1
|
Dang AT, Ono M, Wang Z, Tosa I, Hara ES, Mikai A, Kitagawa W, Yonezawa T, Kuboki T, Oohashi T. Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model. Int J Mol Sci 2024; 25:6648. [PMID: 38928355 PMCID: PMC11203997 DOI: 10.3390/ijms25126648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/β-Tricalcium phosphate (E-rhBMP-2/β-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/β-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/β-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/β-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.
Collapse
Affiliation(s)
- Anh Tuan Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Akihiro Mikai
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Wakana Kitagawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| |
Collapse
|
2
|
Hara ES, Nagaoka N, Okada M, Nakano T, Matsumoto T. Distinct Morphologies of Bone Apatite Clusters in Endochondral and Intramembranous Ossification. Adv Biol (Weinh) 2022; 6:e2200076. [PMID: 35859256 DOI: 10.1002/adbi.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/27/2022] [Indexed: 01/28/2023]
Abstract
Bone apatite crystals grow in clusters, but the microstructure of these clusters is unknown. This study compares the structural and compositional differences between bone apatite clusters formed in intramembranous (IO) and endochondral ossification (EO). Calvaria (IO) and femurs (EO) are isolated from mice at embryonic days (E) 14.5 to 15.5 and post-natal days (P) 6 to 7, respectively. Results show that the initially formed bone apatite clusters in EO (≅1.2 µm2 ) are >10 times larger than those in IO (≅0.1 µm2 ), without significant changes in ion composition. In IO (E14.5 calvarium), early minerals are formed inside matrix vesicles (MVs). In contrast, in EO (P6 femur epiphysis), no MVs are observed, and chondrocyte-derived plasma membrane nanofragments (PMNFs) are the nucleation site for mineralization. Apatite cluster size difference is linked with the different nucleation sites. Moreover, an alkaline pH and slow P supply into a Ca-rich microenvironment are suggested to facilitate apatite cluster growth, as demonstrated in a biomimetic mineralization system. Together, the results reveal for the first time the distinct and exquisite microstructures of bone apatite clusters in IO and EO, and provide insightful inspirations for the design of more efficient materials for bone tissue engineering and repair.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Noriyuki Nagaoka
- Dental School, Okayama University, Advanced Research Center for Oral and Craniofacial Sciences, Okayama, 700-8525, Japan
| | - Masahiro Okada
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-Shi, Osaka, 565-0871, Japan
| | - Takuya Matsumoto
- Department of Biomaterials Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
3
|
Nosho S, Ono M, Komori T, Mikai A, Tosa I, Ishibashi K, Tanaka Y, Kimura-Ono A, Hara ES, Oohashi T, Kuboki T. Preclinical bioequivalence study of E.coli-derived rhBMP-2/β-TCP and autogenous bone in a canine guided-bone regeneration model. J Prosthodont Res 2021; 66:124-130. [PMID: 34176850 DOI: 10.2186/jpr.jpr_d_20_00226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Bone morphogenetic protein (BMP)-2 is a potent growth factor that is widely used in the orthopedic and dental fields for bone regeneration.However, recombinant human BMP-2 (rhBMP-2) products have not been legally approved in Japan. Recently, our research group succeeded in producing GMP-grade rhBMP-2 using the E. coli system (E-rhBMP-2) at the industrial level and developed E-rhBMP-2 adsorbed onto β-TCP (E-rhBMP-2/β-TCP) as an alternative material to autogenous bone grafts. Previous studies on the toxicity, pharmacokinetics, and optimal doses of E-rhBMP-2 have confirmed its safety and efficiency. However, comparative studies with standard treatment therapies are still necessary before clinical application in humans. Therefore, in this preclinical study, we compared the bone regeneration ability of E-rhBMP-2/β-TCP and autogenous bone grafts in a canine guided-bone regeneration model. METHODS Following extraction of the maxillary third premolar, box-type bone defects (10 mmL × 4 mmW × 9 mmH) were created in the extraction socket area and transplanted with E-rhBMP-2/β-TCP or autogenous bone graft in a canine. After 8 weeks, micro-CT and histological analyses were performed. RESULTS Transplantation of both E-rhBMP-2/β-TCP and autogenous bone graft significantly promoted bone formation compared to the non-transplantation control group. The bone formation ability of E-rhBMP-2/β-TCP was equal to that of the autogenous bone graft. Histological analysis showed that excessive infiltration of inflammatory cells and residual β-TCP particles mostly were not observed in the E-rhBMP-2/β-TCP transplantation group. CONCLUSIONS This preclinical study demonstrated that E-rhBMP-2/β-TCP and autogenous bone have equal potential to promote bone regeneration.
