1
|
Khuu MP, Paeslack N, Dremova O, Benakis C, Kiouptsi K, Reinhardt C. The gut microbiota in thrombosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01070-6. [PMID: 39289543 DOI: 10.1038/s41569-024-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
The gut microbiota has emerged as an environmental risk factor that affects thrombotic phenotypes in several cardiovascular diseases. Evidence includes the identification of marker species by sequencing studies of the gut microbiomes of patients with thrombotic disease, the influence of antithrombotic therapies on gut microbial diversity, and preclinical studies in mouse models of thrombosis that have demonstrated the functional effects of the gut microbiota on vascular inflammatory phenotypes and thrombus formation. In addition to impaired gut barrier function promoting low-grade inflammation, gut microbiota-derived metabolites have been shown to act on vascular cell types and promote thrombus formation. Therefore, these meta-organismal pathways that link the metabolic capacities of gut microorganisms with host immune functions have emerged as potential diagnostic markers and novel drug targets. In this Review, we discuss the link between the gut microbiota, its metabolites and thromboembolic diseases.
Collapse
Affiliation(s)
- My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadja Paeslack
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Olga Dremova
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
2
|
Du J, Zhao X, Ding X, Han Q, Duan Y, Ren Q, Wang H, Song C, Wang X, Zhang D, Zhu H. The Role of the Gut Microbiota in Complications among Hemodialysis Patients. Microorganisms 2024; 12:1878. [PMID: 39338552 PMCID: PMC11434415 DOI: 10.3390/microorganisms12091878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The composition of the gut microbiota varies among end-stage renal disease (ESRD) patients on the basis of their mode of renal replacement therapy (RRT), with notably more pronounced dysbiosis occurring in those undergoing hemodialysis (HD). Interventions such as dialysis catheters, unstable hemodynamics, strict dietary restrictions, and pharmacotherapy significantly alter the intestinal microenvironment, thus disrupting the gut microbiota composition in HD patients. The gut microbiota may influence HD-related complications, including cardiovascular disease (CVD), infections, anemia, and malnutrition, through mechanisms such as bacterial translocation, immune regulation, and the production of gut microbial metabolites, thereby affecting both the quality of life and the prognosis of patients. This review focuses on alterations in the gut microbiota and its metabolites in HD patients. Additionally, understanding the impact of the gut microbiota on the complications of HD could provide insights into the development of novel treatment strategies to prevent or alleviate complications in HD patients.
Collapse
Affiliation(s)
- Junxia Du
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiaolin Zhao
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yingjie Duan
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Qinqin Ren
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chenwen Song
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Dong Zhang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
3
|
Heo GY, Park JT, Kim HJ, Kim KW, Kwon YU, Kim SH, Kim GO, Han SH, Yoo TH, Kang SW, Kim HW. Adequacy of Dialysis and Incidence of Atrial Fibrillation in Patients Undergoing Hemodialysis. Circ Cardiovasc Qual Outcomes 2024; 17:e010595. [PMID: 38873761 DOI: 10.1161/circoutcomes.123.010595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) can lead to stroke, heart failure, and mortality and has a greater prevalence in dialysis patients than in the general population. Several studies have suggested that uremic toxins may contribute to the development of AF. However, the association between dialysis adequacy and incident AF has not been well established. METHODS In this retrospective nationwide cohort study, we analyzed data from the Korean National Periodic Hemodialysis Quality Assessment from 2013 to 2015 of patients who received outpatient maintenance hemodialysis 3× a week. The main exposure was single pooled Kt/V (spKt/V), which is the dialysis adequacy index, and the primary outcome was the development of AF. For the primary analysis, patients were categorized into quartiles according to baseline spKt/V. The lowest quartile, representing the lowest adequacy, was used as the reference group. Fine-Gray subdistribution hazard models were used, treating all-cause mortality as a competing risk. RESULTS Of 25 173 patients, the mean age was 60 (51-69) years, and 14 772 (58.7%) were men. During a median follow-up of 5.7 years, incident AF occurred in a total of 3883 (15.4%) patients. Participants with a higher spKt/V tended to have lower AF incidence. In survival analysis, a graded association was observed between the risk of incident AF and spKt/V quartiles: subdistribution hazard ratios and 95% CIs for the second, third, and the highest quartile compared with the lowest quartile were 0.90 (95% CI, 0.82-0.98), 0.84 (95% CI, 0.77-0.93), and 0.79 (95% CI, 0.72-0.88), respectively. CONCLUSIONS This nationwide cohort study showed that a higher spKt/V is associated with a reduced risk of incident AF. These findings suggests that reducing uremic toxin burden through enhanced dialysis clearance may be associated with a lower risk of AF development in patients undergoing maintenance hemodialysis.
Collapse
Affiliation(s)
- Ga Young Heo
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea (G.Y.H., J.T.P., S.H.H., T.-H.Y., S.-W.K., H.W.K.)
| | - Jung Tak Park
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea (G.Y.H., J.T.P., S.H.H., T.-H.Y., S.-W.K., H.W.K.)
| | - Hyo Jeong Kim
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea (H.J.K.)
| | - Kyung Won Kim
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea (K.W.K.)
| | - Yong Uk Kwon
- Healthcare Review and Assessment Committee, Health Insurance Review and Assessment Service, Wonju, South Korea (Y.U.K.)
| | - Soo Hyun Kim
- Quality Assessment Department, Health Insurance Review and Assessment Service, Wonju, South Korea (S.H.K.)
| | - Gui Ok Kim
- Quality Assessment Management Division, Health Insurance Review and Assessment Service, Wonju, South Korea (G.O.K.)
| | - Seung Hyeok Han
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea (G.Y.H., J.T.P., S.H.H., T.-H.Y., S.-W.K., H.W.K.)
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea (G.Y.H., J.T.P., S.H.H., T.-H.Y., S.-W.K., H.W.K.)
| | - Shin-Wook Kang
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea (G.Y.H., J.T.P., S.H.H., T.-H.Y., S.-W.K., H.W.K.)
| | - Hyung Woo Kim
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea (G.Y.H., J.T.P., S.H.H., T.-H.Y., S.-W.K., H.W.K.)
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea (H.W.K.)
| |
Collapse
|
4
|
Hou YC, Chueh TI, Lu KC, Liu YC, Chen TH, Liu SH, Chen RM. The Ratio of Plasma Amyloid-β 1-42 over Serum Albumin Can Be a Novel Biomarker Signature for Diagnosing End-Stage Renal Disease-Associated Cognitive Impairment. J Alzheimers Dis 2024; 97:1393-1405. [PMID: 38250771 DOI: 10.3233/jad-230747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is one of the major complications in chronic kidney disease patients, especially those with end-stage renal disease (ESRD). Limited biomarkers have been found that can significantly predict ESRD-associated cognitive decline. OBJECTIVE This cohort study aimed to investigate de novo biomarkers for diagnosis of the ESRD-associated CI. METHODS In this cohort study, qualified samples were divided into control (with an estimated glomerular filtration rate (eGFR) of≥60 mL/min and a Mini-Mental State Examination (MMSE) score of > 27), ESRD without CI (eGFR < 15 and MMSE > 27), and ESRD with CI (eGFR < 15 and MMSE < 27) groups. Levels of plasma amyloid-β (Aβ)1 - 42, serum indoxyl sulfate, and hematologic and biochemical parameters were measured. RESULTS Compared to the control group, levels of blood urea nitrogen, creatinine, and indoxyl sulfate were elevated in ESRD patients both without and with CI. Interestingly, ESRD patients with CI had the lowest levels of serum albumin. In contrast, levels of plasma Aβ1 - 42 were significantly higher in the ESRD with CI group than in the control and ESRD without CI groups. In addition, the ratio of plasma Aβ1 - 42 over serum albumin was significantly higher in the ESRD with CI group than in the control or ESRD without CI groups. Importantly, the area under the receiver operating characteristic curve (AUROC) for CI in the total population by the ratio of Aβ1 - 42 over albumin was 0.785 and significant (p < 0.05). CONCLUSIONS This cohort study has shown that the ratio of plasma Aβ1 - 42 over serum albumin can be a de novo biomarker for the diagnosis and prognosis of ESRD-associated cognitive decline.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Department of Internal Medicine, Division of Nephrology, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ti-I Chueh
- Department of Medical Laboratory and Department of Education, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Medicine, Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Chien Liu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Tso-Hsiao Chen
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Bartolini D, Grignano MA, Piroddi M, Chiaradia E, Galeazzi G, Rende M, Ronco C, Rampino T, Libetta C, Galli F. Induction of Vesicular Trafficking and JNK-Mediated Apoptotic Signaling in Mononuclear Leukocytes Marks the Immuno-Proteostasis Response to Uremic Proteins. Blood Purif 2023; 52:737-750. [PMID: 37703866 DOI: 10.1159/000533309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Uremic retention solutes have been alleged to induce the apoptotic program of different cell types, including peripheral blood mononuclear leukocytes (PBL), which may contribute to uremic leukopenia and immune dysfunction. METHODS The molecular effects of these solutes were investigated in uremic PBL (u-PBL) and mononuclear cell lines (THP-1 and K562) exposed to the high molecular weight fraction of uremic plasma (u-HMW) prepared by in vitro ultrafiltration with 50 kDa cut-off microconcentrators. RESULTS u-PBL show reduced cell viability and increased apoptotic death compared to healthy control PBL (c-PBL). u-HMW induce apoptosis both in u-PBL and c-PBL, as well as in mononuclear cell lines, also stimulating cellular H2O2 formation and secretion, IRE1-α-mediated endoplasmic reticulum stress signaling, and JNK/cJun pathway activation. Also, u-HMW induce autophagy in THP-1 monocytes. u-PBL were characterized by the presence in their cellular proteome of the main proteins and carbonylation targets of u-HMW, namely albumin, transferrin, and fibrinogen, and by the increased expression of receptor for advanced glycation end-products, a scavenger receptor with promiscuous ligand binding properties involved in leukocyte activation and endocytosis. CONCLUSIONS Large uremic solutes induce abnormal endocytosis and terminal alteration of cellular proteostasis mechanisms in PBL, including UPR/ER stress response and autophagy, ultimately activating the JNK-mediated apoptotic signaling of these cells. These findings describe the suicidal role of immune cells in facing systemic proteostasis alterations of kidney disease patients, a process that we define as the immuno-proteostasis response of uremia.
