1
|
Jessl L, Oehlmann J. No effects of the antiandrogens cyproterone acetate (CPA), flutamide and p,p'-DDE on early sexual differentiation but CPA-induced retardation of embryonic development in the domestic fowl ( Gallus gallus domesticus). PeerJ 2023; 11:e16249. [PMID: 37901474 PMCID: PMC10601917 DOI: 10.7717/peerj.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Because a wide range of environmental contaminants are known to cause endocrine disorders in humans and animals, in vivo tests are needed to identify such endocrine disrupting chemicals (EDCs) and to assess their biological effects. Despite the lack of a standardized guideline, the avian embryo has been shown to be a promising model system which responds sensitively to EDCs. After previous studies on the effects of estrogenic, antiestrogenic and androgenic substances, the present work focuses on the effects of in ovo exposure to p,p'-DDE, flutamide and cyproterone acetate (CPA) as antiandrogenic model compounds regarding gonadal sex differentiation and embryonic development of the domestic fowl (Gallus gallus domesticus). The substances were injected into the yolk of fertilized eggs on embryonic day one. On embryonic day 19 sex genotype and phenotype were determined, followed by gross morphological and histological examination of the gonads. Treatment with flutamide (0.5, 5, 50 µg/g egg), p,p'-DDE (0.5, 5, 50 µg/g egg) or CPA (0.2, 2, 20 µg/g egg) did not affect male or female gonad development, assessed by gonad surface area and cortex thickness in both sexes and by the percentage of seminiferous tubules in males as endpoints. This leads to the conclusion that antiandrogens do not affect sexual differentiation during embryonic development of G. gallus domesticus, reflecting that gonads are not target organs for androgens in birds. In ovo exposure to 2 and 20 µg CPA/g egg, however, resulted in significantly smaller embryos as displayed by shortened lengths of skull, ulna and tarsometatarsus. Although gonadal endpoints were not affected by antiandrogens, the embryo of G. gallus domesticus is shown to be a suitable test system for the identification of substance-related mortality and developmental delays.
Collapse
Affiliation(s)
- Luzie Jessl
- Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
- R-Biopharm AG, Darmstadt, Hesse, Germany
| | - Jörg Oehlmann
- Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
2
|
Qin H, Wang J, Jia X, Zhi Y, Sun L, Zhang J, Wang J, Lu Y. Quantitative proteomics analysis of chicken embryos reveals key proteins that affect right gonadal degeneration in females. Proteomics 2022:e2200428. [PMID: 36574226 DOI: 10.1002/pmic.202200428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
In birds, embryonic gonads of females develop in a way different from mammals, with the left one develops into a functional ovary, while the right one degenerates during embryogenesis. Here, we examined the proteomics profiles of the female and male left and right gonads at embryonic day 6.5 (E6.5) with the label free tandem mass spectrometry proteomics technique. The relative protein abundance of the left and right gonads of female and male embryos was determined to identify their differential proteins. Overall, a total of 7726 proteins were identified, of which 79 and 54 proteins were significantly different in female and male right gonads compared with female left gonads and male left gonads respectively. Bioinformatics analysis showed that the proteins DMRT1, ZFPM2, TSHZ3 were potentially associated with the degeneration of the right gonads in female embryos. The proteomics in this study provide clues for further elucidation of the pathways of sex determination, sex differentiation, and right gonadal degeneration in birds.
Collapse
Affiliation(s)
- Haimei Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Reproductive Medicine, Guangxi Medical and health key discipline construction project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Baise, China
| | - Jingyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Zhang Jiagang Animal Husbandry and Veterinary Station, Zhang Jiagang, Jiangsu, China
| | - Xiaoxuan Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yifei Zhi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lingling Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiale Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junli Wang
- Reproductive Medicine, Guangxi Medical and health key discipline construction project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Baise, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Li J, Sun C, Zheng J, Li J, Yi G, Yang N. Time-Course Transcriptional and Chromatin Accessibility Profiling Reveals Genes Associated With Asymmetrical Gonadal Development in Chicken Embryos. Front Cell Dev Biol 2022; 10:832132. [PMID: 35345851 PMCID: PMC8957256 DOI: 10.3389/fcell.2022.832132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
In birds, male gonads form on both sides whereas most females develop asymmetric gonads. Multiple early lines of evidence suggested that the right gonad fails to develop into a functional ovary, mainly due to differential expression of PITX2 in the gonadal epithelium. Despite some advances in recent years, the molecular mechanisms underlying asymmetric gonadal development remain unclear. Here, using bulk analysis of whole gonads, we established a relatively detailed profile of four representative stages of chicken gonadal development at the transcriptional and chromatin levels. We revealed that many candidate genes were significantly enriched in morphogenesis, meiosis and subcellular structure formation, which may be responsible for asymmetric gonadal development. Further chromatin accessibility analysis suggested that the transcriptional activities of the candidate genes might be regulated by nearby open chromatin regions, which may act as transcription factor (TF) binding sites and potential cis-regulatory elements. We found that LHX9 was a promising TF that bound to the left-biased peaks of many cell cycle-related genes. In summary, this study provides distinctive insights into the potential molecular basis underlying the asymmetric development of chicken gonads.
