1
|
One of the Primary Functions of Tissue-Resident Pluripotent Pericytes Cells May Be to Regulate Normal Organ Growth and Maturation: Implications for Attempts to Repair Tissues Later in Life. Int J Mol Sci 2022; 23:ijms23105496. [PMID: 35628309 PMCID: PMC9146368 DOI: 10.3390/ijms23105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Adult mesenchymal stem cells were reported more than 30 years ago. Since then, their potential to repair and regenerate damaged or diseased tissues has been studied intensively in both preclinical models and human trials. Most of the need for such tissue repair/regeneration is in older populations, so much of the effort has been performed with autologous cells in older patients. However, success has been difficult to achieve. In the literature, it has been noted that such progenitor cells from younger individuals often behave with more vigorous activity and are functionally enhanced compared to those from older individuals or animals. In addition, cells with the characteristics of mesenchymal stem cells or pluripotent mesenchymal regulatory cells exist in nearly all tissues and organs as pericytes since fetal life. Such evidence raises the possibility that one of the primary roles of these organ-specific cells is to regulate organ growth and maturation, and then subsequently play a role in the maintenance of organ integrity. This review will discuss the evidence to support this concept and the implications of such a concept regarding the use of these progenitor cells for the repair and regeneration of tissues damaged by injury or disease later in life. For the latter, it may be necessary to return the organ-specific progenitor cells to the functional state that contributed to their effectiveness during growth and maturation rather than attempting to use them after alterations imposed during the aging process have been established and their function compromised.
Collapse
|
2
|
Díaz-Vesga MC, Zúñiga-Cuevas Ú, Ramírez-Reyes A, Herrera-Zelada N, Palomo I, Bravo-Sagua R, Riquelme JA. Potential Therapies to Protect the Aging Heart Against Ischemia/Reperfusion Injury. Front Cardiovasc Med 2021; 8:770421. [PMID: 34869687 PMCID: PMC8639870 DOI: 10.3389/fcvm.2021.770421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Despite important advances in the treatment of myocardial infarction that have significantly reduced mortality, there is still an unmet need to limit the infarct size after reperfusion injury in order to prevent the onset and severity of heart failure. Multiple cardioprotective maneuvers, therapeutic targets, peptides and drugs have been developed to effectively protect the myocardium from reperfusion-induced cell death in preclinical studies. Nonetheless, the translation of these therapies from laboratory to clinical contexts has been quite challenging. Comorbidities, comedications or inadequate ischemia/reperfusion experimental models are clearly identified variables that need to be accounted for in order to achieve effective cardioprotection studies. The aging heart is characterized by altered proteostasis, DNA instability, epigenetic changes, among others. A vast number of studies has shown that multiple therapeutic strategies, such as ischemic conditioning phenomena and protective drugs are unable to protect the aged heart from myocardial infarction. In this Mini-Review, we will provide an updated state of the art concerning potential new cardioprotective strategies targeting the aging heart.