Collapse
Affiliation(s)
- Desirée Bartolini
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
- Section of Human, Clinical and Forensic Anatomy, School of Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Marta Piroddi
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| | | | - Gabriele Galeazzi
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| | - Mario Rende
- Section of Human, Clinical and Forensic Anatomy, School of Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza, Department of Nephrology, Dialysis and Transplantation, St. Bortolo Hospital, Vicenza, Italy
- Department of Medicine, University of Padua, Padua, Italy
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Francesco Galli
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| |
Collapse
|
6
|
Candellier A, Issa N, Grissi M, Brouette T, Avondo C, Gomila C, Blot G, Gubler B, Touati G, Bennis Y, Caus T, Brazier M, Choukroun G, Tribouilloy C, Kamel S, Boudot C, Hénaut L. Indoxyl-sulfate activation of the AhR- NF-κB pathway promotes interleukin-6 secretion and the subsequent osteogenic differentiation of human valvular interstitial cells from the aortic valve. J Mol Cell Cardiol 2023; 179:18-29. [PMID: 36967106 DOI: 10.1016/j.yjmcc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Calcific aortic stenosis (CAS) is more prevalent, occurs earlier, progresses faster and has worse outcomes in patients with chronic kidney disease (CKD). The uremic toxin indoxyl sulfate (IS) is powerful predictor of cardiovascular mortality in these patients and a strong promoter of ectopic calcification whose role in CAS remains poorly studied. The objective of this study was to evaluate whether IS influences the mineralization of primary human valvular interstitial cells (hVICs) from the aortic valve. METHODS Primary hVICs were exposed to increasing concentrations of IS in osteogenic medium (OM). The hVICs' osteogenic transition was monitored by qRT-PCRs for BMP2 and RUNX2 mRNA. Cell mineralization was assayed using the o-cresolphthalein complexone method. Inflammation was assessed by monitoring NF-κB activation using Western blots as well as IL-1β, IL-6 and TNF-α secretion by ELISAs. Small interfering RNA (siRNA) approaches enabled us to determine which signaling pathways were involved. RESULTS Indoxyl-sulfate increased OM-induced hVICs osteogenic transition and calcification in a concentration-dependent manner. This effect was blocked by silencing the receptor for IS (the aryl hydrocarbon receptor, AhR). Exposure to IS promoted p65 phosphorylation, the blockade of which inhibited IS-induced mineralization. Exposure to IS promoted IL-6 secretion by hVICs, a phenomenon blocked by silencing AhR or p65. Incubation with an anti-IL-6 antibody neutralized IS's pro-calcific effects. CONCLUSION IS promotes hVIC mineralization through AhR-dependent activation of the NF-κB pathway and the subsequent release of IL-6. Further research should seek to determine whether targeting inflammatory pathways can reduce the onset and progression of CKD-related CAS.
Collapse
Affiliation(s)
- Alexandre Candellier
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Nephrology Dialysis and Transplantation, Amiens University Hospital, Amiens, France
| | - Nervana Issa
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Maria Grissi
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Théo Brouette
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Carine Avondo
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Cathy Gomila
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Gérémy Blot
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Brigitte Gubler
- Department of Immunology, Amiens University Hospital, Amiens, France; Department of Molecular Oncobiology, Amiens University Hospital, 80054, France; EA4666 - HEMATIM, CURS, Picardie Jules Verne University, Amiens 80054, France
| | - Gilles Touati
- Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Youssef Bennis
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Thierry Caus
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Michel Brazier
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Biochemistry, Amiens University Hospital, Amiens, France
| | - Gabriel Choukroun
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Nephrology Dialysis and Transplantation, Amiens University Hospital, Amiens, France
| | - Christophe Tribouilloy
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Cardiology, Amiens University Hospital, Amiens, France
| | - Saïd Kamel
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Biochemistry, Amiens University Hospital, Amiens, France
| | - Cédric Boudot
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Lucie Hénaut
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
7
|
Tain YL, Hsu CN. Role of the Gut Microbiota in Children with Kidney Disease. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020269. [PMID: 36832398 PMCID: PMC9955067 DOI: 10.3390/children10020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Disruption of the composition and structure of the gut microbiota, namely dysbiosis, dictates the pathophysiology of kidney diseases. The bidirectional kidney-gut axis is of interest in chronic kidney disease (CKD); the uremic milieu leads to intestinal dysbiosis and gut microbial metabolites and toxins implicated in the loss of kidney function and increased comorbidity burden. Considering that kidney diseases can originate in childhood or even earlier in fetal life, identification of the pathogenetic connection between gut microbiota dysbiosis and the development of pediatric renal diseases deserves more attention. This review concentrates on the pathogenic link between dysbiotic gut microbiota and pediatric renal diseases, covering CKD, kidney transplantation, hemodialysis and peritoneal dialysis, and idiopathic nephrotic syndrome. Gut microbiota-targeted therapies including dietary intervention, probiotics, prebiotics, postbiotics and fecal microbial transplantation are discussed for their potential for the treatment of pediatric renal diseases. A deeper understanding of gut microbiota in pediatric renal diseases will aid in developing innovative gut microbiota-targeted interventions for preventing or attenuating the global burden of kidney diseases.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-975-368-975; Fax: +886-7733-8009
| |
Collapse
|
8
|
van Ham WB, Cornelissen CM, van Veen TAB. Uremic toxins in chronic kidney disease highlight a fundamental gap in understanding their detrimental effects on cardiac electrophysiology and arrhythmogenesis. Acta Physiol (Oxf) 2022; 236:e13888. [PMID: 36148604 PMCID: PMC9787632 DOI: 10.1111/apha.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) have an estimated 700-800 and 523 million cases worldwide, respectively, with CVD being the leading cause of death in CKD patients. The pathophysiological interplay between the heart and kidneys is defined as the cardiorenal syndrome (CRS), in which worsening of kidney function is represented by increased plasma concentrations of uremic toxins (UTs), culminating in dialysis patients. As there is a high incidence of CVD in CKD patients, accompanied by arrhythmias and sudden cardiac death, knowledge on electrophysiological remodeling would be instrumental for understanding the CRS. While the interplay between both organs is clearly of importance in CRS, the involvement of UTs in pro-arrhythmic remodeling is only poorly investigated, especially regarding the mechanistic background. Currently, the clinical approach against potential arrhythmic events is mainly restricted to symptom treatment, stressing the need for fundamental research on UT in relation to electrophysiology. This review addresses the existing knowledge of UTs and cardiac electrophysiology, and the experimental research gap between fundamental research and clinical research of the CRS. Clinically, mainly absorbents like ibuprofen and AST-120 are studied, which show limited safe and efficient usability. Experimental research shows disturbances in cardiac electrical activation and conduction after inducing CKD or exposure to UTs, but are scarcely present or focus solely on already well-investigated UTs. Based on UTs data derived from CKD patient cohort studies, a clinically relevant overview of physiological and pathological UTs concentrations is created. Using this, future experimental research is stimulated to involve electrophysiologically translatable animals, such as rabbits, or in vitro engineered heart tissues.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlijn M. Cornelissen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
9
|