Collapse
Affiliation(s)
- Jianbo Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Wang Y, Jin G, Ma M, Xiang X. Sex differences in serum steroid hormone levels during embryonic development in hen eggs. Poult Sci 2020; 98:6053-6062. [PMID: 31065723 DOI: 10.3382/ps/pez270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
This experiment was conducted to explore the differences of serum steroid hormones with age and sex in hen eggs during incubation periods for identification of males and females. The concentrations of estrone (E1), estradiol (E2), estriol (E3), testosterone (T), androstenedione (A4), and dihydrotestosterone (DHT) in serum were measured by enzyme-linked immunosorbent assays in chicken embryos on 8, 10, 12, 14, and 16 D, respectively. During the development of chicken embryo, egg weight loss was closely related to age but no sex. However, it was found that both age and sex significantly affected hormones and had obviously more effect on androgens levels. Besides E2 and T, other steroids such as E1, A4, and DHT were also significantly correlated with sex (P < 0.05). Notably, the level of T and the ratio of T to E2 were significantly higher in males than females (P < 0.05). The ratio of E1 to E2 displayed different trends in different sexes, which increased in males but decreased in females. The distribution proportions of androgens and estrogens kept stable level during the late hatching periods of 12 to 16 D. The sex differences of steroids were more obvious at the late hatching stage through PCA. These suggested that the serum hormones differences in male and female embryos played a vital role in sexual differentiation. These findings not only provided the theoretical basis for sex determination of fertilized eggs in egg-laying hen strains, but also contributed to develop a non-invasive way to sex determination of fertilized eggs to meet the modern commercial application.
Collapse
Affiliation(s)
- Yalan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaole Xiang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Rahaie A, Toghyani M, Eghbalsaied S. Cotreatment of IGF1 and Fadrozole Upregulates the Expression of RSPO1, SOX9, and AMH in Chicken Embryos. Cells Tissues Organs 2019; 206:218-228. [DOI: 10.1159/000499079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 11/19/2022] Open
Abstract
Insulin-like growth factor-1 (IGF1) and anti-aromatase synergistically increase the rate and stability of female-to-male sex reversal as well as pre- and postnatal weight gains in hatched chickens. This study aimed at assessing gene expression profiles of chicken embryos treated with IGF1 and fadrozole. Day 3.5 fertile eggs were in ovo injected with one of IGF1, fadrozole anti-aromatase, combined IGF1 and fadrozole, or sham injection. The expression profile was studied on day 6 and day 11 of the embryonic development following gonadal differentiation. On day 6 of embryonic development, simultaneous injection of IGF1 and fadrozole significantly upregulated the expression of RSPO1, AMH, and SOX9 in genetically female embryos compared to single injections and control groups. Also, a higher expression of ESR1 and BMP4 was observed in genetically male embryos on day 6 compared to the control group. In day 11 embryos, a higher expression of BMP4 was detected in both males and females of the IGF1 and fadrozole-administered group compared to the sham injection cohort. In conclusion, the results of this study indicate that combined effects of IGF1 and fadrozole induce female-to-male sex reversal by increasing the expression of testis developmental factors rather than attenuating ovary developmental factors.