Collapse
Affiliation(s)
- Magda C Díaz-Vesga
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia.,Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Úrsula Zúñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Ramírez-Reyes
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Nicolas Herrera-Zelada
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iván Palomo
- Thrombosis Research Center, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.,Interuniversity Center for Healthy Aging, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Interuniversity Center for Healthy Aging, Chile.,Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Interuniversity Center for Healthy Aging, Chile
| |
Collapse
|
3
|
Fan X, He S, Song H, Yin W, Zhang J, Peng Z, Yang K, Zhai X, Zhao L, Gong H, Ping Y, Jiao X, Zhang S, Yan C, Wang H, Li RK, Xie J. Human endometrium-derived stem cell improves cardiac function after myocardial ischemic injury by enhancing angiogenesis and myocardial metabolism. Stem Cell Res Ther 2021; 12:344. [PMID: 34112245 PMCID: PMC8193887 DOI: 10.1186/s13287-021-02423-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The human endometrium in premenopausal women is an active site of physiological angiogenesis, with regenerative cells present, suggesting that the endometrium contains adult angiogenic stem cells. In the context of cardiac repair after ischemic injury, angiogenesis is a crucial process to rescue cardiomyocytes. We therefore investigated whether human endometrium-derived stem cells (hEMSCs) can be used for cardiac repair after ischemic injury and their possible underlying mechanisms. METHODS Comparisons were made between hEMSCs successfully isolated from 22 premenopausal women and human bone marrow mesenchymal stem cells (hBMSCs) derived from 25 age-matched patients. Cell proliferation, migration, differentiation, and angiogenesis were evaluated through in vitro experiments, while the ability of hEMSCs to restore cardiac function was examined by in vivo cell transplantation into the infarcted nude rat hearts. RESULTS In vitro data showed that hEMSCs had greater proliferative and migratory capacities, whereas hBMSCs had better adipogenic differentiation ability. Human umbilical cord vein endothelial cells, treated with conditioned medium from hEMSCs, had significantly higher tube formation than that from hBMSCs or control medium, indicating greater angiogenic potentials for hEMSCs. In vivo, hEMSC transplantation preserved cardiac function, decreased infarct size, and improved tissue repair post-injury. Cardiac metabolism, assessed by 18F-FDG uptake, showed that 18F-FDG uptake at the infarction area was significantly higher in both hBMSC and hEMSC groups, compared to the PBS control group, with hEMSCs having the highest uptake, suggesting hEMSC treatment improves cardiomyocyte metabolism and survival after injury. Mechanistic assessment of the angiogenic potential for hEMSCS revealed that angiogenesis-related factors angiopoietin 2, Fms-like tyrosine kinase 1, and FGF9 were significantly upregulated in hEMSC-implanted infarcted hearts, compared to the PBS control group. CONCLUSION hEMSCs, compared to hBMSCs, have greater capacity to induce angiogenesis, and improved cardiac function after ischemic injury.
Collapse
Affiliation(s)
- Xuemei Fan
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China ,grid.263452.40000 0004 1798 4018Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng He
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China ,grid.452461.00000 0004 1762 8478The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huifang Song
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Wenjuan Yin
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jie Zhang
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zexu Peng
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Kun Yang
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China ,grid.263452.40000 0004 1798 4018Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhai
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lingxia Zhao
- grid.263452.40000 0004 1798 4018Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Gong
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yi Ping
- grid.452845.aThe Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- grid.263452.40000 0004 1798 4018The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Sanyuan Zhang
- grid.452461.00000 0004 1762 8478The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Changping Yan
- grid.452461.00000 0004 1762 8478The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongliang Wang
- grid.452461.00000 0004 1762 8478The First Hospital of Shanxi Medical University, Taiyuan, China ,grid.263452.40000 0004 1798 4018Key Laboratory of Molecular Imaging, Molecular Imaging Precision Medicine Collaborative Innovation Center, Shanxi Medical University, Taiyuan, China
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| | - Jun Xie
- The Laboratory of Stem Cell Regenerative Medicine Research, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Cell Physiology of Ministry of Education, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Yan C, Xu Z, Huang W. Cellular Senescence Affects Cardiac Regeneration and Repair in Ischemic Heart Disease. Aging Dis 2021; 12:552-569. [PMID: 33815882 PMCID: PMC7990367 DOI: 10.14336/ad.2020.0811] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023] Open
Abstract
Ischemic heart disease (IHD) is defined as a syndrome of ischemic cardiomyopathy. Myogenesis and angiogenesis in the ischemic myocardium are important for cardiomyocyte (CM) survival, improving cardiac function and decreasing the progression of heart failure after IHD. Cellular senescence is a state of permanent irreversible cell cycle arrest caused by stress that results in a decline in cellular functions, such as proliferation, migration, homing, and differentiation. In addition, senescent cells produce the senescence-associated secretory phenotype (SASP), which affects the tissue microenvironment and surrounding cells by secreting proinflammatory cytokines, chemokines, growth factors, and extracellular matrix degradation proteins. The accumulation of cardiovascular-related senescent cells, including vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), CMs and progenitor cells, is an important risk factor of cardiovascular diseases, such as vascular aging, atherosclerotic plaque formation, myocardial infarction (MI) and ventricular remodeling. This review summarizes the processes of angiogenesis, myogenesis and cellular senescence after IHD. In addition, this review focuses on the relationship between cellular senescence and cardiovascular disease and the mechanism of cellular senescence. Finally, we discuss a potential therapeutic strategy for MI targeting senescent cells.
