1
|
Chapleau M, La Joie R, Yong K, Agosta F, Allen IE, Apostolova L, Best J, Boon BDC, Crutch S, Filippi M, Fumagalli GG, Galimberti D, Graff-Radford J, Grinberg LT, Irwin DJ, Josephs KA, Mendez MF, Mendez PC, Migliaccio R, Miller ZA, Montembeault M, Murray ME, Nemes S, Pelak V, Perani D, Phillips J, Pijnenburg Y, Rogalski E, Schott JM, Seeley W, Sullivan AC, Spina S, Tanner J, Walker J, Whitwell JL, Wolk DA, Ossenkoppele R, Rabinovici GD. Demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy: an international cohort study and individual participant data meta-analysis. Lancet Neurol 2024; 23:168-177. [PMID: 38267189 DOI: 10.1016/s1474-4422(23)00414-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Posterior cortical atrophy is a rare syndrome characterised by early, prominent, and progressive impairment in visuoperceptual and visuospatial processing. The disorder has been associated with underlying neuropathological features of Alzheimer's disease, but large-scale biomarker and neuropathological studies are scarce. We aimed to describe demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy in a large international cohort. METHODS We searched PubMed between database inception and Aug 1, 2021, for all published research studies on posterior cortical atrophy and related terms. We identified research centres from these studies and requested deidentified, individual participant data (published and unpublished) that had been obtained at the first diagnostic visit from the corresponding authors of the studies or heads of the research centres. Inclusion criteria were a clinical diagnosis of posterior cortical atrophy as defined by the local centre and availability of Alzheimer's disease biomarkers (PET or CSF), or a diagnosis made at autopsy. Not all individuals with posterior cortical atrophy fulfilled consensus criteria, being diagnosed using centre-specific procedures or before development of consensus criteria. We obtained demographic, clinical, biofluid, neuroimaging, and neuropathological data. Mean values for continuous variables were combined using the inverse variance meta-analysis method; only research centres with more than one participant for a variable were included. Pooled proportions were calculated for binary variables using a restricted maximum likelihood model. Heterogeneity was quantified using I2. FINDINGS We identified 55 research centres from 1353 papers, with 29 centres responding to our request. An additional seven centres were recruited by advertising via the Alzheimer's Association. We obtained data for 1092 individuals who were evaluated at 36 research centres in 16 countries, the other sites having not responded to our initial invitation to participate to the study. Mean age at symptom onset was 59·4 years (95% CI 58·9-59·8; I2=77%), 60% (56-64; I2=35%) were women, and 80% (72-89; I2=98%) presented with posterior cortical atrophy pure syndrome. Amyloid β in CSF (536 participants from 28 centres) was positive in 81% (95% CI 75-87; I2=78%), whereas phosphorylated tau in CSF (503 participants from 29 centres) was positive in 65% (56-75; I2=87%). Amyloid-PET (299 participants from 24 centres) was positive in 94% (95% CI 90-97; I2=15%), whereas tau-PET (170 participants from 13 centres) was positive in 97% (93-100; I2=12%). At autopsy (145 participants from 13 centres), the most frequent neuropathological diagnosis was Alzheimer's disease (94%, 95% CI 90-97; I2=0%), with common co-pathologies of cerebral amyloid angiopathy (71%, 54-88; I2=89%), Lewy body disease (44%, 25-62; I2=77%), and cerebrovascular injury (42%, 24-60; I2=88%). INTERPRETATION These data indicate that posterior cortical atrophy typically presents as a pure, young-onset dementia syndrome that is highly specific for underlying Alzheimer's disease pathology. Further work is needed to understand what drives cognitive vulnerability and progression rates by investigating the contribution of sex, genetics, premorbid cognitive strengths and weaknesses, and brain network integrity. FUNDING None.