Hsu CN, Tain YL. Chronic Kidney Disease and Gut Microbiota: What Is Their Connection in Early Life? Int J Mol Sci 2022; 23:3954. [PMID: 35409313 PMCID: PMC9000069 DOI: 10.3390/ijms23073954] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The gut-kidney interaction implicating chronic kidney disease (CKD) has been the focus of increasing interest in recent years. Gut microbiota-targeted therapies could prevent CKD and its comorbidities. Considering that CKD can originate in early life, its treatment and prevention should start in childhood or even earlier in fetal life. Therefore, a better understanding of how the early-life gut microbiome impacts CKD in later life and how to develop ideal early interventions are unmet needs to reduce CKD. The purpose of the current review is to summarize (1) the current evidence on the gut microbiota dysbiosis implicated in pediatric CKD; (2) current knowledge supporting the impact of the gut-kidney axis in CKD, including inflammation, immune response, alterations of microbiota compositions, short-chain fatty acids, and uremic toxins; and (3) an overview of the studies documenting early gut microbiota-targeted interventions in animal models of CKD of developmental origins. Treatment options include prebiotics, probiotics, postbiotics, etc. To accelerate the transition of gut microbiota-based therapies for early prevention of CKD, an extended comprehension of gut microbiota dysbiosis implicated in renal programming is needed, as well as a greater focus on pediatric CKD for further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
10
|
Saar-Kovrov V, Zidek W, Orth-Alampour S, Fliser D, Jankowski V, Biessen EAL, Jankowski J. Reduction of protein-bound uraemic toxins in plasma of chronic renal failure patients: A systematic review. J Intern Med 2021; 290:499-526. [PMID: 33792983 DOI: 10.1111/joim.13248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Protein-bound uraemic toxins (PBUTs) accumulate in patients with chronic kidney disease and impose detrimental effects on the vascular system. However, a unanimous consensus on the most optimum approach for the reduction of plasma PBUTs is still lacking. METHODS In this systematic review, we aimed to identify the most efficient clinically available plasma PBUT reduction method reported in the literature between 1980 and 2020. The literature was screened for clinical studies describing approaches to reduce the plasma concentration of known uraemic toxins. There were no limits on the number of patients studied or on the duration or design of the studies. RESULTS Out of 1274 identified publications, 101 studies describing therapeutic options aiming at the reduction of PBUTs in CKD patients were included in this review. We stratified the studies by the PBUTs and the duration of the analysis into acute (data from a single procedure) and longitudinal (several treatment interventions) trials. Reduction ratio (RR) was used as the measure of plasma PBUTs lowering efficiency. For indoxyl sulphate and p-cresyl sulphate, the highest RR in the acute studies was demonstrated for fractionated plasma separation, adsorption and dialysis system. In the longitudinal trials, supplementation of haemodialysis patients with AST-120 (Kremezin®) adsorbent showed the highest RR. However, no superior method for the reduction of all types of PBUTs was identified based on the published studies. CONCLUSIONS Our study shows that there is presently no technique universally suitable for optimum reduction of all PBUTs. There is a clear need for further research in this field.
Collapse
Affiliation(s)
- V Saar-Kovrov
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - W Zidek
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Orth-Alampour
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany
| | - D Fliser
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Department of Internal Medicine IV - Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - V Jankowski
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany
| | - E A L Biessen
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J Jankowski
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Cardiovascular Diseases of Developmental Origins: Preventive Aspects of Gut Microbiota-Targeted Therapy. Nutrients 2021; 13:nu13072290. [PMID: 34371800 PMCID: PMC8308390 DOI: 10.3390/nu13072290] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) can originate from early life. Accumulating evidence suggests that gut microbiota in early life is linked to CVDs in later life. Gut microbiota-targeted therapy has gained significant importance in recent decades for its health-promoting role in the prevention (rather than just treatment) of CVDs. Thus far, available gut microbiota-based treatment modalities used as reprogramming interventions include probiotics, prebiotics, and postbiotics. The purpose of this review is, first, to highlight current studies that link dysbiotic gut microbiota to the developmental origins of CVD. This is followed by a summary of the connections between the gut microbiota and CVD behind cardiovascular programming, such as short chain fatty acids (SCFAs) and their receptors, trimethylamine-N-oxide (TMAO), uremic toxins, and aryl hydrocarbon receptor (AhR), and the renin-angiotensin system (RAS). This review also presents an overview of how gut microbiota-targeted reprogramming interventions can prevent the developmental origins of CVD from animal studies. Overall, this review reveals that recent advances in gut microbiota-targeted therapy might provide the answers to reduce the global burden of CVDs. Still, additional studies will be needed to put research findings into practice.
Collapse
|
12
|
Inverted U-Curve Association between Serum Indoxyl Sulfate Levels and Cardiovascular Events in Patients on Chronic Hemodialysis. J Clin Med 2021; 10:jcm10040744. [PMID: 33668430 PMCID: PMC7917606 DOI: 10.3390/jcm10040744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Protein-bound uremic toxins are associated with cardiovascular disease and mortality in patients with chronic kidney disease. We investigated their association with clinical outcomes in patients undergoing chronic hemodialysis (CHD). Methods: A prospective cohort study was conducted on 86 Taiwanese patients undergoing CHD. The predictors were indoxyl sulfate and p-cresyl sulfate concentrations, with each analyzed as three tertiles. Outcomes were cardiovascular events and all-cause mortality. Results: During a 25-month follow up period, there were 23 cardiovascular events and seven all-cause mortality events. In the crude survival analysis, the second indoxyl sulfate tertile was shown to be a powerful predictor of cardiovascular events compared with the third tertile (hazard ratio (HR), 3.14; 95% confidence interval (CI), 1.10–8.94), and the first tertile was shown to have a poor but insignificant cardiovascular outcome (HR, 1.09; 95% CI, 0.30–4.00). Moreover, the predictive power of the second indoxyl sulfate tertile for cardiovascular events remained after adjustment for confounders (HR, 5.42; 95% CI, 1.67–17.60). Conclusions: An inverse U-curve relationship was observed between the total serum indoxyl sulfate level and cardiovascular events in our CHD patients. A large-scale study is needed to confirm this relationship.
Collapse
|
13
|
Takkavatakarn K, Wuttiputinun T, Phannajit J, Praditpornsilpa K, Eiam-Ong S, Susantitaphong P. Protein-bound uremic toxin lowering strategies in chronic kidney disease: a systematic review and meta-analysis. J Nephrol 2021; 34:1805-1817. [PMID: 33484425 DOI: 10.1007/s40620-020-00955-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Accumulation of protein-bound uremic toxins, including indoxyl sulfate and p-cresyl sulfate, are associated with increased cardiovascular disease and mortality in chronic kidney disease (CKD). We performed a systematic review and meta-analysis to synthesize the available strategies for lowering protein-bound uremic toxin levels in CKD patients. METHODS We conducted a meta-analysis by searching the databases of MEDLINE, Scopus, and the Cochrane Central Register of Controlled Trials for observational studies and randomized controlled trials (RCTs) that examined the effect of dietary protein restrictions, biotic supplements (including prebiotics, probiotics, and synbiotics), AST-120, dialysis techniques, and the outcome of preservation of residual renal function (RRF) on indoxyl sulfate and p-cresyl sulfate levels. Random-effect model meta-analyses were used to compute changes in the outcomes of interest. RESULTS A total of 38 articles (2,492 patients), comprising 28 RCTs, 8 single-arm or prospective cohort studies, and 2 cross-sectional studies were included in this meta-analysis. When compared with placebo, prebiotics, synbiotics, and AST-120 provided significantly lower levels of both serum indoxyl sulfate and p-cresyl sulfate. There were no significant reductions in serum indoxyl sulfate and p-cresyl sulfate levels in patients receiving probiotics. Preservation of RRF in dialysis patients resulted in lower levels of both of the protein-bound uremic toxins. When compared with conventional hemodialysis, hemodiafiltration significantly decreased serum p-cresyl sulfate alone, whereas a significant change in serum indoxyl sulfate levels was observed only in studies with long-term observation periods. Very low protein diet (VLPD) and other oral medications yielded insignificant differences in protein-bound uremic toxins. CONCLUSIONS The present meta-analysis demonstrated that prebiotics, synbiotics, and AST-120 can effectively reduce both serum indoxyl sulfate and p-cresyl sulfate in CKD patients when compared with placebo. Preservation of RRF was associated with lower serum indoxyl sulfate and p-cresyl sulfate levels. The effect of biotic supplements was detected only in dialysis patients. For non-dialysis CKD patients, the results were limited due to the small number of studies. Further studies are needed to determine the efficacy in these populations.
