aimed to review the progress of pharmacogenetic studies on AIWG in the Chinese population to compare the results for Chinese with other ethnic populations, identify the limitations and problems of current studies, and provide future research directions in China. Both English and Chinese electronic databases were searched to identify eligible studies. We determined that > 25 single-nucleotide polymorphisms in 19 genes have been investigated in association with AIWG in Chinese patients over the past few decades. HTR2C rs3813929 is the most frequently studied single-nucleotide polymorphism, and it seems to be the most strongly associated with AIWG in the Chinese population. However, many genes that have been reported to be associated with AIWG in other ethnic populations have not been included in Chinese studies. To explain the pharmacogenetic reasons for AIWG in the Chinese population, genome-wide association studies and multiple-center, standard, unified, and large samples are needed.
Collapse
|
4
|
Shabana, Shahid SU, Hasnain S. Identification of genetic basis of obesity and mechanistic link of genes and lipids in Pakistani population. Biosci Rep 2018; 38:BSR20180281. [PMID: 29752338 PMCID: PMC6435513 DOI: 10.1042/bsr20180281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
We aimed to identify the genetic causes of common forms of obesity in the Pakistani people and find out the mechanistic link by observing the relationship of genes and serum lipid traits. Four hundred and seventy-five subjects were genotyped for two mutations in (leptin:N103K and proopiomelanocortin:R236G) and ten common variants in different genes. Serum lipids were also measured. The prevalence of mutations was very low (one heterozygous subject each for both mutations), but fairly high minor/risk allele frequency (M/RAF) was observed for all SNPs. MAF of G2548A was 42.8% in obese and 30.1% in controls (P=5.7 × 10-5), it showed association with weight, body mass index (BMI), waist circumference (WC), high density lipoprotein cholesterol (HDL-c) and leptin, Gln223Arg had MAF 32% in obese and 18.7% in controls (P=5.4 × 10-6), it showed association with fasting plasma glucose (FPG) and all lipid traits, Ala54Thr had MAF 42.4% in obese and 33.1% (P=0.002), it showed association with none of the tested parameters. rs9939609 MAF was 26.6%, and showed association with none of the tested parameters. rs1802295 (P=0.002); rs7178572 (P=0.007); rs2028299 (P=0.04); rs4812829 (P=0.02) showed significant while rs3923113 and rs16861329 did not show a significant association (P=0.20 and P=0.3, respectively) with obesity. Major genetic contribution to common forms of obesity in Pakistan is from low/modest effect size common variants that act additively to affect body weight quantitatively and mechanism may involve modulating serum lipids.
Collapse
Affiliation(s)
- Shabana
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Saleem Ullah Shahid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
5
|
Raben AT, Marshe VS, Chintoh A, Gorbovskaya I, Müller DJ, Hahn MK. The Complex Relationship between Antipsychotic-Induced Weight Gain and Therapeutic Benefits: A Systematic Review and Implications for Treatment. Front Neurosci 2018; 11:741. [PMID: 29403343 PMCID: PMC5786866 DOI: 10.3389/fnins.2017.00741] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Antipsychotic-induced weight gain (AIWG) and other adverse metabolic effects represent serious side effects faced by many patients with psychosis that can lead to numerous comorbidities and which reduce the lifespan. While the pathophysiology of AIWG remains poorly understood, numerous studies have reported a positive association between AIWG and the therapeutic benefit of antipsychotic medications. Objectives: To review the literature to (1) determine if AIWG is consistently associated with therapeutic benefit and (2) investigate which variables may mediate such an association. Data Sources: MEDLINE, Google Scholar, Cochrane Database and PsycINFO databases were searched for articles containing all the following exploded MESH terms: schizophrenia [AND] antipsychotic agents/neuroleptics [AND] (weight gain [OR] lipids [OR] insulin [OR] leptin) [AND] treatment outcome. Results were limited to full-text, English journal articles. Results: Our literature search uncovered 31 independent studies which investigated an AIWG-therapeutic benefit association with a total of 6063 enrolled individuals diagnosed with schizophrenia or another serious mental illness receiving antipsychotic medications. Twenty-two studies found a positive association while, 10 studies found no association and one study reported a negative association. Study variables including medication compliance, sex, ethnicity, or prior antipsychotic exposure did not appear to consistently affect the AIWG-therapeutic benefit relationship. In contrast, there was some evidence that controlling for baseline BMI/psychopathology, duration of treatment and specific agent studied [i.e., olanzapine (OLZ) or clozapine (CLZ)] strengthened the relationship between AIWG and therapeutic benefit. Limitations: There were limitations of the reviewed studies in that many had small sample sizes, and/or were retrospective. The heterogeneity of the studies also made comparisons difficult and publication bias was not controlled for. Conclusions: An AIWG-therapeutic benefit association may exist and is most likely to be observed in OLZ and CLZ-treated patients. The clinical meaningfulness of this association remains unclear and weight gain and other metabolic comorbidities should be identified and treated to the same targets as the general population. Further research should continue to explore the links between therapeutic benefit and metabolic health with emphasis on both pre-clinical work and well-designed prospective clinical trials examining metabolic parameters associated, but also occurring independently to AIWG.