Collapse
Affiliation(s)
- Chi Yan
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi, China.
- Department of Cardiology, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China.
| | - Zhimeng Xu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China.
| | - Weiqiang Huang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi, China.
- Department of Cardiology, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China.
| |
Collapse
|
5
|
Hong Y, He H, Jiang G, Zhang H, Tao W, Ding Y, Yuan D, Liu J, Fan H, Lin F, Liang X, Li X, Zhang Y. miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell 2020; 19:e13128. [PMID: 32196916 PMCID: PMC7189985 DOI: 10.1111/acel.13128] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Aging impairs the functions of human mesenchymal stem cells (MSCs), thereby severely reducing their beneficial effects on myocardial infarction (MI). MicroRNAs (miRNAs) play crucial roles in regulating the senescence of MSCs; however, the underlying mechanisms remain unclear. Here, we investigated the significance of miR‐155‐5p in regulating MSC senescence and whether inhibition of miR‐155‐5p could rejuvenate aged MSCs (AMSCs) to enhance their therapeutic efficacy for MI. Young MSCs (YMSCs) and AMSCs were isolated from young and aged donors, respectively. The cellular senescence of MSCs was evaluated by senescence‐associated β‐galactosidase (SA‐β‐gal) staining. Compared with YMSCs, AMSCs exhibited increased cellular senescence as evidenced by increased SA‐β‐gal activity and decreased proliferative capacity and paracrine effects. The expression of miR‐155‐5p was much higher in both serum and MSCs from aged donors than young donors. Upregulation of miR‐155‐5p in YMSCs led to increased cellular senescence, whereas downregulation of miR‐155‐5p decreased AMSC senescence. Mechanistically, miR‐155‐5p inhibited mitochondrial fission and increased mitochondrial fusion in MSCs via the AMPK signaling pathway, thereby resulting in cellular senescence by repressing the expression of Cab39. These effects were partially reversed by treatment with AMPK activator or mitofusin2‐specific siRNA (Mfn2‐siRNA). By enhancing angiogenesis and promoting cell survival, transplantation of anti‐miR‐155‐5p‐AMSCs led to improved cardiac function in an aged mouse model of MI compared with transplantation of AMSCs. In summary, our study shows that miR‐155‐5p mediates MSC senescence by regulating the Cab39/AMPK signaling pathway and miR‐155‐5p is a novel target to rejuvenate AMSCs and enhance their cardioprotective effects.
Collapse
Affiliation(s)
- Yimei Hong
- Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences School of Medicine South China University of Technology Guangzhou China
- Department of Emergency Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
- Department of Emergency and Critical Care Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Haiwei He
- Department of Emergency Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
- Department of Emergency and Critical Care Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Guojun Jiang
- Faculty of Pharmacy Bengbu Medical College Bengbu China
| | - Hao Zhang
- Faculty of Pharmacy Bengbu Medical College Bengbu China
| | - Wuyuan Tao
- Department of Emergency Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
- Department of Emergency and Critical Care Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Yue Ding
- Department of Organ Transplantation Changzheng Hospital Second Military Medical University Shanghai China
| | - Dongsheng Yuan
- Clinical Translational Medical Research Center Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Jing Liu
- Clinical Translational Medical Research Center Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Huimin Fan
- Clinical Translational Medical Research Center Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Fang Lin
- Clinical Translational Medical Research Center Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Xiaoting Liang
- Clinical Translational Medical Research Center Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Institute of Regenerative Medicine Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Xin Li
- Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences School of Medicine South China University of Technology Guangzhou China
- Department of Emergency Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
- Department of Emergency and Critical Care Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Yuelin Zhang
- Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences School of Medicine South China University of Technology Guangzhou China
- Department of Emergency Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
- Department of Emergency and Critical Care Medicine Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| |
Collapse
|
6
|
Yang K, Song HF, He S, Yin WJ, Fan XM, Ru F, Gong H, Zhai XY, Zhang J, Peng ZX, Xi GX, Xie J, Li RK. Effect of neuron-derived neurotrophic factor on rejuvenation of human adipose-derived stem cells for cardiac repair after myocardial infarction. J Cell Mol Med 2019; 23:5981-5993. [PMID: 31287219 PMCID: PMC6714174 DOI: 10.1111/jcmm.14456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