Collapse
Affiliation(s)
- Kullaya Takkavatakarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Thunyatorn Wuttiputinun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Jeerath Phannajit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand. .,Research Unit for Metabolic Bone Disease in CKD Patients, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Armani RG, Carvalho AB, Ramos CI, Hong V, Bortolotto LA, Cassiolato JL, Oliveira NF, Cieslarova Z, do Lago CL, Klassen A, Cuppari L, Raj DS, Canziani MEF. Effect of fructooligosaccharide on endothelial function in CKD patients: a randomized controlled trial. Nephrol Dial Transplant 2021; 37:85-91. [PMID: 33411910 DOI: 10.1093/ndt/gfaa335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microbiota-derived uremic toxins have been associated with inflammation that could corroborate with endothelial dysfunction (ED) and increase cardiovascular risk in patients with chronic kidney disease (CKD). This trial aimed to evaluate the effect of the prebiotic fructooligosaccharide (FOS) on endothelial function and arterial stiffness in nondialysis CKD patients. METHODS In a double-blind controlled trial, 46 nondiabetic CKD patients were randomized to receive 12 g/day of FOS or placebo (maltodextrin) for 3 months. Total p-cresyl sulfate (PCS) and indoxyl sulfate by high-performance liquid chromatography, urinary trimethylamine N-oxide by mass spectrometry, C-reactive protein, interleukin-6 (IL-6), serum nitric oxide and stroma-derived factor-1 alfa were measured at baseline and at the end of follow-up; endothelial function was assessed through flow-mediated dilatation (FMD) and arterial stiffness by pulse wave velocity (PWV). RESULTS The mean (± standard deviation) age of the study participants was 57.6 ± 14.4 years, with an estimated glomerular filtration rate of 21.3 ± 7.3 mL/min/1.73 m2. During the follow-up, regarding the inflammatory markers and uremic toxins, there was a significant decrease in IL-6 levels (3.4 ± 2.1 pg/mL versus 2.6 ± 1.4 pg/mL; P = 0.04) and a trend toward PCS reduction (55.4 ± 38.1 mg/L versus 43.1 ± 32.4 mg/L, P = 0.07) only in the prebiotic group. Comparing both groups, there was no difference in FMD and PWV. In an exploratory analysis, including a less severe ED group of patients (FMD ≥2.2% at baseline), FMD remained stable in the prebiotic group, while it decreased in the placebo group (group effect P = 0.135; time effect P = 0.012; interaction P = 0.002). CONCLUSIONS The prebiotic FOS lowered circulating levels of IL-6 in CKD patients and preserved endothelial function only in those with less damaged endothelium. No effect of FOS in arterial stiffness was observed.
Collapse
Affiliation(s)
- Rachel G Armani
- Department of Medicine, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Aluizio B Carvalho
- Department of Medicine, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Christiane I Ramos
- Department of Medicine, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Valeria Hong
- Heart Institute, University of São Paulo, São Paulo, Brazil
| | | | | | - Natacha F Oliveira
- Department of Chemistry, Federal University of São Paulo, Diadema, Brazil
| | | | | | - Aline Klassen
- Department of Chemistry, Federal University of São Paulo, Diadema, Brazil
| | - Lilian Cuppari
- Department of Medicine, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Dominic S Raj
- Division of Kidney Diseases and Hypertension, George Washington University, Washington, DC, USA
| | - Maria Eugênia F Canziani
- Department of Medicine, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
De Mauri A, Carrera D, Bagnati M, Rolla R, Chiarinotti D, Mogna L, Pane M, Amoruso A, Del Piano M. Probiotics-addicted low-protein diet for microbiota modulation in patients with advanced chronic kidney disease (ProLowCKD): A protocol of placebo-controlled randomized trial. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Lee CT, Ng HY, Kuo WH, Tain YL, Leung FF, Lee YT. The role of TRPM7 in vascular calcification: Comparison between phosphate and uremic toxin. Life Sci 2020; 260:118280. [PMID: 32800835 DOI: 10.1016/j.lfs.2020.118280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
Abstract
AIMS Vascular calcification is a common complication in patients with chronic kidney disease and associated with increased morbidity and mortality. The role of TRPM7 in vascular smooth muscle cell (VSMC) transformation during vascular calcification is not clear. We aim to investigate the effects of phosphate and indoxyl sulphate on the expression of TRPM7 and calcification-related molecules in VSMC. MAIN METHODS Human aortic smooth muscle cells (HASMC) were treated with phosphate (3.3 mM) or indoxyl sulphate (500 μM and 1000 μM). 2-APB, a channel blocker of TRPM7 was added simultaneously in blocking experiment. Cells were then examined grossly and alizarin red solution was employed for calcification assessment. Lastly, cells were harvested for gene expression and protein abundance analysis. KEY FINDINGS Phosphate treatment induced significant increase in BMP2, RUNX2, BMP7, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and TRPM7, but 1-alpha hydroxylase, klotho, DKK1 and sclerostin were not changed. The addition of 2-APB prevented increase of BMP2, RUNX2, BMP7, VDR, CaSR and TRPM7. Indoxyl sulphate treatment was associated with decrease in TRPM7 and DKK1, but increase in RUNX2, BMP2 and VDR were noted. There were no significant alterations in BMP7, CaSR, klotho,1-alpha hydroxylase and sclerostin. Co-treatment with 2-APB reversed the increase in VDR. SIGNIFICANCE Both phosphate and indoxyl sulphate induced calcification in VSMC but it was more prominent in phosphate. TRPM7 was upregulated by phosphate but downregulated in indoxyl sulphate treatment. Vascular calcification was reduced by blocking TRPM7 with 2-APB and there was partial anti-calcification effect in indoxyl sulphate.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Hung Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Foong-Fah Leung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
17
|
P-Cresylsulfate, the Protein-Bound Uremic Toxin, Increased Endothelial Permeability Partly Mediated by Src-Induced Phosphorylation of VE-Cadherin. Toxins (Basel) 2020; 12:toxins12020062. [PMID: 31973024 PMCID: PMC7076797 DOI: 10.3390/toxins12020062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/19/2020] [Indexed: 12/23/2022] Open
Abstract
The goal of our study was to investigate the impact of p-cresylsulfate (PCS) on the barrier integrity in human umbilical vein endothelial cell (HUVEC) monolayers and the renal artery of chronic kidney disease (CKD) patients. We measured changes in the transendothelial electrical resistance (TEER) of HUVEC monolayers treated with PCS (0.1–0.2 mM) similar to serum levels of CKD patients. A PCS dose (0.2 mM) significantly decreased TEER over a 48-h period. Both PCS doses (0.1 and 0.2 mM) significantly decreased TEER over a 72-h period. Inter-endothelial gaps were observed in HUVECs following 48 h of PCS treatment by immunofluorescence microscopy. We also determined whether PCS induced the phosphorylation of VE-cadherin at tyrosine 658 (Y658) mediated by the phosphorylation of Src. Phosphorylated VE-cadherin (Y658) and phosphorylated Src levels were significantly higher when the cells were treated with 0.1 and 0.2 mM PCS, respectively, compared to the controls. The endothelial barrier dysfunction in the arterial intima in CKD patients was evaluated by endothelial leakage of immunoglobulin G (IgG). Increased endothelial leakage of IgG was related to the declining kidney function in CKD patients. Increased endothelial permeability induced by uremic toxins, including PCS, suggests that uremic toxins induce endothelial barrier dysfunction in CKD patients and Src-mediated phosphorylation of VE-cadherin is involved in increased endothelial permeability induced by PCS exposure.