Collapse
Affiliation(s)
- Shuji Nosho
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Akihiro Mikai
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Kei Ishibashi
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Yukie Tanaka
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Aya Kimura-Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama
| | - Emilio S Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
| |
Collapse
|
4
|
Distinct Osteogenic Potentials of BMP-2 and FGF-2 in Extramedullary and Medullary Microenvironments. Int J Mol Sci 2020; 21:ijms21217967. [PMID: 33120952 PMCID: PMC7662681 DOI: 10.3390/ijms21217967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2) have been regarded as the major cytokines promoting bone formation, however, several studies have reported unexpected results with failure of bone formation or bone resorption of these growth factors. In this study, BMP-2 and FGF-2 adsorbed into atellocollagen sponges were transplanted into bone defects in the bone marrow-scarce calvaria (extramedullary environment) and bone marrow-abundant femur (medullary environment) for analysis of their in vivo effects not only on osteoblasts, osteoclasts but also on bone marrow cells. The results showed that BMP-2 induced high bone formation in the bone marrow-scarce calvaria, but induced bone resorption in the bone marrow-abundant femurs. On the other hand, FGF-2 showed opposite effects compared to those of BMP-2. Analysis of cellular dynamics revealed numerous osteoblasts and osteoclasts present in the newly-formed bone induced by BMP-2 in calvaria, but none were seen in either control or FGF-2-transplanted groups. On the other hand, in the femur, numerous osteoclasts were observed in the vicinity of the BMP-2 pellet, while a great number of osteoblasts were seen near the FGF-2 pellets or in the control group. Of note, FCM analysis showed that both BMP-2 and FGF-2 administrated in the femur did not significantly affect the hematopoietic cell population, indicating a relatively safe application of the two growth factors. Together, these results indicate that BMP-2 could be suitable for application in extramedullary bone regeneration, whereas FGF-2 could be suitable for application in medullary bone regeneration.
Collapse
|
5
|
Akhter MN, Hara ES, Kadoya K, Okada M, Matsumoto T. Cellular Fragments as Biomaterial for Rapid In Vitro Bone-Like Tissue Synthesis. Int J Mol Sci 2020; 21:E5327. [PMID: 32727114 PMCID: PMC7432235 DOI: 10.3390/ijms21155327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Current stem cell-based techniques for bone-like tissue synthesis require at least two to three weeks. Therefore, novel techniques to promote rapid 3D bone-like tissue synthesis in vitro are still required. In this study, we explored the concept of using cell nanofragments as a substrate material to promote rapid bone formation in vitro. The methods for cell nanofragment fabrication were ultrasonication (30 s and 3 min), non-ionic detergent (triton 0.1% and 1%), or freeze-dried powder. The results showed that ultrasonication for 3 min allowed the fabrication of homogeneous nanofragments of less than 150 nm in length, which mineralized surprisingly in just one day, faster than the fragments obtained from all other methods. Further optimization of culture conditions indicated that a concentration of 10 mM or 100 mM of β-glycerophosphate enhanced, whereas fetal bovine serum (FBS) inhibited in a concentration-dependent manner, the mineralization of the cell nanofragments. Finally, a 3D collagen-cell nanofragment-mineral complex mimicking a bone-like structure was generated in just two days by combining the cell nanofragments in collagen gel. In conclusion, sonication for three min could be applied as a novel method to fabricate cell nanofragments of less than 150 nm in length, which can be used as a material for in vitro bone tissue engineering.
