1
|
Ubels JL, Lin CM, Antonetti DA, Diaz-Coranguez M, Diegel CR, Williams BO. Structure and function of the retina of low-density lipoprotein receptor-related protein 5 (Lrp5)-deficient rats. Exp Eye Res 2022; 217:108977. [PMID: 35139333 PMCID: PMC9295635 DOI: 10.1016/j.exer.2022.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 11/21/2022]
Abstract
Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), result in familial exudative vitreoretinopathy (FEVR), osteoporosis-pseudoglioma syndrome (OPPG), and Norrie disease. CRISPR/Cas9 gene editing was used to produce rat strains deficient in Lrp5. The purpose of this study was to validate this rat model for studies of hypovascular, exudative retinopathies. The retinal vasculature of wildtype and Lrp5 knockout rats was stained with Giffonia simplifolia isolectin B4 and imaged by fluorescence microscopy. Effects on retinal structure were investigated by histology. The integrity of the blood-retina barrier was analyzed by measurement of permeability to Evans blue dye and staining for claudin-5. Retinas were imaged by fundus photography and SD-OCT, and electroretinograms were recorded. Lrp5 gene deletion led to sparse superficial retinal capillaries and loss of the deep and intermediate plexuses. Autofluorescent exudates were observed and are correlated with increased Evans blue permeability and absence of claudin-5 expression in superficial vessels. OCT images show pathology similar to OCT of humans with FEVR, and retinal thickness is reduced by 50% compared to wild-type rats. Histology and OCT reveal that photoreceptor and outer plexiform layers are absent. The retina failed to demonstrate an ERG response. CRISPR/Cas9 gene-editing produced a predictable rat Lrp5 knockout model with extensive defects in the retinal vascular and neural structure and function. This rat model should be useful for studies of exudative retinal vascular diseases involving the Wnt and norrin pathways.
Collapse
Affiliation(s)
- John L Ubels
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA; Department of Biology, Calvin University, 3201 Burton St., SE, Grand Rapids, MI, 49546, USA.
| | - Cheng-Mao Lin
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - David A Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Monica Diaz-Coranguez
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Cassandra R Diegel
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
2
|
Thulasiram MR, Ogier JM, Dabdoub A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front Cell Dev Biol 2022; 10:841708. [PMID: 35309932 PMCID: PMC8931286 DOI: 10.3389/fcell.2022.841708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The stria vascularis (SV) is a highly vascularized tissue lining the lateral wall of the cochlea. The SV maintains cochlear fluid homeostasis, generating the endocochlear potential that is required for sound transduction. In addition, the SV acts as an important blood-labyrinth barrier, tightly regulating the passage of molecules from the blood into the cochlea. A healthy SV is therefore vital for hearing function. Degeneration of the SV is a leading cause of age-related hearing loss, and has been associated with several hearing disorders, including Norrie disease, Meniere's disease, Alport syndrome, Waardenburg syndrome, and Cytomegalovirus-induced hearing loss. Despite the SV's important role in hearing, there is still much that remains to be discovered, including cell-specific function within the SV, mechanisms of SV degeneration, and potential protective or regenerative therapies. In this review, we discuss recent discoveries elucidating the molecular regulatory networks of SV function, mechanisms underlying degeneration of the SV, and otoprotective strategies for preventing drug-induced SV damage. We also highlight recent clinical developments for treating SV-related hearing loss and discuss future research trajectories in the field.
Collapse
Affiliation(s)
- Matsya R Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline M Ogier
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Lin M, Lu Y, Sui Y, Ni X, Li H, Chen X, Zhao N, Jiang M. A novel c.287G>T NDP missense mutation in a Chinese family with Norrie disease. Ophthalmic Genet 2020; 41:338-340. [PMID: 32393149 DOI: 10.1080/13816810.2020.1759106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Norrie disease is a rare X-linked recessive disorder in affected males. The typical features are congenital blindness, progressive hearing impairment, and, in some cases, some degree of mental retardation, microphthalmia, microcornea, growth failure, and seizures. Norrie disease is caused by mutations in the Norrie disease pseudoglioma gene (NDP), which encodes the Norrin protein that plays a crucial role in vascular development, neural cell differentiation, and proliferation in the retina and cerebellum. The aim of the present study was to identify the genetic cause of the disease and the phenotypic characteristics of the patients in an affected Chinese family. MATERIALS AND METHODS A Chinese family with Norrie disease was studied, and clinical phenotypes of the proband were observed. With informed consent from the patients' family, blood samples from family members were collected, genomic DNA was extracted, and Sanger sequencing was performed to identify the disease-causing mutation. RE sults: The c.287 G > T mutation of NDP was identified by Sanger sequencing and resulted in p.Cys96Phe. The pathogenicity prediction was performed by MutationTaster, Polyphen-2, SIFT, and PROVEAN, all of which suggested that the mutation is disease-causing and may be responsible for the phenotypes of Norrie disease. CONCLUSION The c.287 G > T of NDP is a novel mutation responsible for Norrie disease in a Chinese family.