Collapse
|
18
|
Zhang D, Yao L, Yu S, Cheng Y, Jiang J, Ma Q, Yan Z. Safety and efficacy of en bloc transurethral resection versus conventional transurethral resection for primary nonmuscle-invasive bladder cancer: a meta-analysis. World J Surg Oncol 2020; 18:4. [PMID: 31901243 PMCID: PMC6942380 DOI: 10.1186/s12957-019-1776-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023] Open
Abstract
Background The purpose of this meta-analysis is to compare the safety and efficacy of en bloc transurethral resection of bladder tumor (EBRT) versus conventional transurethral resection of bladder tumor (CTURBT). Methods We performed a meta-analysis of relevant articles through November 2019 using PubMed, Embase, and Cochrane Central Register to compare the safety and efficacy of EBRT versus CTURBT. The main endpoint included the operation time (OT), hospitalization time (HT), catheterization time (AT), perioperative period complications, bladder detrusor muscle found in the specimen, the residual tumor on the base, the ratio of the same site recurrence, and 12/24/36-month recurrence rate. Cochrane Collaboration’s Revman software, version 5.3, was used for statistical analysis. Results A total of 19 studies with 2651 patients were included, 1369 underwent EBRT and 1282 underwent CTURBT. Patients treated with EBRT had a significantly lower AT, HT, obturator nerve reflex, bladder perforation, bladder irritation, postoperative complications, and 24-month recurrence rate than those who underwent CTURBT. While no significant difference was found in terms of OT, the ratio of bladder detrusor muscle found in the specimen, the residual tumor on the base, 12-month recurrence rate, 36-month recurrence rate, and the ratio of the same site recurrence. In mitomycin subgroup, EBRT was superior to CTURBT in terms of 12/24-month recurrence rate. Similarly, in the prospective subgroup and retrospective subgroup, EBRT had a lower 24-month recurrence rate than CTURBT. However, no significant difference was found in the low, intermediate, and high-risk group in the light of 12–36-month recurrence rate. Conclusions Based on the included 19 articles, EBRT had a significantly lower AT, HT, intraoperative and postoperative complications, and 24-month recurrence rate than those treated with CTURBT. Well-designed randomized controlled trials were needed to reevaluate these outcomes. Trial registration This meta-analysis was reported in agreement with the PRISMA statement and was registered on PROSPERO 2019 CRD42019121673.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Urology & Nephrology, Ningbo First Hospital, The affiliated Hospital of Zhejiang University, 59, Liuting Street, Ningbo, Zhejiang, China
| | - Lifeng Yao
- Department of Urology & Nephrology, Ningbo First Hospital, The affiliated Hospital of Zhejiang University, 59, Liuting Street, Ningbo, Zhejiang, China
| | - Sui Yu
- Department of Urology, Medical School of Ningbo University, Zhejiang, China
| | - Yue Cheng
- Department of Urology & Nephrology, Ningbo First Hospital, The affiliated Hospital of Zhejiang University, 59, Liuting Street, Ningbo, Zhejiang, China
| | - Junhui Jiang
- Department of Urology & Nephrology, Ningbo First Hospital, The affiliated Hospital of Zhejiang University, 59, Liuting Street, Ningbo, Zhejiang, China
| | - Qi Ma
- Department of Urology & Nephrology, Ningbo First Hospital, The affiliated Hospital of Zhejiang University, 59, Liuting Street, Ningbo, Zhejiang, China
| | - Zejun Yan
- Department of Urology & Nephrology, Ningbo First Hospital, The affiliated Hospital of Zhejiang University, 59, Liuting Street, Ningbo, Zhejiang, China.
| |
Collapse
|
19
|
Menez S, Hanouneh M, Shafi T, Jaar BG. Indoxyl sulfate is associated with mortality after AKI - more evidence needed! BMC Nephrol 2019; 20:280. [PMID: 31345164 PMCID: PMC6659241 DOI: 10.1186/s12882-019-1465-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Patients who develop acute kidney injury (AKI) have significantly higher short-term outcomes including in-hospital mortality. The development of AKI has been associated with long-term consequences including progression to chronic kidney disease (CKD) and higher rates of cardiovascular disease (CVD) and mortality. In recent years there has been a growing push for the discovery of novel methods to diagnose AKI at earlier stages, and for an improvement in risk stratification and prognosis following AKI.Wang and colleagues assessed the association of total serum indoxyl sulfate (IS) levels, a protein bound uremic toxin, with 90-day mortality after hospital-acquired AKI (HA-AKI). These authors found that serum IS levels were significantly elevated in patients with HA-AKI (2.74 ± 0.75 μg/mL) compared to healthy subjects (1.73 ± 0.11 μg/ml, P < 0.001) and critically ill patients (2.46 ± 0.35 μg/ml, P = 0.016).The mechanisms of this relationship remain unclear, with a limited understanding of cause-specific mortality associated with either the high or low-IS group. One limitation of this current study is an understanding of the acceptable or expected higher level in IS during episodes of AKI. IS levels remained persistently elevated at day 7 compared to β2-microglobulin and serum creatinine which were both lower at 7 days. It is unclear, however, if levels of β2-microglobulin and serum creatinine were lower for other reasons, such as if any patients with AKI required dialysis.This work provides an important addition to the field of AKI research, specifically in the evaluation of readily measurable biomarkers and outcomes after AKI. Moving forward, further validation in studies of acute kidney injury are needed to develop a better understanding of IS levels at the time of AKI diagnosis and trends during the course of AKI.
Collapse
Affiliation(s)
- Steven Menez
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21287, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, 2024 E. Monument Street, Baltimore, MD, 21205, USA
| | - Mohamad Hanouneh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21287, USA.,Nephrology Center of Maryland, 5601 Loch Raven Boulevard, Suite 3 North, Baltimore, MD, 21239, USA
| | - Tariq Shafi
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21287, USA.,Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bernard G Jaar
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, MD, 21287, USA. .,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA. .,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, 2024 E. Monument Street, Baltimore, MD, 21205, USA. .,Nephrology Center of Maryland, 5601 Loch Raven Boulevard, Suite 3 North, Baltimore, MD, 21239, USA.
| |
Collapse
|
20
|
The uremic toxin p-cresyl sulfate induces proliferation and migration of clear cell renal cell carcinoma via microRNA-21/ HIF-1α axis signals. Sci Rep 2019; 9:3207. [PMID: 30824757 PMCID: PMC6397167 DOI: 10.1038/s41598-019-39646-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
p-Cresyl sulfate (pCS), a uremic toxin, can cause renal damage and dysfunction. Studies suggest that renal dysfunction increases the prevalence of renal cancer. However, the effect of pCS on the proliferation and migration of renal cancer is unclear. Clear cell renal cell carcinoma (ccRCC) expresses mutant von Hippel-Lindau gene and is difficult to treat. Hypoxia-inducible factor-1α and 2-α (HIF-1α and HIF-2α) as well as microRNA-21 (miR-21) can regulate the proliferation and migration of ccRCC cells. However, the association between HIF-α and miR-21 in ccRCC remains unclear. Therefore, the effects of pCS on ccRCC cells were investigated for HIF-α and miR-21 signals. Our results showed that pCS induced overexpression of HIF-1α and promoted the proliferation and regulated epithelial-mesenchymal transition-related proteins, including E-cadherin, fibronectin, twist and vimentin in ccRCC cells. pCS treatment increased miR-21 expression. Specifically, inhibition of miR-21 blocked pCS-induced proliferation and migration. Taken together, the present results demonstrate that pCS directly induced the proliferation and migration of ccRCC cells through mechanisms involving miR-21/HIF-1α signaling pathways.