Collapse
|
6
|
Piprek RP, Damulewicz M, Tassan JP, Kloc M, Kubiak JZ. Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis. Dev Genes Evol 2019; 229:53-72. [PMID: 30972573 PMCID: PMC6500517 DOI: 10.1007/s00427-019-00630-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
Xenopus laevis is an amphibian (frog) species widely used in developmental biology and genetics. To unravel the molecular machinery regulating sex differentiation of Xenopus gonads, we analyzed for the first time the transcriptome of developing amphibian gonads covering sex determination period. We applied microarray at four developmental stages: (i) NF50 (undifferentiated gonad during sex determination), (ii) NF53 (the onset of sexual differentiation of the gonads), (iii) NF56 (sexual differentiation of the gonads), and (iv) NF62 (developmental progression of differentiated gonads). Our analysis showed that during the NF50, the genetic female (ZW) gonads expressed more sex-specific genes than genetic male (ZZ) gonads, which suggests that a robust genetic program is realized during female sex determination in Xenopus. However, a contrasting expression pattern was observed at later stages (NF56 and NF62), when the ZW gonads expressed less sex-specific genes than ZZ gonads, i.e., more genes may be involved in further development of the male gonads (ZZ). We identified sexual dimorphism in the expression of several functional groups of genes, including signaling factors, proteases, protease inhibitors, transcription factors, extracellular matrix components, extracellular matrix enzymes, cell adhesion molecules, and epithelium-specific intermediate filaments. In addition, our analysis detected a sexually dimorphic expression of many uncharacterized genes of unknown function, which should be studied further to reveal their identity and if/how they regulate gonad development, sex determination, and sexual differentiation. Comparison between genes sex-specifically expressed in developing gonads of Xenopus and available transcriptome data from zebrafish, two reptile species, chicken, and mouse revealed significant differences in the genetic control of sex determination and gonad development. This shows that the genetic control of gonad development is evolutionarily malleable.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Jean-Pierre Tassan
- Univ Rennes, UMR 6290, Cell Cycle Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, F-35000, Rennes, France
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Jacek Z Kubiak
- Univ Rennes, UMR 6290, Cell Cycle Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, F-35000, Rennes, France
- Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| |
Collapse
|
7
|
Jessl L, Lenz R, Massing FG, Scheider J, Oehlmann J. Effects of estrogens and antiestrogens on gonadal sex differentiation and embryonic development in the domestic fowl ( Gallus gallus domesticus). PeerJ 2018; 6:e5094. [PMID: 30002959 PMCID: PMC6034593 DOI: 10.7717/peerj.5094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/05/2018] [Indexed: 01/11/2023] Open
Abstract
Since it is known that environmental contaminants have the potential to cause endocrine disorders in humans and animals, there is an urgent need for in vivo tests to assess possible effects of these endocrine disrupting chemicals (EDCs). Although there is no standardized guideline, the avian embryo has proven to be particularly promising as it responds sensitively to a number of EDCs preferentially impacting the reproductive axis. In the present study we examined the effects of in ovo exposure to fulvestrant and tamoxifen as antiestrogenic model compounds and co-exposure to both substances and the potent estrogen 17α-ethinylestradiol (EE2) regarding sex differentiation and embryonic development of the domestic fowl (Gallus gallus domesticus). The substances were injected into the yolk of fertilized eggs on embryonic day 1. On embryonic day 19 sex genotype and phenotype were determined, followed by gross morphological and histological examination of the gonads. Sole EE2-treatment (20 ng/g egg) particularly affected male gonads and resulted in an increased formation of female-like gonadal cortex tissue and a reduction of seminiferous tubules. In ovo exposure to tamoxifen (0.1/1/10 µg/g egg) strongly impaired the differentiation of female gonads, led to a significant size reduction of the left ovary and induced malformations of the ovarian cortex, while fulvestrant (0.1/1/10 µg/g egg) did not affect sexual differentiation. However, both antiestrogens were able to antagonize the feminizing effects of EE2in genetic males when administered simultaneously. Since both estrogens and antiestrogens induce concentration-dependent morphological alterations of the sex organs, the chick embryo can be regarded as a promising model for the identification of chemicals with estrogenic and antiestrogenic activity.
Collapse
Affiliation(s)
- Luzie Jessl
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany.,R-Biopharm AG, Darmstadt, Hesse, Germany
| | - Rebecca Lenz
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany.,Dr. Drexler + Dr. Fecher GmbH, Groß-Umstadt, Hesse, Germany
| | - Fabian G Massing
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany.,ERM GmbH, Neu-Isenburg, Hesse, Germany
| | - Jessica Scheider
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
8
|
Jessl L, Scheider J, Oehlmann J. The domestic fowl (Gallus gallus domesticus) embryo as an alternative for mammalian experiments - Validation of a test method for the detection of endocrine disrupting chemicals. CHEMOSPHERE 2018; 196:502-513. [PMID: 29329082 DOI: 10.1016/j.chemosphere.2017.12.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
In recent decades the embryo of Gallus g. domesticus has been widely used as a model for the study of early sexual development and the potential impact of substances affecting development, including endocrine disrupting chemicals (EDCs). Since there is no standardized procedure available for experiments with the chicken embryo, the objective of our project is to expedite the protocol to assess the potential effects of EDCs on early sexual differentiation. The main aim of the present study was to systematically investigate the natural variability of individual developmental and histological key parameters in untreated and solvent-treated control groups, since this has been insufficiently addressed so far. A further aim was to provide robust values for all parameters investigated in control and substance experiments, using two known estrogenic compounds, bisphenol A (75/150/300 μg/g egg) and 17α-ethinylestradiol (20 ng/g egg). On embryonic day 1 eggs were injected with the estrogenic compounds. On embryonic day 19 histological gonadal data as well as morphological parameters were noted. In baseline experiments with control groups the selected endpoints showed reproducible results with low variabilities. Furthermore, gonadal endpoints responded sensitively to the treatment with the two model EDCs. Thus, these endpoints are recommended for the assessment of suspected EDCs in which the values provided for all parameters can serve as validity criteria in future experiments. The embryo of G. domesticus has shown to be a suitable alternative to currently accepted mammalian bioassays for the impact assessment of EDCs on reproductive tissues.