Collapse
Affiliation(s)
- Alex T Raben
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Victoria S Marshe
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Araba Chintoh
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ilona Gorbovskaya
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Margaret K Hahn
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Development of multivariable models to predict change in Body Mass Index within a clinical trial population of psychotic individuals. Sci Rep 2017; 7:14738. [PMID: 29116126 PMCID: PMC5677086 DOI: 10.1038/s41598-017-15137-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022] Open
Abstract
Many antipsychotics promote weight gain, which can lead to non-compliance and relapse of psychosis. By developing models that accurately identify individuals at greater risk of weight gain, clinicians can make informed treatment decisions and target intervention measures. We examined clinical, genetic and expression data for 284 individuals with psychosis derived from a previously published randomised controlled trial (IMPACT). These data were used to develop regression and classification models predicting change in Body Mass Index (BMI) over one year. Clinical predictors included demographics, anthropometrics, cardiac and blood measures, diet and exercise, physical and mental health, medication and BMI outcome measures. We included genetic polygenic risk scores (PRS) for schizophrenia, bipolar disorder, BMI, waist-hip-ratio, insulin resistance and height, as well as gene co-expression modules generated by Weighted Gene Co-expression Network Analysis (WGCNA). The best performing predictive models for BMI and BMI gain after one year used clinical data only, which suggests expression and genetic data do not improve prediction in this cohort.
Collapse
|
7
|
Zhang JP, Lencz T, Zhang RX, Nitta M, Maayan L, John M, Robinson DG, Fleischhacker WW, Kahn RS, Ophoff RA, Kane JM, Malhotra AK, Correll CU. Pharmacogenetic Associations of Antipsychotic Drug-Related Weight Gain: A Systematic Review and Meta-analysis. Schizophr Bull 2016; 42:1418-1437. [PMID: 27217270 PMCID: PMC5049532 DOI: 10.1093/schbul/sbw058] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although weight gain is a serious but variable adverse effect of antipsychotics that has genetic underpinnings, a comprehensive meta-analysis of pharmacogenetics of antipsychotic-related weight gain is missing. In this review, random effects meta-analyses were conducted for dominant and recessive models on associations of specific single nucleotide polymorphisms (SNP) with prospectively assessed antipsychotic-related weight or body mass index (BMI) changes (primary outcome), or categorical increases in weight or BMI (≥7%; secondary outcome). Published studies, identified via systematic database search (last search: December 31, 2014), plus 3 additional cohorts, including 222 antipsychotic-naïve youth, and 81 and 141 first-episode schizophrenia adults, each with patient-level data at 3 or 4 months treatment, were meta-analyzed. Altogether, 72 articles reporting on 46 non-duplicated samples (n = 6700, mean follow-up = 25.1wk) with 38 SNPs from 20 genes/genomic regions were meta-analyzed (for each meta-analysis, studies = 2-20, n = 81-2082). Eleven SNPs from 8 genes were significantly associated with weight or BMI change, and 4 SNPs from 2 genes were significantly associated with categorical weight or BMI increase. Combined, 13 SNPs from 9 genes (Adrenoceptor Alpha-2A [ADRA2A], Adrenoceptor Beta 3 [ADRB3], Brain-Derived Neurotrophic Factor [BDNF], Dopamine Receptor D2 [DRD2], Guanine Nucleotide Binding Protein [GNB3], 5-Hydroxytryptamine (Serotonin) Receptor 2C [HTR2C], Insulin-induced gene 2 [INSIG2], Melanocortin-4 Receptor [MC4R], and Synaptosomal-associated protein, 25kDa [SNAP25]) were significantly associated with antipsychotic-related weight gain (P-values < .05-.001). SNPs in ADRA2A, DRD2, HTR2C, and MC4R had the largest effect sizes (Hedges' g's = 0.30-0.80, ORs = 1.47-1.96). Less prior antipsychotic exposure (pediatric or first episode patients) and short follow-up (1-2 mo) were associated with larger effect sizes. Individual antipsychotics did not significantly moderate effect sizes. In conclusion, antipsychotic-related weight gain is polygenic and associated with specific genetic variants, especially in genes coding for antipsychotic pharmacodynamic targets.