The decline of cell function caused by ageing directly impacts the therapeutic effects of autologous stem cell transplantation for heart repair. The aim of this study was to investigate whether overexpression of neuron‐derived neurotrophic factor (NDNF) can rejuvenate the adipose‐derived stem cells in the elderly and such rejuvenated stem cells can be used for cardiac repair. Human adipose‐derived stem cells (hADSCs) were obtained from donors age ranged from 17 to 92 years old. The effects of age on the biological characteristics of hADSCs and the expression of ageing‐related genes were investigated. The effects of transplantation of NDNF over‐expression stem cells on heart repair after myocardial infarction (MI) in adult mice were investigated. The proliferation, migration, adipogenic and osteogenic differentiation of hADSCs inversely correlated with age. The mRNA and protein levels of NDNF were significantly decreased in old (>60 years old) compared to young hADSCs (<40 years old). Overexpression of NDNF in old hADSCs significantly improved their proliferation and migration capacity in vitro. Transplantation of NDNF‐overexpressing old hADSCs preserved cardiac function through promoting angiogenesis on MI mice. NDNF rejuvenated the cellular function of aged hADSCs. Implantation of NDNF‐rejuvenated hADSCs improved angiogenesis and cardiac function in infarcted mouse hearts.
Collapse
Affiliation(s)
- Kun Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China.,Department of Endocrinology, Shanxi Dayi Hospital affiliated to Shanxi Medical University, Taiyuan, China
| | - Hui-Fang Song
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China.,Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Sheng He
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China.,Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wen-Juan Yin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Xue-Mei Fan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China.,Department of Endocrinology, Shanxi Dayi Hospital affiliated to Shanxi Medical University, Taiyuan, China
| | - Feng Ru
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Gong
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Xiao-Yan Zhai
- Department of Anatomy, Shanxi University of Chinese Medicine, Yuci, China
| | - Jie Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Ze-Xu Peng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Guang-Xia Xi
- Department of Endocrinology, Shanxi Dayi Hospital affiliated to Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Yamaguchi S, Horie N, Satoh K, Ishikawa T, Mori T, Maeda H, Fukuda Y, Ishizaka S, Hiu T, Morofuji Y, Izumo T, Nishida N, Matsuo T. Age of donor of human mesenchymal stem cells affects structural and functional recovery after cell therapy following ischaemic stroke. J Cereb Blood Flow Metab 2018; 38:1199-1212. [PMID: 28914133 PMCID: PMC6434451 DOI: 10.1177/0271678x17731964] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell transplantation therapy offers great potential to improve impairments after stroke. However, the importance of donor age on therapeutic efficacy is unclear. We investigated the regenerative capacity of transplanted cells focusing on donor age (young vs. old) for ischaemic stroke. The quantities of human mesenchymal stem cell (hMSC) secreted brain-derived neurotrophic factor in vitro and of monocyte chemotactic protein-1 at day 7 in vivo were both significantly higher for young hMSC compared with old hMSC. Male Sprague-Dawley rats subjected to transient middle cerebral artery occlusion that received young hMSC (trans-arterially at 24 h after stroke) showed better behavioural recovery with prevention of brain atrophy compared with rats that received old hMSC. Histological analysis of the peri-infarct cortex showed that rats treated with young hMSC had significantly fewer microglia and more vessels covered with pericytes. Interestingly, migration of neural stem/progenitor cells expressing Musashi-1 positively correlated with astrocyte process alignment, which was more pronounced for young hMSC. Aging of hMSC may be a critical factor that affects cell therapy outcomes, and transplantation of young hMSC appears to provide better functional recovery through anti-inflammatory effects, vessel maturation, and neurogenesis potentially by the dominance of trophic factor secretion.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nobutaka Horie
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuya Satoh
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Ishikawa
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Mori
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hajime Maeda
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuhtaka Fukuda
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shunsuke Ishizaka
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Hiu
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoichi Morofuji