Collapse
|
21
|
Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins (Basel) 2018; 10:E287. [PMID: 29997362 PMCID: PMC6071268 DOI: 10.3390/toxins10070287] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major cause of high morbidity and mortality in patients with chronic kidney disease (CKD). Numerous CVD risk factors in CKD patients have been described, but these do not fully explain the high pervasiveness of CVD or increased mortality rates in CKD patients. In CKD the loss of urinary excretory function results in the retention of various substances referred to as "uremic retention solutes". Many of these molecules have been found to exert toxicity on virtually all organ systems of the human body, leading to the clinical syndrome of uremia. In recent years, an increasing body of evidence has been accumulated that suggests that uremic toxins may contribute to an increased cardiovascular disease (CVD) burden associated with CKD. This review examined the evidence from several clinical and experimental studies showing an association between uremic toxins and CVD. Special emphasis is addressed on emerging data linking gut microbiota with the production of uremic toxins and the development of CKD and CVD. The biological toxicity of some uremic toxins on the myocardium and the vasculature and their possible contribution to cardiovascular injury in uremia are also discussed. Finally, various therapeutic interventions that have been applied to effectively reduce uremic toxins in patients with CKD, including dietary modifications, use of prebiotics and/or probiotics, an oral intestinal sorbent that adsorbs uremic toxins and precursors, and innovative dialysis therapies targeting the protein-bound uremic toxins are also highlighted. Future studies are needed to determine whether these novel therapies to reduce or remove uremic toxins will reduce CVD and related cardiovascular events in the long-term in patients with chronic renal failure.
Collapse
Affiliation(s)
- Manuel T Velasquez
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| | - Patricia Centron
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| | - Ian Barrows
- Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Rama Dwivedi
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
- United States Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
22
|
Tang WH, Wang CP, Yu TH, Tai PY, Liang SS, Hung WC, Wu CC, Huang SH, Lee YJ, Chen SC. Protein-bounded uremic toxin p-cresylsulfate induces vascular permeability alternations. Histochem Cell Biol 2018; 149:607-617. [PMID: 29589110 DOI: 10.1007/s00418-018-1662-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
The goal of the present studies is to investigate that the impact of p-cresylsulfate (PCS) on the endothelial barrier integrity via in situ exposure and systemic exposure. Vascular permeability changes induced by local injection of PCS were evaluated by the techniques of both Evans blue (EB) and India ink tracer. Rats were intravenously injected with EB or India ink followed by intradermal injections of various doses of PCS (0, 0.4, 2, 10 and 50 µmol/site) on rat back skins. At different time points, skin EB was extracted and quantified. The administration of India ink was used to demonstrate leaky microvessels. Skin PCS levels were also determined by liquid chromatography-mass spectrometry. We also investigated whether the increased endothelial leakage occurred in the aortic endothelium in rats treated with 5/6 nephrectomy and intraperitoneal injection of PCS 50 mg/kg/day for 4 weeks. The aortic endothelial integrity was evaluated by increased immunoglobulin G (IgG) leakage. High doses of PCS, but not lower doses, significantly induced vascular leakage as compared to saline injection and EB leakage exhibited in time-dependent manner. A time-correlated increase in leaky microvessels was detected in the tissues examined. The injected PCS declined with time and displayed an inverse relationship with vascular leakage. Chronic kidney disease (CKD) rats administered with PCS, compared to control rats, had significantly higher serum levels of PCS and apparent IgG deposition in the aortic intima. Increased endothelial leakage induced by PCS in skin microvessels and the aorta of CKD rats suggests that the PCS-induced endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Pei-Yang Tai
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chin Hung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Sung-Hao Huang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | | | - Shih-Chieh Chen
- Department of Anatomy, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. p-Cresyl Sulfate. Toxins (Basel) 2017; 9:toxins9020052. [PMID: 28146081 PMCID: PMC5331431 DOI: 10.3390/toxins9020052] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden.
Collapse
Affiliation(s)
- Tessa Gryp
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, 9000 Ghent, Belgium.
- Laboratory for Bacteriology Research, Department of Clinical Chemistry, Microbiology & Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Raymond Vanholder
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Mario Vaneechoutte
- Laboratory for Bacteriology Research, Department of Clinical Chemistry, Microbiology & Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Leong SC, Sirich TL. Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. Toxins (Basel) 2016; 8:toxins8120358. [PMID: 27916890 PMCID: PMC5198552 DOI: 10.3390/toxins8120358] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/12/2023] Open
Abstract
Indoxyl sulfate is an extensively studied uremic solute. It is a small molecule that is more than 90% bound to plasma proteins. Indoxyl sulfate is derived from the breakdown of tryptophan by colon microbes. The kidneys achieve high clearances of indoxyl sulfate by tubular secretion, a function not replicated by hemodialysis. Clearance by hemodialysis is limited by protein binding since only the free, unbound solute can diffuse across the membrane. Since the dialytic clearance is much lower than the kidney clearance, indoxyl sulfate accumulates to relatively high plasma levels in hemodialysis patients. Indoxyl sulfate has been most frequently implicated as a contributor to renal disease progression and vascular disease. Studies have suggested that indoxyl sulfate also has adverse effects on bones and the central nervous system. The majority of studies have assessed toxicity in cultured cells and animal models. The toxicity in humans has not yet been proven, as most data have been from association studies. Such toxicity data, albeit inconclusive, have prompted efforts to lower the plasma levels of indoxyl sulfate through dialytic and non-dialytic means. The largest randomized trial showed no benefit in renal disease progression with AST-120. No trials have yet tested cardiovascular or mortality benefit. Without such trials, the toxicity of indoxyl sulfate cannot be firmly established.
Collapse
Affiliation(s)
- Sheldon C Leong
- The Departments of Medicine, VA Palo Alto HCS and Stanford University, Nephrology 111R, Palo Alto VAHCS, 3801 Miranda Ave., Palo Alto, CA 94304, USA.
| | - Tammy L Sirich
- The Departments of Medicine, VA Palo Alto HCS and Stanford University, Nephrology 111R, Palo Alto VAHCS, 3801 Miranda Ave., Palo Alto, CA 94304, USA.
| |
Collapse
|
25
|
Karu N, McKercher C, Nichols DS, Davies N, Shellie RA, Hilder EF, Jose MD. Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning: Tasmanian Chronic Kidney Disease pilot study. BMC Nephrol 2016; 17:171. [PMID: 27832762 PMCID: PMC5103367 DOI: 10.1186/s12882-016-0387-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2016] [Indexed: 12/25/2022] Open
Abstract
Background Adults with chronic kidney disease (CKD) exhibit alterations in tryptophan metabolism, mainly via the kynurenine pathway, due to higher enzymatic activity induced mainly by inflammation. Indoles produced by gut-microflora are another group of tryptophan metabolites related to inflammation and conditions accompanying CKD. Disruptions in tryptophan metabolism have been associated with various neurological and psychological disorders. A high proportion of CKD patients self-report symptoms of depression and/or anxiety and decline in cognitive functioning. This pilot study examines tryptophan metabolism in CKD and explores associations with psychological and cognitive functioning. Methods Twenty-seven adults with CKD were part of 49 patients recruited to participate in a prospective pilot study, initially with an eGFR of 15–29 mL/min/1.73 m2. Only participants with viable blood samples and complete psychological/cognitive data at a 2-year follow-up were included in the reported cross-sectional study. Serum samples were analysed by Liquid Chromatography coupled to Mass Spectrometry, for tryptophan, ten of its metabolites, the inflammation marker neopterin and the hypothalamic–pituitary–adrenal (HPA) axis marker cortisol. Results The tryptophan breakdown index (kynurenine / tryptophan) correlated with neopterin (Pearson R = 0.51 P = 0.006) but not with cortisol. Neopterin levels also correlated with indoxyl sulfate (R = 0.68, P < 0.0001) and 5 metabolites of tryptophan (R range 0.5–0.7, all P ≤ 0.01), which were all negatively related to eGFR (P < 0.05). Higher levels of kynurenic acid were associated with lower cognitive functioning (Spearman R = −0.39, P < 0.05), while indole-3 acetic acid (IAA) was correlated with anxiety and depression (R = 0.52 and P = 0.005, R = 0.39 and P < 0.05, respectively). Conclusions The results of this preliminary study suggest the involvement of inflammation in tryptophan breakdown via the kynurenine pathway, yet without sparing tryptophan metabolism through the 5-HT (serotonin) pathway in CKD patients. The multiple moderate associations between indole-3 acetic acid and psychological measures were a novel finding. The presented pilot data necessitate further exploration of these associations within a large prospective cohort to assess the broader significance of these findings. Electronic supplementary material The online version of this article (doi:10.1186/s12882-016-0387-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naama Karu
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia. .,Present address: The Metabolomics Innovation Centre (TMIC), Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Charlotte McKercher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Noel Davies
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert A Shellie
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Present address: Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria, 3134, Australia
| | - Emily F Hilder
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Present address: Future Industries Institute, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Matthew D Jose
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia.,Renal unit, Royal Hobart Hospital, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Karbowska M, Kaminski T, Pawlak D. Methods of reducing the level of indoxyl sulfate – one of the most potent protein-bound uremic toxins. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1222442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Ryu JH, Yu M, Lee S, Ryu DR, Kim SJ, Kang DH, Choi KB. AST-120 Improves Microvascular Endothelial Dysfunction in End-Stage Renal Disease Patients Receiving Hemodialysis. Yonsei Med J 2016; 57:942-9. [PMID: 27189289 PMCID: PMC4951472 DOI: 10.3349/ymj.2016.57.4.942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/19/2015] [Accepted: 09/30/2015] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Endothelial dysfunction (ED) is a pivotal phenomenon in the development of cardiovascular disease (CVD) in patients receiving hemodialysis (HD). Indoxyl sulfate (IS) is a known uremic toxin that induces ED in patients with chronic kidney disease. The aim of this study was to investigate whether AST-120, an absorbent of IS, improves microvascular or macrovascular ED in HD patients. MATERIALS AND METHODS We conducted a prospective, case-controlled trial. Fourteen patients each were enrolled in respective AST-120 and control groups. The subjects in the AST-120 group were treated with AST-120 (6 g/day) for 6 months. Microvascular function was assessed by laser Doppler flowmetry using iontophoresis of acetylcholine (Ach) and sodium nitroprusside (SNP) at baseline and again at 3 and 6 months. Carotid arterial intima-media thickness (cIMT) and flow-mediated vasodilation were measured at baseline and 6 months. The Wilcoxon rank test was used to compare values before and after AST-120 treatment. RESULTS Ach-induced iontophoresis (endothelium-dependent response) was dramatically ameliorated at 3 months and 6 months in the AST-120 group. SNP-induced response showed delayed improvement only at 6 months in the AST-120 group. The IS level was decreased at 3 months in the AST-120 group, but remained stable thereafter. cIMT was significantly reduced after AST-120 treatment. No significant complications in patients taking AST-120 were reported. CONCLUSION AST-120 ameliorated microvascular ED and cIMT in HD patients. A randomized study including a larger population will be required to establish a definitive role of AST-120 as a preventive medication for CVD in HD patients.