Collapse
Affiliation(s)
- Mst Nahid Akhter
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Koichi Kadoya
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama-shi, Okayama-ken 700-8558, Japan
| |
Collapse
|
6
|
Caballé-Serrano J, Abdeslam-Mohamed Y, Munar-Frau A, Fujioka-Kobayashi M, Hernández-Alfaro F, Miron R. Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: A systematic review. Arch Oral Biol 2019; 100:57-68. [PMID: 30798032 DOI: 10.1016/j.archoralbio.2019.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Guided bone / tissue regeneration (GBR/GTR) procedures are necessary to improve conditions for implant placement. These techniques in turn can be enhanced by using growth factors (GFs) such as bone morphogenetic protein (BMP-2) and platelet-derived growth factor (PDGF) to accelerate regeneration. The aim of the present systematic review was to evaluate the GF loading and release kinetics of barrier membranes. STUDY DESIGN A total of 138 articles were screened in PubMed databases, and 31 meeting the inclusion criteria were included in the present systematic review. RESULTS All the articles evaluated bio-resorbable membranes, especially collagen or polymer-based membranes. In most studies, the retention and release kinetics of osteogenic GFs such as BMP-2 and PDGF were widely investigated. Growth factors were incorporated to the membranes by soaking and incubating the membranes in GF solution, followed by lyophilization, or mixing in the polymers before evaporation. Adsorption onto the membranes depended upon the membrane materials and additional reagents such as heparin, cross-linkers and GF concentration. Interestingly, most studies showed two phases of GF release from the membranes: a first phase comprising a burst release (about 1 day), followed by a second phase characterized by slower release. Furthermore, all the studies demonstrated the controlled release of sufficient concentrations of GFs from the membranes for bioactivities. CONCLUSIONS The adsorption and release kinetics varied among the different materials, forms and GFs. The combination of membrane materials, GFs and manufacturing methods should be considered for optimizing GBR/GTR procedures.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain; Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland; Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Switzerland.
| | - Yusra Abdeslam-Mohamed
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Antonio Munar-Frau
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.
| | | | - Federico Hernández-Alfaro
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Richard Miron
- Department of Craniomaxillofacial Surgery, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Ceresoli V, Mainieri D, Del Fabbro M, Weinstein R, Pedrazzini E. A Fusion between Domains of the Human Bone Morphogenetic Protein-2 and Maize 27 kD γ-Zein Accumulates to High Levels in the Endoplasmic Reticulum without Forming Protein Bodies in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2016; 7:358. [PMID: 27047526 PMCID: PMC4805588 DOI: 10.3389/fpls.2016.00358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 05/12/2023]
Abstract
Human Bone Morphogenetic Protein-2 (hBMP2) is an osteoinductive agent physiologically involved in bone remodeling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad) in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs.
Collapse
Affiliation(s)
- Valentina Ceresoli
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle RicercheMilano, Italy
- Dipartimento Scienze Biomediche, Chirurgiche e Odontoiatriche, Università Degli Studi di MilanoMilano, Italy
- IRCCS Istituto Ortopedico GaleazziMilano, Italy
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle RicercheMilano, Italy
| | - Massimo Del Fabbro
- Dipartimento Scienze Biomediche, Chirurgiche e Odontoiatriche, Università Degli Studi di MilanoMilano, Italy
- IRCCS Istituto Ortopedico GaleazziMilano, Italy
| | - Roberto Weinstein
- Dipartimento Scienze Biomediche, Chirurgiche e Odontoiatriche, Università Degli Studi di MilanoMilano, Italy
- IRCCS Istituto Ortopedico GaleazziMilano, Italy
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle RicercheMilano, Italy
- *Correspondence: Emanuela Pedrazzini
| |
Collapse
|
8
|
Ono M, Sonoyama W, Yamamoto K, Oida Y, Akiyama K, Shinkawa S, Nakajima R, Pham HT, Hara ES, Kuboki T. Efficient Bone Formation in a Swine Socket Lift Model Using Escherichia coli-Derived Recombinant Human Bone Morphogenetic Protein-2 Adsorbed in β-Tricalcium Phosphate. Cells Tissues Organs 2015; 199:249-55. [DOI: 10.1159/000369061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
|
9
|