Collapse
Affiliation(s)
- Marianne Chapleau
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keir Yong
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Federica Agosta
- Vita-Salute, San Raffaele University, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Insitute, Milan, Italy
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | | | - John Best
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Baayla D C Boon
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sebastian Crutch
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Massimo Filippi
- Vita-Salute, San Raffaele University, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Insitute, Milan, Italy
| | | | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Department of Pathology, University of California San Francisco, San Francisco, CA, USA; Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mario F Mendez
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Patricio Chrem Mendez
- Memory Center, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Buenos Aires Argentina
| | - Raffaella Migliaccio
- Paris Brain Institute (ICM), FrontLab, Institut de la mémoire et de la maladie d'Alzheimer (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Maxime Montembeault
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sára Nemes
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria Pelak
- Departments of Neurology and Ophthalmology, Divisions of Neuro-Ophthalmology and Behavioral Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniela Perani
- Vita-Salute, San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele, San Raffaele University, Milan, Italy
| | - Jeffrey Phillips
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology & Alzheimer's Disease, Northwestern University, Evanston, IL, USA
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - William Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - A Campbell Sullivan
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy Tanner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Jamie Walker
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | | | - David A Wolk
- Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands; Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
La Joie R, Visani AV, Lesman-Segev OH, Baker SL, Edwards L, Iaccarino L, Soleimani-Meigooni DN, Mellinger T, Janabi M, Miller ZA, Perry DC, Pham J, Strom A, Gorno-Tempini ML, Rosen HJ, Miller BL, Jagust WJ, Rabinovici GD. Association of APOE4 and Clinical Variability in Alzheimer Disease With the Pattern of Tau- and Amyloid-PET. Neurology 2020; 96:e650-e661. [PMID: 33262228 DOI: 10.1212/wnl.0000000000011270] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess whether Alzheimer disease (AD) clinical presentation and APOE4 relate to the burden and topography of β-amyloid (Aβ) and tau pathologies using in vivo PET imaging. METHODS We studied 119 Aβ-positive symptomatic patients aged 48-95 years, including 29 patients with logopenic variant primary progressive aphasia (lvPPA) and 21 with posterior cortical atrophy (PCA). Pittsburgh compound B (PiB)-Aβ and flortaucipir (tau)-PET standardized uptake value ratio (SUVR) images were created. General linear models assessed relationships between demographic/clinical variables (phenotype, age), APOE4, and PET (including global cortical and voxelwise SUVR values) while controlling for disease severity using the Clinical Dementia Rating Sum of Boxes. RESULTS PiB-PET binding showed a widespread cortical distribution with subtle differences across phenotypes and was unrelated to demographic/clinical variables or APOE4. Flortaucipir-PET was commonly elevated in temporoparietal regions, but showed marked phenotype-associated differences, with higher binding observed in occipito-parietal areas for PCA, in left temporal and inferior frontal for lvPPA, and in medial temporal areas for other AD. Cortical flortaucipir-PET binding was higher in younger patients across phenotypes (r = -0.63, 95% confidence interval [CI] -0.72, -0.50), especially in parietal and dorsal prefrontal cortices. The presence of APOE4 was associated with a focal medial temporal flortaucipir-SUVR increase, controlling for all other variables (entorhinal: + 0.310 SUVR, 95% CI 0.091, 0.530). CONCLUSIONS Clinical phenotypes are associated with differential patterns of tau but not amyloid pathology. Older age and APOE4 are not only risk factors for AD but also seem to affect disease expression by promoting a more medial temporal lobe-predominant pattern of tau pathology.
Collapse
Affiliation(s)
- Renaud La Joie
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley.