Collapse
Affiliation(s)
- Jung Hwa Ryu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Mina Yu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Sihna Lee
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Dong Ryeol Ryu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Seung Jung Kim
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Duk Hee Kang
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyu Bok Choi
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
28
|
Camacho O, Rosales MC, Shafi T, Fullman J, Plummer NS, Meyer TW, Sirich TL. Effect of a sustained difference in hemodialytic clearance on the plasma levels of p-cresol sulfate and indoxyl sulfate. Nephrol Dial Transplant 2016; 31:1335-41. [PMID: 27190347 DOI: 10.1093/ndt/gfw100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/06/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The protein-bound solutes p-cresol sulfate (PCS) and indoxyl sulfate (IS) accumulate to high plasma levels in renal failure and have been associated with adverse events. The clearance of these bound solutes can be altered independently of the urea clearance by changing the dialysate flow and dialyzer size. This study tested whether a sustained difference in clearance would change the plasma levels of PCS and IS. METHODS Fourteen patients on thrice-weekly nocturnal hemodialysis completed a crossover study of two periods designed to achieve widely different bound solute clearances. We compared the changes in pre-dialysis plasma PCS and IS levels from baseline over the course of the two periods. RESULTS The high-clearance period provided much higher PCS and IS clearances than the low-clearance period (PCS: 23 ± 4 mL/min versus 12 ± 3 mL/min, P < 0.001; IS: 30 ± 5 mL/min versus 17 ± 4 mL/min, P < 0.001). Despite the large difference in clearance, the high-clearance period did not have a different effect on PCS levels than the low-clearance period [from baseline, high: +11% (-5, +37) versus low: -8% (-18, +32), (median, 25th, 75th percentile), P = 0.50]. In contrast, the high-clearance period significantly lowered IS levels compared with the low-clearance period [from baseline, high: -4% (-17, +1) versus low: +22% (+14, +31), P < 0.001). The amount of PCS removed in the dialysate was significantly greater at the end of the high-clearance period [269 (206, 312) versus 199 (111, 232) mg per treatment, P < 0.001], while the amount of IS removed was not different [140 (87, 196) versus 116 (89, 170) mg per treatment, P = 0.15]. CONCLUSIONS These findings suggest that an increase in PCS generation prevents plasma levels from falling when the dialytic clearance is increased. Suppression of solute generation may be required to reduce plasma PCS levels in dialysis patients.
Collapse
Affiliation(s)
- Orlando Camacho
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Maria Carmela Rosales
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Tariq Shafi
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan Fullman
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Natalie S Plummer
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Timothy W Meyer
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Tammy L Sirich
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| |
Collapse
|
29
|
Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med 2016; 8:46. [PMID: 27102537 PMCID: PMC4840492 DOI: 10.1186/s13073-016-0296-x] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry- and nuclear magnetic resonance-based metabolomic studies comparing diseased versus healthy individuals have shown that microbial metabolites are often the compounds most markedly altered in the disease state. Recent studies suggest that several of these metabolites that derive from microbial transformation of dietary components have significant effects on physiological processes such as gut and immune homeostasis, energy metabolism, vascular function, and neurological behavior. Here, we review several of the most intriguing diet-dependent metabolites that may impact host physiology and may therefore be appropriate targets for therapeutic interventions, such as short-chain fatty acids, trimethylamine N-oxide, tryptophan and tyrosine derivatives, and oxidized fatty acids. Such interventions will require modulating either bacterial species or the bacterial biosynthetic enzymes required to produce these metabolites, so we briefly describe the current understanding of the bacterial and enzymatic pathways involved in their biosynthesis and summarize their molecular mechanisms of action. We then discuss in more detail the impact of these metabolites on health and disease, and review current strategies to modulate levels of these metabolites to promote human health. We also suggest future studies that are needed to realize the full therapeutic potential of targeting the gut microbiota.
Collapse
Affiliation(s)
- Linda S Zhang
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sean S Davies
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
30
|
Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, van Heerebeek L, Hillege HL, Lam CSP, Navis G, Voors AA. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 2016; 18:588-98. [PMID: 26861140 DOI: 10.1002/ejhf.497] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/09/2016] [Accepted: 01/12/2015] [Indexed: 12/17/2022] Open
Abstract
Renal dysfunction in heart failure with preserved ejection fraction (HFpEF) is common and is associated with increased mortality. Impaired renal function is also a risk factor for developing HFpEF. A new paradigm for HFpEF, proposing a sequence of events leading to myocardial remodelling and dysfunction in HFpEF, was recently introduced, involving inflammatory, microvascular, and cardiac components. The kidney might play a key role in this systemic process. Renal impairment causes metabolic and systemic derangements in circulating factors, causing an activated systemic inflammatory state and endothelial dysfunction, which may lead to cardiomyocyte stiffening, hypertrophy, and interstitial fibrosis via cross-talk between the endothelium and cardiomyocyte compartments. Here, we review the role of endothelial dysfunction and inflammation to explain the link between renal dysfunction and HFpEF, which allows for identification of new early risk markers, prognostic factors, and unique targets for intervention.
Collapse
Affiliation(s)
- Jozine M Ter Maaten
- University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Kevin Damman
- University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne C Verhaar
- University Medical Center Utrecht, Department of Nephrology and Hypertension, Utrecht, The Netherlands
| | - Walter J Paulus
- Department of Physiology, Cardiology, Pathology, and Surgery, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Dirk J Duncker
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Caroline Cheng
- University Medical Center Utrecht, Department of Nephrology and Hypertension, Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Loek van Heerebeek
- Department of Physiology, Cardiology, Pathology, and Surgery, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans L Hillege
- University of Groningen, Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolyn S P Lam
- National Heart Centre Singapore and, Duke-National University of Singapore Graduate School Medicine, Singapore
| | - Gerjan Navis
- University of Groningen, Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Long-term effects of AST-120 on the progression and prognosis of pre-dialysis chronic kidney disease: a 5-year retrospective study. Heart Vessels 2015; 31:1625-32. [DOI: 10.1007/s00380-015-0785-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
|
32
|
Abstract
BACKGROUND Colon microbes produce a large number of organic compounds that are foreign to mammalian cell metabolism. SUMMARY Some of the compounds made by microbes are absorbed in the colon and then normally excreted by the kidneys. Accumulation of these compounds in the plasma as uremic solutes may contribute to illness in patients whose kidneys have failed. Mass spectrometry is expanding our knowledge of the chemical identity of the colon-derived uremic solutes, and DNA sequencing technologies are providing new knowledge of the microbes and metabolic pathways by which they are made. Because they are made in an isolated compartment by microbes, their production may prove simpler to suppress than the production of other uremic solutes. KEY MESSAGES To the extent that they are toxic, suppressing their production could improve the health of renal failure patients without the need for more intensive or prolonged dialysis.