Khattab HM, Ono M, Sonoyama W, Oida Y, Shinkawa S, Yoshioka Y, Maekawa K, Tabata Y, Sugama K, Sebald W, Kuboki T. The BMP2 antagonist inhibitor L51P enhances the osteogenic potential of BMP2 by simultaneous and delayed synergism. Bone 2014; 69:165-73. [PMID: 25240457 DOI: 10.1016/j.bone.2014.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/03/2014] [Accepted: 09/08/2014] [Indexed: 02/05/2023]
Abstract
Bone morphogenetic protein 2 (BMP2) is a potent osteoinductive cytokine that plays crucial roles in bone repair. However, large amounts of BMP2 are required to induce sufficient bone formation in humans possibly due to a feedback response of BMP antagonists. The engineered BMP2 variant L51P is deficient in BMP receptor type I activation but maintains affinity for BMP antagonists and can allow for the inactivation of BMP antagonists, and eventually enhance BMP2 action. As hypothesized, simultaneous addition of L51P enhanced the BMP2-induced osteogenesis. To test the ability of L51P to competitively inactivate BMP antagonists, cell binding affinity of BMP2 ligands was investigated in the presence or absence of L51P. Because the BMP antagonists were highly expressed 3 days after exogenous BMP2 stimulation, we collected supernatants from 3-day stimulated cell cultures and used as condition culture media (CM). The results showed a significant decrease in the cell binding of BMP2 ligands when cells were incubated with exogenous BMP2 and CM, whereas L51P addition competitively rescued the suppression of BMP2-to-cell binding induced by CM incubation. In a delayed experimental model, L51P was applied 3 days after exogenous BMP2 stimulation and we could observe a striking enhancement of the BMP2-induced SMAD-1/5/8 phosphorylation and luciferase activity of the Id1 promoter compared to the simultaneous addition of the two factors. These findings provide a deeper insight into the cellular and molecular mechanisms involved in the effect of L51P in suppressing the BMP antagonists and enhancing BMP activity. Additionally, these results demonstrate that L51P is a promising down regulator of BMP-induced negative feedback, which could have a significant impact in future applications of BMP2 in research and clinical settings.
Collapse
Affiliation(s)
- Hany Mohamed Khattab
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Wataru Sonoyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasutaka Oida
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shigehiko Shinkawa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuya Yoshioka
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Maekawa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Walter Sebald
- Physiological Chemistry II, Theodor-Boveri-Institute for Biocenter of Würzburg University, Würzburg, Germany
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
10
|
Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors 2014; 40:459-81. [PMID: 25283434 DOI: 10.1002/biof.1177] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
Healing and regeneration of large bone defects leading to non-unions is a great concern in orthopedic surgery. Since auto- and allografts have limitations, bone tissue engineering and regenerative medicine (TERM) has attempted to solve this issue. In TERM, healing promotive factors are necessary to regulate the several important events during healing. An ideal treatment strategy should provide osteoconduction, osteoinduction, osteogenesis, and osteointegration of the graft or biomaterials within the healing bone. Since many materials have osteoconductive properties, only a few biomaterials have osteoinductive properties which are important for osteogenesis and osteointegration. Bone morphogenetic proteins (BMPs) are potent inductors of the osteogenic and angiogenic activities during bone repair. The BMPs can regulate the production and activity of some growth factors which are necessary for the osteogenesis. Since the introduction of BMP, it has added a valuable tool to the surgeon's possibilities and is most commonly used in bone defects. Despite significant evidences suggesting their potential benefit on bone healing, there are some evidences showing their side effects such as ectopic bone formation, osteolysis and problems related to cost effectiveness. Bone tissue engineering may create a local environment, using the delivery systems, which enables BMPs to carry out their activities and to lower cost and complication rate associated with BMPs. This review represented the most important concepts and evidences regarding the role of BMPs on bone healing and regeneration from basic to clinical application. The major advantages and disadvantages of such biologic compounds together with the BMPs substitutes are also discussed.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|