Collapse
Affiliation(s)
- Luzie Jessl
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Jessica Scheider
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Jörg Oehlmann
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Shaikat AH, Namekawa S, Ahmadi S, Takeda M, Ohkubo T. Gene expression profiling in embryonic chicken ovary during asymmetric development. Anim Sci J 2017; 89:688-694. [PMID: 29282806 DOI: 10.1111/asj.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/12/2017] [Indexed: 01/19/2023]
Abstract
The reproductive system in female birds arises as bilateral asymmetrical anlagen, excluding the birds of prey. Earlier, histological and messenger RNA (mRNA) expression profile studies of several genes related to gonadal sex differentiation in chicken embryos tried to elucidate the query of this asymmetry in a scattered manner. To understand the matter precisely, we have focused on mRNA expression of a cohort of genes (FSHR, CYP19A1, caspase 3, caspase 8) in second half of the embryonic days (E10-E18). The established role of leptin in development of the embryo and its expression in the embryonic ovary also drove us to check leptin receptor (LEPR) expression in the ovary. Increased expression of FSHR and CYP19A1 in the left ovary compared with that in the right ovary was identified (P < 0.05), promoting preferential left ovarian development and functionality. Significant high expression (P < 0.05) of the apoptotic genes in the right ovary were also involved here. Leptin probably has no direct influence on ovarian asymmetry as no significant variation in gonadal mRNA expression of LEPR was observed within the same experimental days. We propose that asymmetric expression of this cohort of genes (FSHR, CYP19A1, caspase 3, caspase 8) leads to the development of dimorphic gonads during embryogenesis.
Collapse
Affiliation(s)
- Amir Hossan Shaikat
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shoko Namekawa
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | | | - Misa Takeda
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
10
|
Scheider J, Afonso-Grunz F, Jessl L, Hoffmeier K, Winter P, Oehlmann J. Morphological and transcriptomic effects of endocrine modulators on the gonadal differentiation of chicken embryos: The case of tributyltin (TBT). Toxicol Lett 2017; 284:143-151. [PMID: 29191790 DOI: 10.1016/j.toxlet.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/29/2022]
Abstract
Morphological malformations induced by tributyltin (TBT) exposure during embryonic development have already been characterized in various taxonomic groups, but, nonetheless, the molecular processes underlying these changes remain obscure. The present study provides the first genome-wide screening for differentially expressed genes that are linked to morphological alterations of gonadal tissue from chicken embryos after exposure to TBT. We applied a single injection of TBT (between 0.5 and 30 pg as Sn/g egg) into incubated fertile eggs to simulate maternal transfer of the endocrine disruptive compound. Methyltestosterone (MT) served as a positive control (30 pg/g egg). After 19 days of incubation, structural features of the gonads as well as genome-wide gene expression profiles were assessed simultaneously. TBT induced significant morphological and histological malformations of gonadal tissue from female embryos that show a virilization of the ovaries. This phenotypical virilization was mirrored by altered expression profiles of sex-dependent genes. Among these are several transcription and growth factors (e.g. FGF12, CTCF, NFIB), whose altered expression might serve as a set of markers for early identification of endocrine active chemicals that affect embryonic development by transcriptome profiling without the need of elaborate histological analyses.
Collapse
Affiliation(s)
- Jessica Scheider
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt/M., Germany.
| | - Fabian Afonso-Grunz
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt/M., Germany; Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
| | - Luzie Jessl
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt/M., Germany; GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt/M., Germany
| | - Klaus Hoffmeier
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt/M., Germany
| | - Peter Winter
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt/M., Germany
| | - Jörg Oehlmann
- Goethe University Frankfurt am Main, Institute for Ecology, Evolution and Diversity, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt/M., Germany
| |
Collapse
|
11
|
Wan Z, Lu Y, Rui L, Yu X, Yang F, Tu C, Li Z. Gene Expression Profiling Reveals Potential Players of Left-Right Asymmetry in Female Chicken Gonads. Int J Mol Sci 2017; 18:E1299. [PMID: 28632173 PMCID: PMC5486120 DOI: 10.3390/ijms18061299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6), E12, and post-hatching day 1 (D1). By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs) were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA) metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO) terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.
Collapse
Affiliation(s)
- Zhiyi Wan
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yanan Lu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Lei Rui
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiaoxue Yu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Fang Yang
- College of Life Sciences, Peking University, Beijing 100871, China.
| | - Chengfang Tu
- Annoroad Gene Technology Co., Ltd., Beijing 100176, China.
| | - Zandong Li
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|