Collapse
Affiliation(s)
- Hisae Tanaka
- Health Evaluation and Promotion Center, Tokai University Hospital, Isehara, Kanagawa, Japan
| | | | | |
Collapse
|
33
|
Yamamoto S, Kazama JJ, Omori K, Matsuo K, Takahashi Y, Kawamura K, Matsuto T, Watanabe H, Maruyama T, Narita I. Continuous Reduction of Protein-Bound Uraemic Toxins with Improved Oxidative Stress by Using the Oral Charcoal Adsorbent AST-120 in Haemodialysis Patients. Sci Rep 2015; 5:14381. [PMID: 26395517 PMCID: PMC4585768 DOI: 10.1038/srep14381] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
Accumulation of protein-bound uraemic toxins (PBUTs) is one of the reasons for the development of uraemia-related complications including cardiovascular disease; however, conventional haemodialysis is limited in its ability to remove PBUTs. We aimed to examine whether the oral charcoal adsorbent AST-120 has an additive effect on PBUT removal in haemodialysis patients. During the 4-week study, anuric patients undergoing haemodialysis received AST-120 (6 g/day) in the last 2 weeks (n = 10) or the first 2 weeks (n = 10). Serum levels of total and free PBUTs such as indoxyl sulfate, p-cresyl sulfate, and phenyl sulfate at the pre- and postdialysis sessions were measured before and after AST-120 use and after discontinuation. Levels of the oxidative stress markers oxidized albumin and 8-isoprostane were also measured. AST-120 use induced dramatic reduction of indoxyl sulfate (total, 45.7% [33.2–50.5%]; free, 70.4% [44.8–79.8%]), p-cresyl sulfate (total, 31.1% [25.0–48.0%]; free, 63.5% [49.3–70.9%]), and phenyl sulfate (free, 50.6% [32.3–71.2%]) levels; however, this effect disappeared after the discontinuation of AST-120. AST-120 use also induced substantial reduction of the oxidized albumin and 8-isoprostane levels. In conclusion, oral administration of AST-120 had additive effects on the continuous reduction of some PBUTs in anuric patients undergoing haemodialysis.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Junichiro J Kazama
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.,Division of Blood Purification Therapy, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan
| | | | - Koji Matsuo
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yoshimitsu Takahashi
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kazuko Kawamura
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Takayuki Matsuto
- Division of Clinical Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
34
|
Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol 2015; 7:443-459. [PMID: 25848469 PMCID: PMC4381168 DOI: 10.4254/wjh.v7.i3.443] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/08/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases.
Collapse
|
35
|
Abstract
Chronic kidney disease (CKD) is characterized by retention of a number of toxins, which unleash cellular damage. CKD environment with these toxins and a host of metabolic abnormalities (collectively termed as uremic milieu) is highly thrombogenic. CKD represents a strong and independent risk factor for both spontaneous venous and arterial (postvascular injury) thrombosis. Emerging evidence points to a previously unrecognized role of some of the prothrombotic uremic toxins. Here, we provide an overview of thrombosis in CKD and an update on indolic uremic toxins, which robustly increase tissue factor, a potent procoagulant, in several vascular cell types enhancing thrombosis. This panel of uremic toxins, which we term "thrombolome" (thrombosis and metabolome), represents a novel risk factor for thrombosis and can be further explored as biomarker for postvascular interventional thrombosis in patients with CKD.
Collapse
Affiliation(s)
- Shashar Moshe
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jean Francis
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
36
|
Adelibieke Y, Yisireyili M, Ng HY, Saito S, Nishijima F, Niwa T. Indoxyl sulfate induces IL-6 expression in vascular endothelial and smooth muscle cells through OAT3-mediated uptake and activation of AhR/NF-κB pathway. Nephron Clin Pract 2014; 128:1-8. [PMID: 25376195 DOI: 10.1159/000365217] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Interleukin-6 (IL-6) is one of the inflammation biomarkers with highest predictive value for outcome in chronic kidney disease (CKD) patients. The present study aimed to determine the effects of indoxyl sulfate (IS) on IL-6 expression in vascular cells. METHODS IS was administered to normo- and hypertensive rats. Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were incubated with or without IS. RESULTS Immunohistochemistry revealed that IS-administered rats showed increased expression of IL-6 in the aortic tissues. IS increased IL-6 expression in HUVECs and HASMCs in a time- and dose-dependent manner. Knockdown of organic anion transporter 3 (OAT3) using small interfering RNA (siRNA) inhibited IS-induced expression of IL-6 in HUVECs and HASMCs. IS induced activation of aryl hydrocarbon receptor (AhR) and nuclear factor-κB (NF-κB) subunit p65 in HUVECs and HASMCs. Both AhR siRNA and p65 siRNA inhibited IS-induced expression of IL-6. AhR siRNA inhibited IS-induced phosphorylation and nuclear translocation of p65 without change in total p65 level. However, p65 siRNA did not inhibit IS-induced nuclear translocation of AhR. Thus, AhR is responsible for IS-induced p65 signaling transduction. CONCLUSION IS induces IL-6 expression in vascular endothelial and smooth muscle cells through OAT3/AhR/NF-κB pathway.
Collapse
Affiliation(s)
- Yelixiati Adelibieke
- Department of Advanced Medicine for Uremia, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Tang WHW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2014; 116:448-55. [PMID: 25599331 DOI: 10.1161/circresaha.116.305360] [Citation(s) in RCA: 851] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Trimethylamine-N-oxide (TMAO), a gut microbial-dependent metabolite of dietary choline, phosphatidylcholine (lecithin), and l-carnitine, is elevated in chronic kidney diseases (CKD) and associated with coronary artery disease pathogenesis. OBJECTIVE To both investigate the clinical prognostic value of TMAO in subjects with versus without CKD, and test the hypothesis that TMAO plays a direct contributory role in the development and progression of renal dysfunction. METHODS AND RESULTS We first examined the relationship between fasting plasma TMAO and all-cause mortality over 5-year follow-up in 521 stable subjects with CKD (estimated glomerular filtration rate, <60 mL/min per 1.73 m(2)). Median TMAO level among CKD subjects was 7.9 μmol/L (interquartile range, 5.2-12.4 μmol/L), which was markedly higher (P<0.001) than in non-CKD subjects (n=3166). Within CKD subjects, higher (fourth versus first quartile) plasma TMAO level was associated with a 2.8-fold increased mortality risk. After adjustments for traditional risk factors, high-sensitivity C-reactive protein, estimated glomerular filtration rate, elevated TMAO levels remained predictive of 5-year mortality risk (hazard ratio, 1.93; 95% confidence interval, 1.13-3.29; P<0.05). TMAO provided significant incremental prognostic value (net reclassification index, 17.26%; P<0.001 and differences in area under receiver operator characteristic curve, 63.26% versus 65.95%; P=0.036). Among non-CKD subjects, elevated TMAO levels portend poorer prognosis within cohorts of high and low cystatin C. In animal models, elevated dietary choline or TMAO directly led to progressive renal tubulointerstitial fibrosis and dysfunction. CONCLUSIONS Plasma TMAO levels are both elevated in patients with CKD and portend poorer long-term survival. Chronic dietary exposures that increase TMAO directly contributes to progressive renal fibrosis and dysfunction in animal models.
Collapse
Affiliation(s)
- W H Wilson Tang
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.).
| | - Zeneng Wang
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.)
| | - David J Kennedy
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.)
| | - Yuping Wu
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.)
| | - Jennifer A Buffa
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.)
| | - Brendan Agatisa-Boyle
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.)
| | - Xinmin S Li
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.)
| | - Bruce S Levison
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.)
| | - Stanley L Hazen
- From the Department for Cellular and Molecular Medicine, Lerner Research Institute (W.H.W.T., Z.W., D.J.K., J.A.B., B.A.-B., X.S.L., B.S.L., S.L.H.); Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, OH (W.H.W.T., S.L.H.); and Department of Mathematics, Cleveland State University, OH (Y.W.).
| |
Collapse
|