Collapse
Affiliation(s)
- Meina Lin
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University , Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University , Shenyang, China
| | - Yu Sui
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University , Shenyang, China
| | - Xiang Ni
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University , Shenyang, China
| | - Huan Li
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University , Shenyang, China
| | - Xinren Chen
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University , Shenyang, China
| | - Ning Zhao
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University , Shenyang, China
| | - Miao Jiang
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning, The Affiliated Reproductive Hospital of China Medical University , Shenyang, China
| |
Collapse
|
4
|
Díaz-Coránguez M, Lin CM, Liebner S, Antonetti DA. Norrin restores blood-retinal barrier properties after vascular endothelial growth factor-induced permeability. J Biol Chem 2020; 295:4647-4660. [PMID: 32086377 DOI: 10.1074/jbc.ra119.011273] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) contributes to blood-retinal barrier (BRB) dysfunction in several blinding eye diseases, including diabetic retinopathy. Signaling via the secreted protein norrin through the frizzled class receptor 4 (FZD4)/LDL receptor-related protein 5-6 (LRP5-6)/tetraspanin 12 (TSPAN12) receptor complex is required for developmental vascularization and BRB formation. Here, we tested the hypothesis that norrin restores BRB properties after VEGF-induced vascular permeability in diabetic rats or in animals intravitreally injected with cytokines. Intravitreal co-injection of norrin with VEGF completely ablated VEGF-induced BRB permeability to Evans Blue-albumin. Likewise, 5-month diabetic rats exhibited increased permeability of FITC-albumin, and a single norrin injection restored BRB properties. These results were corroborated in vitro, where co-stimulation of norrin with VEGF or stimulation of norrin after VEGF exposure restored barrier properties, indicated by electrical resistance or 70-kDa RITC-dextran permeability in primary endothelial cell culture. Interestingly, VEGF promoted norrin signaling by increasing the FZD4 co-receptor TSPAN12 at cell membranes in an MAPK/ERK kinase (MEK)/ERK-dependent manner. Norrin signaling through β-catenin was required for BRB restoration, but glycogen synthase kinase 3 α/β (GSK-3α/β) inhibition did not restore BRB properties. Moreover, levels of the tight junction protein claudin-5 were increased with norrin and VEGF or with VEGF alone, but both norrin and VEGF were required for enriched claudin-5 localization at the tight junction. These results suggest that VEGF simultaneously induces vascular permeability and promotes responsiveness to norrin. Norrin, in turn, restores tight junction complex organization and BRB properties in a β-catenin-dependent manner.
Collapse
Affiliation(s)
- Mónica Díaz-Coránguez
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, 60538 Frankfurt, Germany
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
5
|
Corvino V, Apisa P, Malesci R, Laria C, Auletta G, Franzé A. X-Linked Sensorineural Hearing Loss: A Literature Review. Curr Genomics 2018; 19:327-338. [PMID: 30065609 PMCID: PMC6030855 DOI: 10.2174/1389202919666171218163046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
Sensorineural hearing loss is a very diffuse pathology (about 1/1000 born) with several types of transmission. X-linked hearing loss accounts for approximately 1% - 2% of cases of non-syndromic forms, as well as for many syndromic forms. To date, six loci (DFNX1-6) and five genes (PRPS1 for DFNX1, POU3F4 for DFNX2, SMPX for DFNX4, AIFM1 for DFNX5 and COL4A6 for DFNX6) have been identified for X-linked non-syndromic hearing loss. For the syndromic forms, at least 15 genes have been identified, some of which are also implicated in non-syndromic forms. Moreover, some syndromic forms, presenting large chromosomal deletions, are associated with mental retardation too. This review presents an overview of the currently known genes related to X-linked hearing loss with the support of the most recent literature. It summarizes the genetics and clinical features of X-linked hearing loss to give information useful to realize a clear genetic counseling and an early diagnosis. It is important to get an early diagnosis of these diseases to decide the investigations to predict the evolution of the disease and the onset of any other future symptoms. This information will be clearly useful for choosing the best therapeutic strategy. In particular, regarding audiological aspects, this review highlights risks and benefits currently known in some cases for specific therapeutic intervention.
Collapse
Affiliation(s)
- Virginia Corvino
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Pasqualina Apisa
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Malesci
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Carla Laria
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Gennaro Auletta
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Annamaria Franzé
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
6
|
Genotype-Phenotype Characterization of Novel Variants in Six Italian Patients with Familial Exudative Vitreoretinopathy. J Ophthalmol 2017; 2017:3080245. [PMID: 28758032 PMCID: PMC5516747 DOI: 10.1155/2017/3080245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/04/2017] [Indexed: 12/26/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a complex disorder characterized by incomplete development of the retinal vasculature. Here, we report the results obtained on the spectrum of genetic variations and correlated phenotypes found in a cohort of Italian FEVR patients. Eight probands (age range 7–19 years) were assessed by genetic analysis and comprehensive age-appropriate ophthalmic examination. Genetic testing investigated the genes most widely associated in literature with FEVR: FZD4, LRP5, TSPAN12, and NDP. Clinical and genetic evaluations were extended to relatives of probands positive to genetic testing. Six out of eight probands (75%) showed a genetic variation probably related to the phenotype. We identified four novel genetic variants, one variant already described in association with Norrie disease and one previously described linked to autosomal dominant FEVR. Pedigree analysis of patients led to the classification of four autosomal dominant cases of FEVR (caused by FZD4 and TSPAN12 variants) and two X-linked FEVR probands (NDP variants). None of the patients showed variants in the LRP5 gene. This study represents the largest cohort study in Italian FEVR patients. Our findings are in agreement with the previous literature confirming that FEVR is a clinically and genetically heterogeneous retinal disorder, even when it manifests in the same family.
Collapse
|
7
|
Payabvash S, Anderson JS, Nascene DR. Bilateral persistent fetal vasculature due to a mutation in the Norrie disease protein gene. Neuroradiol J 2015; 28:623-7. [PMID: 26459204 DOI: 10.1177/1971400915609350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report a case of a 7-week-old boy with bilateral leukocoria and asymmetric microphthalmia who was found to have Norrie disease. Symmetrically hyperdense globes with no evidence of calcification were seen on CT scan. The MRI showed bilateral retinal hemorrhages resulting in conical vitreous chambers-narrow at the optic disc and widened toward the lens-characteristic of persistent fetal vasculature. Genetic evaluation revealed a previously undescribed mutation in the Norrie disease protein gene.
Collapse
|