| | - Adrienne V Visani
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Orit H Lesman-Segev
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Suzanne L Baker
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Lauren Edwards
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Leonardo Iaccarino
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - David N Soleimani-Meigooni
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Taylor Mellinger
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Mustafa Janabi
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Zachary A Miller
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - David C Perry
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Julie Pham
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Amelia Strom
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Maria Luisa Gorno-Tempini
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Howard J Rosen
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Bruce L Miller
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - William J Jagust
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| | - Gil D Rabinovici
- From the Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences (R.L.J., A.V.V., O.H.L.-V., L.E., L.I., D.N.S.-M., T.M., Z.A.M., D.C.P., J.P., A.S., M.L.G.-T., H.J.R., B.L.M., G.D.R.), and Department of Radiology and Biomedical Imaging (G.D.R.), University of California, San Francisco; Department of Diagnostic Imaging (O.H.L.-V.), Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Molecular Biophysics and Integrated Bioimaging Division (S.L.B., M.J., W.J.J., G.D.R.), Lawrence Berkeley National Laboratory; and Helen Wills Neuroscience Institute (W.J.J., G.D.R.), University of California Berkeley
| |
Collapse
|
4
|
Montembeault M, Brambati SM, Lamari F, Michon A, Samri D, Epelbaum S, Lacomblez L, Lehéricy S, Habert MO, Dubois B, Kas A, Migliaccio R. Atrophy, metabolism and cognition in the posterior cortical atrophy spectrum based on Alzheimer's disease cerebrospinal fluid biomarkers. Neuroimage Clin 2018; 20:1018-1025. [PMID: 30340200 PMCID: PMC6197495 DOI: 10.1016/j.nicl.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION In vivo clinical, anatomical and metabolic differences between posterior cortical atrophy (PCA) patients presenting with different Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers profiles are still unknown. METHODS Twenty-seven PCA patients underwent CSF examination and were classified as 1) PCA with a typical CSF AD profile (PCA-tAD; abnormal amyloid and T-tau/P-tau biomarkers, n = 13); 2) PCA with an atypical AD CSF profile (PCA-aAD; abnormal amyloid biomarker only, n = 9); and 3) PCA not associated with AD (PCA-nonAD; normal biomarkers, n = 5). All patients underwent clinical and cognitive assessment, structural MRI, and a subset of them underwent brain 18F-FDG PET. RESULTS All patients' groups showed a common pattern of posterior GM atrophy and hypometabolism typical of PCA, as well as equivalent demographics and clinical/cognitive profiles. PCA-tAD patients showed a group-specific pattern of hypometabolism in the left fusiform gyrus and inferior temporal gyrus. PCA-aAD did not present a group-specific atrophy pattern. Finally, group-specific gray matter atrophy in the right dorsolateral prefrontal cortex, left caudate nucleus and right medial temporal regions and hypometabolism in the right supplementary motor area and paracentral lobule were observed in PCA-nonAD patients. CONCLUSION Our findings suggest that both PCA-tAD and PCA-aAD patients are on the AD continuum, in agreement with the recently suggested A/T/N model. Furthermore, in PCA, the underlying pathology has an impact at least on the anatomo-functional presentation. Brain damage observed in PCA-tAD and PCA-aAD was mostly consistent with the well-described presentation of the disease, although it was more widespread in PCA-tAD group, especially in the left temporal lobe. Additional fronto-temporal (especially dorsolateral prefrontal) damage seems to be a clue to underlying non-AD pathology in PCA, which warrants the need for longitudinal follow-ups to investigate frontal symptoms in these patients.
Collapse
Affiliation(s)
- Maxime Montembeault
- FrontLab, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière hospital, 75013 Paris, France
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, H3W 1W6 Montréal, QC, Canada
- Department of Psychology, University of Montreal, H2V 2S9 Montréal, QC, Canada
| | - Simona M. Brambati
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, H3W 1W6 Montréal, QC, Canada
- Department of Psychology, University of Montreal, H2V 2S9 Montréal, QC, Canada
| | - Foudil Lamari
- Department of Metabolic biochemistry, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Agnès Michon
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Dalila Samri
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Stéphane Epelbaum
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Lucette Lacomblez
- LIB, Inserm U1146, Université Pierre et Marie Curie, Paris 6, 75006 Paris, France
- Department of Nervous system diseases, CIC-CET, Pitié-Salpêtrière hospital, 75013 Paris, France
- Pharmacology service, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Stéphane Lehéricy
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière hospital, 75013 Paris, France
- Centre de Neuro-imagerie de Recherche (CENIR) de l’Institut du Cerveau et de la Moelle Epiniere (ICM), Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Marie-Odile Habert
- LIB, Inserm U1146, Université Pierre et Marie Curie, Paris 6, 75006 Paris, France
- Department of Nuclear Medicine, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Bruno Dubois
- FrontLab, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière hospital, 75013 Paris, France
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Aurélie Kas
- LIB, Inserm U1146, Université Pierre et Marie Curie, Paris 6, 75006 Paris, France
- Department of Nuclear Medicine, Pitié-Salpêtrière hospital, 75013 Paris, France
| | - Raffaella Migliaccio
- FrontLab, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière hospital, 75013 Paris, France
- Department of Nervous system diseases, Institut de la mémoire et de la maladie d’Alzheimer (IM2A), Neurology, Pitié-Salpêtrière hospital, 75013 Paris, France
| |
Collapse
|