Collapse
Affiliation(s)
- Jian-Ping Zhang
- *To whom correspondence should be addressed; Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health System, 75-59 263rd Street, Glen Oaks, NY 11020, US; tel: 718-470-8471, fax: 718-470-1905, e-mail:
| | | | - Ryan X. Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NY
| | - Masahiro Nitta
- Drug Development Division, Sumitomo Dainippon Pharma Co. Ltd, Tokyo, Japan
| | - Lawrence Maayan
- Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Majnu John
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY;,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY;,Department of Mathematics, Hofstra University, Hempstead, NY
| | | | | | - Rene S. Kahn
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Roel A. Ophoff
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - John M. Kane
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY
| | | | - Christoph U. Correll
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY,Both authors contributed equally to the article
| |
Collapse
|
8
|
Shabana, Hasnain S. The p. N103K mutation of leptin (LEP) gene and severe early onset obesity in Pakistan. Biol Res 2016; 49:23. [PMID: 27075752 PMCID: PMC4831177 DOI: 10.1186/s40659-016-0082-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/24/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity is a complex disorder and has been increasing globally at alarming rates including Pakistan. However, there is scarce research on understanding obesity genetics in Pakistan. Leptin is a hormone secreted by adipocytes in response to satiety and correlates with body weight. Any mutations in the LEP gene have an adverse effect on energy regulation pathway and lead to severe, early onset obesity. To date, only eight mutations have been described in the LEP gene of which p. N103K is one. METHODS We aimed to analyze the prevalence of this mutation in Pakistani subjects. A total of 475 subjects were genotyped by PCR-RFLP analysis and their serum profiling was done. RESULTS Results showed that this mutation was present only in one male child with early onset obesity (10 year). He had very low serum leptin levels suggestive of functional impact of the mutation. The prevalence of such mutations is, however, low due to the drastic effects on the energy regulation. CONCLUSION In conclusion, LEP gene mutations contribute significantly to the monogenic forms of obesity and are important due to the availability of treatment options. Such mutations may exert their effect by directly affecting energy regulation pathway and are more prominent in the early stages of life only.