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Izumo
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriyuki Nishida
- 2 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Matsuo
- 1 Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Song HF, He S, Li SH, Yin WJ, Wu J, Guo J, Shao ZB, Zhai XY, Gong H, Lu L, Wei F, Weisel RD, Xie J, Li RK. Aged Human Multipotent Mesenchymal Stromal Cells Can Be Rejuvenated by Neuron-Derived Neurotrophic Factor and Improve Heart Function After Injury. ACTA ACUST UNITED AC 2017; 2:702-716. [PMID: 30062183 PMCID: PMC6059002 DOI: 10.1016/j.jacbts.2017.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/02/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Abstract
The benefits of cell transplantation for cardiac repair are diminished in older individuals and effective methods to rejuvenate aged stem cells are needed to treat the increasing number of older patients with heart failure. Over-expressing NDNF in old hBM-MSCs rejuvenated the cells, increasing their proliferative capacity and reducing cellular apoptosis. In vivo engraftment of NDNF-overexpressing old hBM-MSCs into the ischemic area of mouse hearts improved cardiac function after myocardial infarction, while promoting engrafted stem cell survival and proliferation and decreasing cell senescence. NDNF rejuvenated aged human stem cells, improving their capability to repair the aged heart after ischemic injury through Activation of Akt singling.
Reduced regenerative capacity of aged stem cells hampers the benefits of autologous cell therapy for cardiac regeneration. This study investigated whether neuron-derived neurotrophic factor (NDNF) could rejuvenate aged human bone marrow (hBM)- multipotent mesenchymal stromal cells (MSCs) and whether the rejuvenated hBM-MSCs could improve cardiac repair after ischemic injury. Over-expression of NDNF in old hBM-MSCs decreased cell senescence and apoptosis. Engraftment of NDNF over-expressing old hBM-MSCs into the ischemic area of mouse hearts resulted in improved cardiac function after myocardial infarction, while promoting implanted stem cell survival. Our findings suggest NDNF could be a new factor to rejuvenate aged stem cells and improve their capability to repair the aged heart after injury.
Collapse
Affiliation(s)
- Hui-Fang Song
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Sheng He
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Canada
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shu-Hong Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Wen-Juan Yin
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jun Wu
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Jian Guo
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Zheng-Bo Shao
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Canada
- Department of Ophthalmology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Yan Zhai
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Hui Gong
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Fang Wei
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Richard D. Weisel
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Canada
- Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
- Addresses for correspondence: Dr. Jun Xie, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Canada
- Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Canada
- Dr. Ren-Ke Li, Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
9
|
Donghai G, Qiangli W, Xiaojing H, Zhirong L, Lisheng Z. Clinical Study on Computerized Molecular Imaging Tracing Stem Cell Transplantation for Patients with Myocardial Infarction. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.proeng.2017.01.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Kizilay Mancini O, Shum-Tim D, Stochaj U, Correa JA, Colmegna I. Age, atherosclerosis and type 2 diabetes reduce human mesenchymal stromal cell-mediated T-cell suppression. Stem Cell Res Ther 2015; 6:140. [PMID: 26253429 PMCID: PMC4529693 DOI: 10.1186/s13287-015-0127-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/12/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
To this end human MSCs were isolated from adipose tissue and the MSC:CD4+ T-cell suppression was assessed in a co-culture system. In summary, this study demonstrates that advanced age, atherosclerosis and type 2 diabetes mellitus reduce the functional potency of MSCs. Optimizing the criteria for the selection of MSC donors could enhance the results of cell-based therapies.
Collapse
Affiliation(s)
- Ozge Kizilay Mancini
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| | - Dominique Shum-Tim
- Division of Cardiothoracic Surgery and Surgical Research, Royal Victoria Hospital, McGill University Health Center, Montreal, QC, Canada.
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC, Canada.
| | - José A Correa
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada.
| | - Inés Colmegna
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada. .,Royal Victoria Hospital, McGill University Health Centre, 1001 Boulevard, Décarie, Montréal, Québec, H4A 3J1, Canada.
| |
Collapse
|