Collapse
Affiliation(s)
- Shabana
- />Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590 Pakistan
| | - Shahida Hasnain
- />Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590 Pakistan
- />The Women University Multan, Multan, Pakistan
| |
Collapse
|
9
|
Sriretnakumar V, Huang E, Müller DJ. Pharmacogenetics of clozapine treatment response and side-effects in schizophrenia: an update. Expert Opin Drug Metab Toxicol 2015; 11:1709-31. [PMID: 26364648 DOI: 10.1517/17425255.2015.1075003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Clozapine (CLZ) is the most effective treatment for treatment-resistant schizophrenia (SCZ) patients, with potential added benefits of reduction in suicide risk and aggression. However, CLZ is also mainly underused due to its high risk for the potentially lethal side-effect of agranulocytosis as well as weight gain and related metabolic dysregulation. Pharmacogenetics promises to enable the prediction of patient treatment response and risk of adverse effects based on patients' genetics, paving the way toward individualized treatment. AREA COVERED This article reviews pharmacogenetics studies of CLZ response and side-effects with a focus on articles from January 2012 to February 2015, as an update to the previous reviews. Pharmacokinetic genes explored primarily include CYP1A2, while pharmacodynamic genes consisted of traditional pharmacogenetic targets such as brain-derived neurotrophic factor as well novel mitochondrial genes, NDUFS-1 and translocator protein. EXPERT OPINION Pharmacogenetics is a promising avenue for individualized medication of CLZ in SCZ, with several consistently replicated gene variants predicting CLZ response and side-effects. However, a large proportion of studies have yielded mixed results. Large-scale Genome-wide association studies (e.g., CRESTAR) and targeted gene studies with standardized designs (response measurements, treatment durations, plasma level monitoring) are required for further progress toward clinical translation. Additionally, in order to improve study quality, we recommend accounting for important confounders, including polypharmacy, baseline measurements, treatment duration, gender, and age at onset.
Collapse
Affiliation(s)
- Venuja Sriretnakumar
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,b 2 University of Toronto, Department of Laboratory Medicine and Pathobiology , Ontario, Canada
| | - Eric Huang
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,c 3 University of Toronto, Institute of Medical Sciences , Ontario, Canada
| | - Daniel J Müller
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,c 3 University of Toronto, Institute of Medical Sciences , Ontario, Canada.,d 4 University of Toronto, Department of Psychiatry , Ontario, Canada
| |
Collapse
|
10
|
Effect of the Common Fat Mass and Obesity Associated Gene Variants on Obesity in Pakistani Population: A Case-Control Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:852920. [PMID: 26357660 PMCID: PMC4555445 DOI: 10.1155/2015/852920] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022]
Abstract
Background/Objective. Obesity has become a global epidemic due to an increase in the number of obese individuals worldwide. There is little research in the field of obesity genetics in Pakistan. The aim of the current study was to analyze the association of common variants in Fat Mass and Obesity associated (FTO) gene with obesity in Pakistan, to find out the effect of the selected SNPs on anthropometric and biochemical traits, and to observe whether these variants act synergistically. Methods. Samples from 631 subjects were taken after informed consent and were used for serum parameters and genetic analysis. Lipid profile was determined, tetra-ARMS PCR was used for genotyping, and allele/genotype frequencies and genescore were calculated. Results. All FTO variants were associated with obesity, and some biochemical and anthropometric measures and had higher minor allele frequencies than those reported for Asian populations previously. The risk allele of each single nucleotide polymorphism resulted in an increase in BMI in a quantitative manner. Conclusion. Common forms of obesity are due to a combined net effect of many variants presented in same or different genes. The more the number of risk alleles present, the higher the risk and severity of obesity resulting from an increase in BMI.
Collapse
|
11
|
Genetics of second-generation antipsychotic and mood stabilizer-induced weight gain in bipolar disorder. Pharmacogenet Genomics 2015; 25:354-62. [DOI: 10.1097/fpc.0000000000000144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Shams TA, Müller DJ. Antipsychotic induced weight gain: genetics, epigenetics, and biomarkers reviewed. Curr Psychiatry Rep 2014; 16:473. [PMID: 25138234 DOI: 10.1007/s11920-014-0473-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antipsychotic-induced weight gain (AIWG) is a prevalent side effect of antipsychotic treatment, particularly with second generation antipsychotics, such as clozapine and olanzapine. At this point, there is virtually nothing that can be done to predict who will be affected by AIWG. However, hope for the future of prediction lies with genetic risk factors. Many genes have been studied for their association with AIWG with a variety of promising findings. This review will focus on genetic findings in the last year and will discuss the first epigenetic and biomarker findings as well. Although there are significant findings in many other genes, the most consistently replicated findings are in the melanocortin 4 receptor (MC4R), the serotonin 2C receptor (HTR2C), the leptin, the neuropeptide Y (NPY) and the cannabinoid receptor 1 (CNR1) genes. The study of genetic risk variants poses great promise in creating predictive tools for side effects such as AIWG.
Collapse
Affiliation(s)
- Tahireh A Shams
- Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | | |
Collapse
|